Advertisement

Direct Evidence for Sterol Carrier Protein-2 (SCP-2) Participation in ACTH Stimulated Steroidogenesis in Isolated Adrenal Cells

  • R. F. Chanderbhan
  • A. T. Kharroubi
  • A. P. Pastuszyn
  • L. L. Gallo
  • T. J. Scallen

Abstract

Intact, dispersed adrenal fasiculata cells were fused with liposomal entrapped anti-sterol carrier protein-2 IgG, washed and subsequently exposed to adrenocorticotropic hormone (ACTH). The steroidogenic response (measured as corticosterone production) of these cells was inhibited by 45–60%, compared to cells fused with liposomally entrapped non-immune IgG or buffer. Furthermore, the degree of inhibition was shown to be dependent on the amount of antibody utilized. Fusion of cells with liposomally entrapped antibody to fatty acid binding protein (FABP) had no effect on ACTH-induced steroidogenesis. The incorporation of liposomal SCP-2 into adrenal fasiculata cells pre-treated with affinity purified anti-SCP-2 IgG resulted in a concentration dependent release of the inhibition of ACTH-induced steroidogenesis caused by the antibody. It was also demonstrated indirectly that the fusion of liposomal anti-SCP-2 IgG had no effect on ACTH binding to adrenal cells. Finally, cells treated with liposomal anti-SCP-2 IgG and subsequently exposed to ACTH in the presence of aminoglutethimide, accumulated unesterified cholesterol in their cytoplasmic lipid inclusion droplets. These results, taken together, establish that an important physiological function for SCP-2 in adrenal cells is the transfer of unesterified cholesterol from the cytoplasmic lipid inclusion droplets to mitochondria. This translocation is generally considered to be the rate-limiting step in steroid hormone biosynthesis.

Key Words

sterol carrier protein-2 (SCP-2) intracellular cholesterol transport regulation of steroidogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gidez LI, Feller E. Effect of the stress of unilateral adrenalectomy on the depletion of individual cholesterol esters in the adrenal. Lipid Res 1969; 10:656–659Google Scholar
  2. 2.
    Sayers GM, Sayers A, Fry EY, White A, Long GNH. The effect of the adrenotropic hormone of the anterior pituitary on the cholesterol content of the adrenals, with a review of the literature on adrenal cholesterol. Yale J. Biol. Med. 1944;16:361–392PubMedGoogle Scholar
  3. 3.
    Glick D, Ochs MJ. Studies in histochemistry: quantitative histological distribution of cholesterol in adrenal glands of the cow, rat, and monkey and effects of stress conditions, adrenocorticotropin (ACTH), cortisone, and deoxycorticosterone. Endocrinology 1955; 56: 285–295PubMedCrossRefGoogle Scholar
  4. 4.
    Moses HL, Davis WW, Rosenthal AS, Garren LD. Adrenal cholesterol: localization by electron-microscope autoradiography. Science 1969;163:1203–1205PubMedCrossRefGoogle Scholar
  5. 5.
    Boyd GS, Trzeciak, WH. Cholesterol metabolism in the adrenal cortex: studies on the mode of action of ACTH. Ann N. Acad Sci 1973;212:361–377CrossRefGoogle Scholar
  6. 6.
    Beckett GJ, Boyd GS. Purification and control of bovine adrenal cortical ester hydrolase and evidence for the activation of the enzyme by a phosphorylation. Eur J Biochem 1977;72:223–233PubMedCrossRefGoogle Scholar
  7. 7.
    Naghshineh S, Treadwell CR, Gallo LL, Vahouny GV. Protein kinase-mediated phosphorylation of a purified sterol ester hydrolase from bovine adrenal cortex. J Lipid Res 1978;19: 561–569PubMedGoogle Scholar
  8. 8.
    Vahouny GV, Chanderbhan R, Hinds R, Hodges VA, Treadwell CR. ACTH-induced hydrolysis of cholesteryl esters in rat adrenal cells. J Lipid Res 1978;19:570–577PubMedGoogle Scholar
  9. 9.
    Yago N, Ichii S. Submitochondrial distribution of components of the steroid 11 beta-hydroxylase and cholesterol sidechain-cleaving enzyme systems in hog adrenal cortex. J Biochem (Tokyo) 1969;65:215–224Google Scholar
  10. 10.
    Churchill PF, Kimura T. Topological studies of cytochromes P-450scc and P-450 11 beta in bovine adrenocortical inner mitochondrial membranes. Effects of controlled tryptic digestion. J Biol Chem 1979;254:10443–10448PubMedGoogle Scholar
  11. 11.
    Chanderbhan R, Noland BJ, Scallen TJ, Vahouny GV. Sterol carrier protein2. Delivery of cholesterol from adrenal lipid droplets to mitochondria for pregnenolone synthesis. J Biol Chem 1982;257:8928–8934PubMedGoogle Scholar
  12. 12.
    Vahouny GV, Chanderbhan R, Noland BJ, Irwin D, Dennis P, Lambeth JD, Scallen TJ. Sterol carrier protein2. Identification of adrenal sterol carrier protein2 and site of action for mitochondrial cholesterol utilization. J Biol Chem 1983;258:11731–11737PubMedGoogle Scholar
  13. 13.
    Vahouny GV, Dennis P, Chanderbhan R, Fiskum G, Noland BJ, Scallen TJ. Sterol carrier protein2 (SCP2)-mediated transfer of cholesterol to mitochondrial inner membranes. Biochem Biophys Res Commun 1984;122:509–515PubMedCrossRefGoogle Scholar
  14. 14.
    Chanderbhan RF, Kharroubi AT, Noland BJ, Scallen TJ, Vahouny GV. Sterol carrier protein2: further evidence for its role in adrenal steroidogenesis. Endocrine Res 1986;12:351–370CrossRefGoogle Scholar
  15. 15.
    Noland BJ, Arebalo RE, Hansbury E, Scallen TJ. Purification and properties of sterol carrier protein2. J Biol Chem 1980;255:4282–4289PubMedGoogle Scholar
  16. 16.
    Scallen TJ, Noland BJ, Gavey KL, Bass NM, Ockner RK, Chanderbhan RF, Vahouny GV. Sterol carrier protein2 and fatty acid-binding protein. Separate and distinct physiological functions. J Biol Chem 1985;260;4733–4739PubMedGoogle Scholar
  17. 17.
    Hall PF, Charpponnier C, Nakamura M, Gabbiani G. The role of microfilaments in the response of adrenal tumor cells to adrenocorticotropic hormone. J Biol Chem 1979;193:265–275Google Scholar
  18. 18.
    Rouser G, Siakotos AN, Fleischer S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorous analysis of spots. Lipids 1966;1:85–86PubMedCrossRefGoogle Scholar
  19. 19.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193:265–275PubMedGoogle Scholar
  20. 20.
    Keller GA, Scallen TJ, Clarke D, Maher PA, Krisans SK, Singer SJ. Subcellular localization of sterol carrier protein-2 in rat hepatocytes: its primary localization to peroxisomes. J Cell Biol 1989;108: 1353–1361PubMedCrossRefGoogle Scholar
  21. 21.
    Hirai A, Tahara K, Tamura Y, Saito H, Terano T, Yoshida S. Involvement of 5-lipoxygenase metabolites in ACTH-stimulated corticosteroidogeneis in rat adrenal glands. Prostaglandins 1985;30:749–767PubMedGoogle Scholar
  22. 22.
    Pedersen RC, Brownie AC. Cholesterol side-chain cleavage in the rat adrenal cortex: isolation of a cycloheximide-sensitive activator peptide. Proc Natl Acad Sci USA 1987; 80:1882–1886CrossRefGoogle Scholar
  23. 23.
    Pedersen RC, Brownie, AC. Steroidogenesis-activator polypeptide isolated from a rat Leydig cell tumor. Science 236;1987: 188–190PubMedCrossRefGoogle Scholar
  24. 24.
    Farese RV, Sabir AM. Polyphosphoinositides: Stimulator of mitochondrial cholesterol side chain cleavage and possible identification as an adrenocorticotropin-induced, cycloheximide-sensitive, cytosolic, steroidogenic factor. Endocrinology 1980;106:1869–1878PubMedCrossRefGoogle Scholar
  25. 25.
    Igaraski Y, Kimura J. Importance of the unsaturated fatty acyl group of phospholipids in their stimulatory role on rat adrenal mitochondrial steroidogenesis. Biochemistry 1986;25: 6461–6466CrossRefGoogle Scholar
  26. 26.
    Trzeciak WH, Simpson ER, Scallen TJ, Vahouny GV, Waterman MR. Studies on the synthesis of sterol carrier protein-2 in rat adrenocortical cells in monolayer culture. Regulation by ACTH and dibutryl cyclic 3′, 5′-AMP. J Biol Chem 1987; 262:3713–3717PubMedGoogle Scholar
  27. 27.
    McNamara BC, Jefcoate CR. The role of sterol carrier protein 2 in stimulation of steroidogenesis in rat adrenal mitochondria by adrenal cytosol. Arch Biochem Biophysics 1989;275:53–63CrossRefGoogle Scholar
  28. 28.
    Xu TS, Bowman EP, Glass DB, Lambeth JD. Stimulation of adrenal mitochondrial cholesterol side-chain cleavage by GTP, steroidogenesis activator polypeptide (SAP), and sterol carrier protein 2. GTP and SAP act synergistically. J Biol Chem. 1991; 266: 6801–6807PubMedGoogle Scholar
  29. 29.
    Vahouny GV, Chanderbhan R, Noland BJ, Scallen TJ. Cholesterol ester hydrolysis and sterol carrier proteins. Endocrine Res 1984–1985; 10:473–505CrossRefGoogle Scholar
  30. 30.
    Saruta T, Kaplan, NM Adrenocortical steroidogenesis: the effects of prostaglandins. J Clin Invest 1972; 51:2246–2251PubMedCrossRefGoogle Scholar
  31. 31.
    Warner W, Rubin RP. Evidence for a possible prostaglandin link in ACTH-induced steroidogenesis. Prostaglandins 1969;9:83–95Google Scholar
  32. 32.
    Butko P, Hapala I, Scallen TJ, Schroeder F. Acidic phospholipids strikingly potentiate sterol carrier protein 2 mediated intermembrane sterol transfer. Biochemistry 1990;29: 4070–4077PubMedCrossRefGoogle Scholar
  33. 33.
    Privalle CT, Crivello JF, Jefcoate CR. Regulation of intramitochondrial cholesterol transfer to side-chain cleavage cytochrome P-450 in rat adrenal gland. Proc Natl Acad Sci. USA 1983;80:702–706PubMedCrossRefGoogle Scholar
  34. 34.
    Garren LD, Gill GN, Masui H, Walton GM. On the mechanism of action of ACTH. Recent Prog Hormone Res 1971;27:433–478Google Scholar
  35. 35.
    Trzeciak WH, Boyd GS. The effect of stress induced by ether anesthesia on cholesterol content and cholesteryl-esterase activity in rat-adrenal cortex. Eur J Biochem 1973;37:327–333PubMedCrossRefGoogle Scholar
  36. 36.
    Gordon JI, Alpers DH, Ockner RK, Strauss AW. The nucleotide sequence of the rat liver fatty acid binding protein mRNA. J Biol Chem 1983;258:3356–3363PubMedGoogle Scholar
  37. 37.
    Schroeder F, Butko P, Nemecz G, Scallen TJ. Interaction of fluorescent delta 5, 7, 9(11), 22-ergostatetraen-3β-ol with sterol carrier protein-2. J Biol Chem 1990;265:151–157PubMedGoogle Scholar
  38. 38.
    Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957;226:497–509PubMedGoogle Scholar
  39. 39.
    Mendis-Handagama SM, Aten RF, Watkins PA, Scallen TJ, Berhman HR. Peroxisomal sterol carrier protein-2 in luteal cell steroidogenesis: a possible role in cholesterol transport from lipid droplets to mitochondria. Tissue and Cell 1995;27:483–490PubMedCrossRefGoogle Scholar
  40. 40.
    Stocco DM. A review of the characteristics of the protein required for the acute regulation of steroid hormone biosynthesis: the case for the steroidogenic acute regulatory (StAR) protein. 1998;217:123–129Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • R. F. Chanderbhan
    • 1
  • A. T. Kharroubi
    • 1
  • A. P. Pastuszyn
    • 2
  • L. L. Gallo
    • 1
  • T. J. Scallen
    • 2
  1. 1.Department of BiochemistryThe George Washington UniversityUSA
  2. 2.Department of Biochemistry, Health Sciences CenterUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations