Skip to main content

Selective Uptake of Lipoprotein Free Cholesterol and Its Intracellular Transport — Role of Caveolin

  • Chapter

Abstract

Free cholesterol (FC) from low density lipoprotein (LDL) enters peripheral cells via a N-ethylmaleimide-dependent selective uptake pathway. This pathway regulates cholesterogenesis. and promotes FC efflux via its effect on the transcriptional regulation of caveolin, the major structural protein of caveolae. Caveolae are the terminus at the cell surface of both newly synthesized FC and FC recycled from LDL. Caveolar FC is effectively transferred to extracellular high density lipoprotein (HDL). The activity of this new pathway may explain several paradoxes in current models of the regulation of intracellular FC transport.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rothblat GH., Mahlberg FH, Johnson WJ, Phillips MC: Apolipoproteins, membrane cholesterol domains, and the regulation of cholesterol efflux. J. Lipid Res. 1992; 33:1091–1097.

    PubMed  CAS  Google Scholar 

  2. Fielding CJ, Fielding PE: Molecular physiology of reverse cholesterol transport. J. Lipid Res. 1995: 36: 211–228.

    PubMed  CAS  Google Scholar 

  3. Spady DK, Bilheimer DW, Dietschy JM: Rates of receptor-dependent and — independent low density lipoprotein uptake in the hamster. Proc. Natl. Acad. Sci. USA 1983:80:3499–3503

    Article  PubMed  CAS  Google Scholar 

  4. Goldstein JL, Brown MS: Binding and degradation of low density lipoproteins by cultured human fibroblasts. J. Biol. Chem. 1974; 249:5153–5162.

    PubMed  CAS  Google Scholar 

  5. Miller NE, Weinstein DB, Steinberg D: Binding, internalization and degradation of high density lipoprotein by cultured normal human fibroblasts. J. Lipid Res. 1977; 18:438–450.

    PubMed  CAS  Google Scholar 

  6. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M: Identification of scavenger receptor SR-B1 as a high density lipoprotein receptor. Science 1996; 271:518–520.

    Article  PubMed  CAS  Google Scholar 

  7. Ji Y, Jian B, Wang N, Sun Y, de la Lhera Moya M, Phillips MC, Rothblat GH, Swaney JB, Tall AR; Scavenger receptor Bl promotes high density lipoprotein mediated cellular cholesterol efflux. J. Biol. Chem. 1997; 272:20982–20985.

    Article  PubMed  CAS  Google Scholar 

  8. Slotte JP, Ekman S, Bjorkerud S: Uptake and esterification of exogenous cholesterol by low density lipoprotein receptor negative human fibroblasts in culture. Biochem. J. 1984;222:821–824.

    PubMed  CAS  Google Scholar 

  9. Fielding CJ, Fielding PE: Role of an N-ethylmaleimide sensitive factor in the selective cellular uptake of low density lipoprotein free cholesterol. Biochemistry 1995;34:14237–14244.

    Article  PubMed  CAS  Google Scholar 

  10. Goldstein JL, Hobbs HH, Brown MS: Familial Hypercholesterolemia. In Metabolic and Molecular Bases of Inherited Disease (C.R. Schriver, A. Beaudet, W.S. Sly and D. Valle, eds), 1995. McGraw-Hill, NY. Pp 1981–2030.

    Google Scholar 

  11. Assmann G, Seedorf U: Acid Lipase Deficiency: Wolman Disease and Cholesteryl Ester Storage Disease. In Metabolic and Molecular Bases of Inherited Disease (C.R.

    Google Scholar 

  12. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummins C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgis ME, Comly M, Cooney A, Brown A et al: Niemann-Pick C disease: homology to mediators of cholesterol homeostasis. Science 1997; 277:228–231.

    Article  PubMed  CAS  Google Scholar 

  13. Fielding CJ, Fielding PE: Evidence for a lipoprotein carrier in human plasma catalyzing sterol efflux from cultured fibroblasts and its relationship to lecithinxholesterol acyltransferase. Proc. Natl. Acad. Sci.USA 1981; 78:3911–3914.

    Article  PubMed  CAS  Google Scholar 

  14. Wu J-D, Bailey JM: 1980. Lipid metabolism in cultured cells. Studies on lipoprotein-catalyzed reverse cholesterol transport in normal and homozygous familial hypercholesterolemic skin fibroblasts. Arch. Biochem. Biophys. 1980; 202:467–473.

    Article  PubMed  CAS  Google Scholar 

  15. Brown MS, Goldstein JL: Suppression of 3-hydroxy-3-methylglutaryl CoA Schriver, A. Beaudet, W.S. sly and D. Valle, eds), 1995. McGraw-Hill, NY. Pp 2562–2587. reductase activity and inhibition of growth by 7-ketocholesterol. J. Biol. Chem. 1974;249:7306–7314.

    Google Scholar 

  16. Pittman RC, Knecht TP, Rosenbaum MS, Taylor CA: A nonendocytotic mechanism for the selective uptake of high density lipoprotein-associated cholesteryl esters. J. Biol. Chem. 1987;262:2443–2450.

    PubMed  CAS  Google Scholar 

  17. Rinninger F, Pittman RC: Regulation of the selective uptake of high density lipoprotein-associated cholesteryl esters. J. Lipid Res. 1987; 28:1313–1325.

    PubMed  CAS  Google Scholar 

  18. Dietschy JM, Turley SD, Spady DK: Role of the liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J. Lipid Res. 1993; 34:1637–1659.

    PubMed  CAS  Google Scholar 

  19. Forte TM, Bell-Quint JJ, Cheng F: Lipoproteins of fetal and newborn calves and adult steer: a study of developmental changes. Lipids 1981; 16:240–245.

    Article  PubMed  CAS  Google Scholar 

  20. Bauchart D, Durand D, Laplaud PM, Forgez P, Goulinet S, Chapman MJ: Plasma lipoproteins and apolipoproteins in the preruminant calf Bos spp. Density distribution, physicochemical properties and the in vivo evaluation of the contribution of the liver to lipoprotein homeostasis. J. Lipid Res. 1989; 30:1499–1514.

    PubMed  CAS  Google Scholar 

  21. Reichl D, Myant NB, Pflug JJ: Concentration of lipoproteins containing apolipoprotein B in human peripheral lymph. Biochim. Biophys. Acta 1977; 489: 98–105.

    Article  PubMed  CAS  Google Scholar 

  22. Fielding PE, Fielding CJ: Intracellular transport of low density lipoprotein derived free cholesterol begins at clathrin coated pits and terminates at cell surface caveolae. Biochemistry 1996; 35:14932–14938.

    Article  PubMed  CAS  Google Scholar 

  23. Uittenbogaard A, Ying YS, Smart EJ: Characterization of a cytosolic heat shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J. Biol. Chem. 1998; 273:6525–6532.

    Article  PubMed  CAS  Google Scholar 

  24. Brown MS, Brannon PG, Bohmfalk HA, Brunschede GY, Dana SE, Hegelson J, Goldstein JL: Use of mutant fibroblasts in the analysis of the regulation of cholesterol metabolism in human cells. J. Cell Physiol. 1975; 85:425–436.

    Article  PubMed  CAS  Google Scholar 

  25. Coxey RA, Pentchev PG, Campbell G, Blanchette-Mackie EJ: Differential accumulation of cholesterol in Golgi compartments of normal and Niemann-Pick type C fibroblasts incubated with LDL: a cytochemical freeze-fracture study. J. Lipid Res. 1993;34:1165–1176.

    PubMed  CAS  Google Scholar 

  26. Milici AJ, Watrous ME, Stukenbrok H. Palade GE: Transcytosis of albumin in capillary endothelium. J. Cell Biol. 1987; 105:2603–2612.

    Article  PubMed  CAS  Google Scholar 

  27. Anderson RGW, Kamen BA, Rothberg KG, Lacey SW: Potocytosis: sequestration and transport of small molecules by caveolae. Science 1992; 255:410–411.

    Article  PubMed  CAS  Google Scholar 

  28. Okamoto T, Schlegel A, Scherer PE, Lisanti MP: Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 1998; 273:5419–5422.

    Article  PubMed  CAS  Google Scholar 

  29. Fielding PE, Fielding CJ: Plasma membrane caveolae mediate the efflux of cellular free cholesterol. Biochemistry 1995; 34:14288–14292.

    Article  PubMed  CAS  Google Scholar 

  30. Smart EJ, Ying YS, Donzell WC, Anderson RGW: A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 1996;271:29427–29435.

    Article  PubMed  CAS  Google Scholar 

  31. Fielding CJ, Bist A, Fielding PE: Caveolin mRNA levels are upregulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc. Natl. Acad. Sci. USA 1997; 94:3753–3758.

    Article  PubMed  CAS  Google Scholar 

  32. Hailstones D, Sleer LS, Parton RG, Stanley KK: Regulation of caveolin and caveolae by cholesterol in MDCK cells. J. Lipid Res. 1998; 39:369–379.

    PubMed  CAS  Google Scholar 

  33. Goldstein JL, Brown MS: Regulation of the mevalonate pathway. Nature 1990; 343:425–430.

    Article  PubMed  CAS  Google Scholar 

  34. Fielding CJ, Fielding PE: 1997. Intracellular cholesterol transport. J. Lipid Res. 1997;38:1503–1521.

    PubMed  CAS  Google Scholar 

  35. Li S, Song KS, Lisanti MP: Expression and characterization of recombinant caveolin. Purification by polyhistidine tagging and cholesterol-dependent incorporation into defined lipid membranes. J. Biol. Chem. 1995; 271:568–573.

    Google Scholar 

  36. Murata K, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K: 1995. VIP21/caveolin is a cholesterol binding protein. Proc. Natl. Acad. Sci. USA 1995; 92:10339–10343.

    Article  PubMed  CAS  Google Scholar 

  37. Schroeder F, Nemecz G: Transmembrane cholesterol distribution. In Advances in Cholesterol Research (Esfahani M, Swaney J, eds). Telford Press, Caldwell N.J., 1990. Pp 47–88.

    Google Scholar 

  38. Smart EJ, Ying YS, Conrad PA, Anderson RGW: Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 1994; 133:1265–1276.

    Google Scholar 

  39. Schnitzer JE, Mcintosh DP, Dvorak AM, Liu J, Oh P: Separation of caveolae from associated microdomains of GPl-anchored proteins. Science 1995;269:1435–1439.

    Article  PubMed  CAS  Google Scholar 

  40. Lestavel S, Briand O, Nion S, Torpier G, Copin C, Fruchart JC, Clavey V: Caveolae and GPI-anchored proteins — a specific binding membrane domain for high density lipoproteins. Atherosclerosis 1997,134(S1):369.

    Article  Google Scholar 

  41. Nion S, Briand O, Lestavel S, Torpier G, Nazih F, Delbart C, Fruchart JC, Clavey V: High density lipoprotein subfraction-3 interacts with GPI-anchored proteins. Biochem.J. 1997; 328:415–423.

    PubMed  CAS  Google Scholar 

  42. Babitt J, Trigatti B, Rigotti A, Smart EJ, Anderson RGW, Xu S, Krieger M: 1997. Murine SR-Bl, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J. Biol. Chem. 1997; 272:13242–13249.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fielding, C.J., Bist, A., Fielding, P.E. (1998). Selective Uptake of Lipoprotein Free Cholesterol and Its Intracellular Transport — Role of Caveolin. In: Chang, T.Y., Freeman, D.A. (eds) Intracellular Cholesterol Trafficking. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5113-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5113-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7326-1

  • Online ISBN: 978-1-4615-5113-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics