Advertisement

The role of oxidative stress in diseases caused by mineral dusts and fibres: Current status and future of prophylaxis and treatment

  • M. Gulumian
Part of the Molecular and Cellular Biochemistry book series (DMCB, volume 32)

Abstract

Inhalation of silica and asbestos fibres by humans can lead to fibrosis of the lung and cancer. Different mechanistic approaches, including oxidative stress, are used for prophylactic and therapeutic interventions to attenuate the fibrogenic and carcinogenic effects of these particles. Thus far, most of these therapeutic interventions have been only partly successful. A review of the mechanisms which are thought to be involved in mineral particle-induced toxicity and the relevant therapeutic interventions used to date to counteract these mechanisms, will help formulate better prophylactic and treatment intervention strategies in the future. ((Mol Cell Biochem 196: 69-77, 1999)

Key words

mineral particles silica asbestos fibres inflammation fibros 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E, Smith A: Relation of particle dimension to carcinogenicity in amphibole asbestos and other fibrous minerals. J Natl Cancer Inst 67: 965–975, 1981PubMedGoogle Scholar
  2. 2.
    Hochelia MF Jr: Surface chemistry, structure, and reactivity of hazardous mineral dusts. In: G.D. Guthrie Jr, B.T. Mossman (eds). Health Effects of Mineral Dusts. Reviews in Mineralogy, Vol. 28. Mineralogy Society of America, Washington, 1993, pp 275–308Google Scholar
  3. 3.
    Nash T, Allison AC, Harington JS: Physico-chemical properties of silica in relation to its toxicity. Nature 210: 259–261, 1966PubMedCrossRefGoogle Scholar
  4. 4.
    Nolan RP, Langer AM, Harington JS, Oster G, Selikoff IJ: Quartz hemolysis as related to its surface functionalities. Environ Res 26: 503–520, 1981PubMedCrossRefGoogle Scholar
  5. 5.
    Fubini B, Bolis V, Cavenago A, Volante M: Physico-chemical properties of crystalline silica dusts and their possible implication in various biological responses. Scan J Work Environ Health 21(suppl 2): 9–14, 1995Google Scholar
  6. 6.
    Weitzman SA, Graceffa P: Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide. Arch Biochem Biophys 228: 373–376, 1984PubMedCrossRefGoogle Scholar
  7. 7.
    Eberhardt MK, Román-Franco AA, Quiles MR: Asbestos-induced decomposition of hydrogen peroxide. Environ Res 37: 287–292, 1985PubMedCrossRefGoogle Scholar
  8. 8.
    Gulumian M, van Wyk JA: Hydroxyl radical production in the presence of fibres by a Fenton-type reaction. Chem-Biol Interact 62: 89–97, 1987PubMedCrossRefGoogle Scholar
  9. 9.
    Vallyathan V, Mega J F, Shi X, Dalai NS: Enhanced generation of free radicals from phagocytes induced by mineral dusts. Am J Resp Cell Mol Biol 6: 404–413, 1992CrossRefGoogle Scholar
  10. 10.
    Hatch GE, Gardner DE, Menzel DB: Stimulation of oxidant production in alveolar macrophages by pollutant and latex particles. Environ Res 23: 121–136, 1980PubMedCrossRefGoogle Scholar
  11. 11.
    Berg I, Schlüter T, Gercken G: Increase of bovine alveolar macrophage superoxide anion and hydrogen peroxide release by dusts of different origin. J Toxicol Environ Health 39: 341–354, 1993PubMedCrossRefGoogle Scholar
  12. 12.
    Ishizaki T, Yano E, Urano N, Evans PH: Crocidolite-induced reactive oxygen metabolites generation from human polymorphonuclear leukocytes. Environ Res 66: 208–216, 1994PubMedCrossRefGoogle Scholar
  13. 13.
    Hansen K, Mossman BT: Generation of superoxide from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res 47: 1681–1686, 1987PubMedGoogle Scholar
  14. 14.
    Dubois CM, Bissonnette E, Rola-Pleszczynski M: Asbestos fibres and silica particles stimulate rat alveolar macrophages to release tumor necrosis factor. Am Rev Resp Dis 139: 1257–1264, 1989PubMedCrossRefGoogle Scholar
  15. 15.
    Heaney PJ, Banfield JA: Structure and chemistry of silica, metal oxides, and phosphates. In: G.D. Guthrie Jr, B.T. Mossman (eds). Health Effects of Mineral Dusts. Reviews in Mineralogy, Vol. 28. Mineralogy Society of America, Washington, 1993, 185–233.Google Scholar
  16. 16.
    Veblen DR, Wylie AG: Mineralogy of amphiboles and 1:1 layer silicates. In: G.D. Guthrie Jr, B.T. Mossman (eds). Health Effects of Mineral Dusts. Reviews in Mineralogy, Vol. 28. Mineralogy Society of America, Washington, 1993, 61–137Google Scholar
  17. 17.
    Hearne GR, Kolk B, Pollak H, van Wyk JA, Gulumian M: Bulk and surface modifications in detoxified crocidolite. J Inorg Biochem 50: 145–156, 1993CrossRefGoogle Scholar
  18. 18.
    Brown GM, Donaldson K, Brown DM: Bronchoalveolar leukocyte response in experimental silicosis: Modulation by a soluble aluminum compound. Toxicol Appl Pharmacol 101: 95–105, 1989PubMedCrossRefGoogle Scholar
  19. 19.
    Dufresne A, Sébastien P, Michaud D, Perrault G, Bégin R: Influence of aluminum treatments on pulmonary retention of quartz in sheep silicosis. Exp Lung Res 20: 157–168, 1994PubMedCrossRefGoogle Scholar
  20. 20.
    Bégin R, Massé S, Dufresne A: Further information on aluminium inhalation in silicosis. Occup Environ Med 52: 778–780, 1995PubMedCrossRefGoogle Scholar
  21. 21.
    Schlipköter HW, Brockhaus A: The action of polyvinyl pyridine on experimental silicosis. Dtsch Med Wochenschr 85: 920–923, 1960CrossRefGoogle Scholar
  22. 22.
    Kaw JL, Beck EC, Brck J: Studies of quartz cytotoxicity on peritoneal macrophages of guinea pigs pretreated with polyvinyl pyridine N-oxide. Environ Res 9: 313–320, 1975PubMedCrossRefGoogle Scholar
  23. 23.
    Von Behren LA, Chudhary S, Rabinovich E, Shu MO, Tewari RP: Protective effect of poly-2-vinyl pyridine-N-oxide on susceptibility of silica-treated mice to experimental histoplasmosis. Infect Immun 42: 818–823, 1983Google Scholar
  24. 24.
    Jinduo Z, Jundge L, Guizhi L: Long-term follow-up observations of the therapeutic effect of PVNO on human silicosis. Zentralbl Bakteriol Hyg I Abt Orig B 178: 259–262, 1983Google Scholar
  25. 25.
    Davis JMG: The effects of polyvinylpyridine-N-oxide (P204) on the cytopathogenic action of chrysotile asbestos in vivo and in vitro. Br J Exp Pathol 53: 652–658, 1972PubMedGoogle Scholar
  26. 26.
    Schlipköter HW, Brockhaus A: Die Hemmung der experimentallen Silikose durch subcutane Verabreichung von poly-vinylpyridine-N-oxyd. Klin Wochenschr 39: 1182–1189, 1961CrossRefGoogle Scholar
  27. 27.
    Marchisio MA, Comolli R: Studio metabolico e morfologico deil’attivita liticoprotettiva délia poli-2-vinil-piridina-N-ossido su macrofagi peritoneali trattati con silice. Med Lav 55: 401–410, 1964Google Scholar
  28. 28.
    Mao Y, Lambert ND, Knapton AD, Shi X, Saffiotti U: Protective effects of silanol group binding agents on quartz toxicity to rat lung alveolar cells. Appl Occup Environ Hyg 10: 1132–1137, 1995CrossRefGoogle Scholar
  29. 29.
    Gulumian M, van Wyk A: Free radical scavenging properties of polyvinylpyridine N-oxide: A possible mechanism for its action in pneumoconiosis. 78: 124–128, 1987.Google Scholar
  30. 30.
    Emerson RJ, Davis GS: Effect of alveolar lining material-coated silica on rat alveolar macrophages. Environ Health Perspect 51: 81–84,1983PubMedCrossRefGoogle Scholar
  31. 31.
    Wallace WE, Vallyathan V, Keane MJ, Robinson V: In vitro biologic toxicity of native and surface modified silica and kaolin. J Toxicol Environ Health 16: 415–424, 1985PubMedCrossRefGoogle Scholar
  32. 32.
    Schimmelpfeng J, Drosselmeyer E, Hofheinz V, Seidel A: Influence of surfactant components and exposure geometry on the effects of quartz and asbestos on alveolar macrophages. Environ Health Perspect 97:225–231, 1992PubMedCrossRefGoogle Scholar
  33. 33.
    Jabbour AJ, Holian A, Scheule RK: Lung lining fluid modification of asbestos bioactivity for the alveolar macrophage. Toxicol Appl Pharmacol 110: 283–294, 1991PubMedCrossRefGoogle Scholar
  34. 34.
    Antonini JM, Reasor MJ: Effect of short-term exogenous pulmonary surfactant treatment on acute lung damage associated with the intratracheal instillation of silica. J Toxicol Environ Health 43: 85–101, 1994PubMedCrossRefGoogle Scholar
  35. 35.
    Antonini JM, McCloud CM, Reasor MJ: Acute silica toxicity: Attenuation by amiodarone-induced pulmonary phospholipidosis. Environ Health Perspect 102: 372–378, 1994PubMedCrossRefGoogle Scholar
  36. 36.
    Blake TL, DiMatteo M, Antonini JM, McCloud CM, Reasor MJ: Subchronic pulmonary inflammation and fibrosis induced by silica in rats are attenuated by amiodarone. Exp Lung Res 22: 113–131, 1996PubMedCrossRefGoogle Scholar
  37. 37.
    Brown RC, Carthew P, Hoskins JA, Sara E, Simpson CF: Surface modification can affect the carcinogenicity of asbestos. Carcinogenesis 11: 1883–1885, 1990PubMedCrossRefGoogle Scholar
  38. 38.
    Vallyathan V, Kang JH, Van Dyke K, Dalai NS, Castranova V: Response of alveolar macrophages to in vitro exposure to freshly fractured versus aged silica dust: The ability of Prosil 28, an organosilane material, to coat silica and reduce its biological reactivity. 33: 303–315, 1991Google Scholar
  39. 39.
    Wiessner JH, Mandel NS, Sohnle PG, Hasegawa A, Mandel GS: The effect of chemical modification of quartz surfaces on particulate-induced pulmonary inflammation and fibrosis in the mouse. Am Rev Resp Dis 141: 111–116, 1990PubMedCrossRefGoogle Scholar
  40. 40.
    Evans PH, Brown RC, Poole A: Modification of the in vitro activities of amosite asbestos by surface derivatization. J Toxicol Environ Health 11:535–543,1983PubMedCrossRefGoogle Scholar
  41. 41.
    Zalma R, Bonneau L, Guignard J, Pezerat H, Jaurand MC: Formation of oxy radicals by oxygen reduction arising from the surface activity of asbestos. Can J Chem 65: 2338–2341, 1987CrossRefGoogle Scholar
  42. 42.
    Zalma R, Bonneau L, Guignard J, Pezerat H: Production of hydroxy 1 radicals by iron solid compounds. Toxic Environ Chem 13: 171–187, 1987CrossRefGoogle Scholar
  43. 43.
    Zalma R, Guignard J, Pezerat H: Production of radicals arising from surface activity of fibrous minerals. In: B.T. Mossman, R.O. Bégin (eds). Effects of Mineral Dusts on Cells. NATO ASI Series, Vol. H30. Springer-Verlag, Berlin Heidelberg, 1989, pp 257–264.CrossRefGoogle Scholar
  44. 44.
    Gulumian M, van Wyk JA: Lipid peroxidation by mineral dusts and fibres: ESR studies of oxygen uptake during peroxidation of lipids in multilamellar liposomes. S Afr J Sci 87: 591–593, 1991Google Scholar
  45. 45.
    Yamano Y, Kagawa J, Hanoka T, Takahashi T, Kasai H, Tsugane S, Watanabe S: Oxidative DNA damage induced by silica in vivo. Environ Res 69: 102–107, 1995PubMedCrossRefGoogle Scholar
  46. 46.
    Jackson JH, Schraufstatter IU, Hyslop PA, Vosbeck K, Sauerheber R, Weitzman SA, Cochrane CG: Role of oxidants in DNA damage. Hydroxyl radical mediates the synergistic DNA damaging effects of asbestos and cigarette smoke. J Clin Invest 80: 1090–1095, 1987PubMedCrossRefGoogle Scholar
  47. 47.
    Hardy JA, Aust AE: The effect of iron binding on the ability of crocidolite asbestos to catalyze DNA single-strand breaks. Carcinogenesis 16: 319–325,1995PubMedCrossRefGoogle Scholar
  48. 48.
    Kupchan SM, Atland HW: Requirements for tumor-inhibitory activity among benzylisoquinoline alkaloids and related synthetic compounds. J Med Chem 16: 913–917, 1973PubMedCrossRefGoogle Scholar
  49. 49.
    Yu XF, Zou CQ, Lim MB: Observation of the effect of tetrandrine on experimental silicosis of rats. Ecotoxicol Environ Saf 7: 306–312, 1983PubMedCrossRefGoogle Scholar
  50. 50.
    Li Q, Xu Y, Zhow Z, Chen X, Huang X, Chen S, Zhun C: The therapeutic effect of tetrandrine on silicosis. Chin J Tuberc Resp Diseases 4: 321–328, 1981Google Scholar
  51. 51.
    Castranova V, Kang J-H, Ma JKH, Mo C-G, Malanga CJ, Moore MD, Schwegler-Berry D, Ma JYC: Effects of bisbenzylisoquinoline alkaloids on alveolar macrophages: Correlation between binding affinity, inhibitory potency, and antifibrotic potential. Toxicol Appl Pharmacol 108: 242–252, 1991PubMedCrossRefGoogle Scholar
  52. 52.
    Ma JKH, Mo C-G, Malanga CJ, Ma JYC, Castranova V: Binding of bisbenzylisoquinoline alkaloids to phosphatidylcholine vesicles and alveolar macrophages: Relationship between binding affinity and antifibrotic potential of these drugs. Exp Lung Res 17:1061–1077,1991PubMedCrossRefGoogle Scholar
  53. 53.
    Castranova V, Kang JH, Moore MD, Pailes WH, Frazer DG, Schwegler-Berry D: Inhibition of stimulant-induced activation of phagocytic cells with tetrandrine. J Leuk Biol 50: 412–422, 1991Google Scholar
  54. 54.
    Liu L, Chen N, Cai G, Li Z, Yang J, Li Y: Studies on the effects of tetrandrine on microtubules. I. Biochemical observation and electron microscopy. Ecotoxicol Environ Safety 15: 142–148, 1988PubMedCrossRefGoogle Scholar
  55. 55.
    Chen N, Liu L, Cai G, Yang J, Li Y: Studies on the effects of tetrandrine on microtubules. II. Observations with immunofluorescence techniques. Ecotoxicol Environ Saf 15: 149–152, 1988PubMedCrossRefGoogle Scholar
  56. 56.
    Cao ZF: Scavenging effect of tetrandrine on active oxygen radicals. Planta Med 62: 413–414, 1996PubMedCrossRefGoogle Scholar
  57. 57.
    Shi X, Mao Y, Saffiotti U, Wang L, Rojanasakul Y, Leonard SS, Vallyathan V: Antioxidant activity of tetrandrine and its inhibition of quartz-induced lipid peroxidation. Toxicol Environ Health 46: 233–248, 1995CrossRefGoogle Scholar
  58. 58.
    Pang L, Hoult RS: Cytotoxicity to macrophages of tetrandrine, an antisilicosis alkaloid accompanied by an overproduction of prostaglandins. Biochem Pharmacol 53: 773–782, 1997PubMedCrossRefGoogle Scholar
  59. 59.
    He Y, Liu B, Miao Q, Zhang Q: The effects of tetrandrine on collagen gene expression in SiO2-induced experimental silicosis. The Sixth International Meeting on the Toxicology of Natural and Man-Made Fibrous and Non-Fibrous Particles. Abstract 106. September 15-18, 1996Google Scholar
  60. 60.
    Khan SG, Shahid A, Rahman Q: Protective role of ascorbic acid against asbestos induced toxicity in rat lung. Drug Chem Toxicol 13: 249–256, 1990PubMedCrossRefGoogle Scholar
  61. 61.
    Mironova GE: Effect of ascorbic acid on development of pneumofibrosis caused by silicon dioxide. Vopr Med Khim 37: 84–86, 1991PubMedGoogle Scholar
  62. 62.
    Holts G, Bresnick E: Ascorbic acid inhibits the squamous metaplasia that results from treatment of tracheal explants with asbestos or benzol[a]pyrene-coated asbestos. Cancer Lett 42: 23–28, 1988CrossRefGoogle Scholar
  63. 63.
    Braughler JM, Pregenzer JF, Chase RL, Duncan LA, Jacobsen EJ, McCall JM: Novel 21-aminosteroids as potent inhibitors of iron-dependent lipid peroxidation. J Biol Chem 262: 10438–10440, 1987PubMedGoogle Scholar
  64. 64.
    Antonini JM, van Dyke K, DiMatteo M, Reasor MJ: Attenuation of acute inflammatory effects of silica in rat lung by 21-aminosteroid, U74389G. Inflammation 19: 9–21, 1995PubMedCrossRefGoogle Scholar
  65. 65.
    Maksimenko AV, Grigor’eva EL, Bezrukavnikova LM, Petrov AD, Tishchenko EG, Arkhipova OG, Torchilin VP: Antifibrotic effect of dextran aldehyde-modified superoxide dismutase in experimental silicosis. Byull Eksp Biol Med 112: 265–267, 1991CrossRefGoogle Scholar
  66. 66.
    Mossman BT, Marsh JP, Sesko A, Hill S, Shatos MA, Doherty J, Petruska J, Adler KB, Hemenway D, Mickey R, Vacek P, Kagan E: Inhibition of lung injury, inflammation and interstitial pulmonary fibrosis by polyethylene glycol-conjugated catalase in a rapid inhalation model of asbestosis. Am Rev Resp Dis 141: 1266–1271, 1990PubMedCrossRefGoogle Scholar
  67. 67.
    Mossman BT, Surinrut P, Brinton BT, Marsh P, Heintz NH, Lindau-Shepard B, Shaffer JB: Transfection of a manganese-containing superoxide dismutase gene into hamster tracheal epithelial cells ameliorates asbestos-mediated cytotoxicity. J Clin Invest 21: 125–131, 1996Google Scholar
  68. 68.
    Goss GD, McBurney MW: Physiological and clinical aspects of vitamin A and its metabolites. Crit Rev Clin Lab Sci 29: 185–215, 1992PubMedCrossRefGoogle Scholar
  69. 69.
    Prabhala RH, Garewal HS, Hicks MJ, Sampliner RE, Watson RR: The effects of 13-cis-retinoic acid and β-carotene on cellular immunity in humans. Cancer (Phila) 67: 1556–1560, 1991CrossRefGoogle Scholar
  70. 70.
    Omenn GS, Goodman G, Thornquist M, Grizzle J, Rosenstock L, Barnhart S, Balmes J, Cherniack MG, Cullen MR, Glass A, Keogh J, Meyskens F Jr, Valanis B, Williams J Jr: The β-carotene and retinol efficacy trial (CARET) for chemoprevention of lung cancer in high risk populations: Smokers and asbestos-exposed workers. Cancer Res (suppl)54: 2038s–2043s, 1994PubMedGoogle Scholar
  71. 71.
    Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL Jr, Valanis B, Williams JH Jr, Barnhart S, Hammar S: Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. New Engl J Med 334: 1150–1155, 1996PubMedCrossRefGoogle Scholar
  72. 72.
    Chuwers P, Barnhart S, Blanc P, Brodkin CA, Cullen M, Kelly T, Keogh J, Omenn G, Williams J, Balmes JR: The protective effect of β-carotene and retinol on ventilatory function in an asbestos-exposed cohort. Am J Resp Crit Care Med 155: 1066–1071, 1997PubMedCrossRefGoogle Scholar
  73. 73.
    Schiffman MH, Pickle LW, Fontham E, Zahm SH, Falk R, Mele J, Correa P, Fraumeni JF Jr: Case-control study of diet and mesothelioma in Louisiana. Cancer Res 48: 2911–2915, 1988PubMedGoogle Scholar
  74. 74.
    Rees DJ: A case-control study of mesothelioma in South Africa. A thesis submitted to the Faculty of Medicine, University of Cape Town, for the degree of Doctor of Philosophy. Johannesburg, 1995Google Scholar
  75. 75.
    Sahu AP: Chronic lung injury due to mineral particles: Possible prevention of their fibrogenic potential. The Sixth International Meeting on the Toxicology of Natural and Man-Made Fibrous and Non-Fibrous Particles. Abstract 107. September 15-18, 1996Google Scholar
  76. 76.
    Hoffman H, Hatherill JR, Crowley J, Harada H, Yonemaru M, Zheng H, Ishizaka A, Raffln TA: Early post-treatment with pentoxifylline or dibutyryl cAMP attenuates Escherichia coli-induced acute lung injury in guinea pigs. Am Rev Resp Dis 143: 289–293, 1991CrossRefGoogle Scholar
  77. 77.
    O’Neil CA, Giri SN, Wang Q, Perricone MA, Hyde DM: Effects of dibutyryl cyclic adenosine monophosphate on bleomycin-induced lung toxicity in hamsters. J Appl Toxicol 12: 97–111, 1992CrossRefGoogle Scholar
  78. 78.
    Kennedy TP, Michael JR, Hoidal JR, Hasty D, Sciuto AM, Hopkins C, Lazar R, Bysani GK, Tolley E, Gurtner GH: Dibutyryl cAMP, aminophylline, and β-adrenergic agonists protect against pulmonary edema caused by phosgene. J Appl Physiol 67: 2542–2552, 1989PubMedGoogle Scholar
  79. 79.
    Riva CM, Morganroth ML, Ljungman AG, Schoeneich SO, Marks RM, Todd RF III, Ward PA, Boxer LA: Iloprost inhibits neutrophil-induced lung injury and neutrophil adherence to endothelial monolayers. Am J Resp Cell Mol Biol 3: 301–309, 1990CrossRefGoogle Scholar
  80. 80.
    Ochoa L, Waypa G, Mahoney JR Jr, Rodriguez L, Minnear FR: Contrasting effects of hypochlorous acid and hydrogen peroxide on endothelial permeability. Prevention with cAMP drugs. Am J Crit Care Med 156: 1247–1255, 1997CrossRefGoogle Scholar
  81. 81.
    Israbian VA, Weitzman SA, Kamp DW: Dibutyryl cAMP attenuates asbestos-induced pulmonary epithelial cell cytotoxicity and decline in ATP levels. Am J Physiol 267: L518–L525, 1994PubMedGoogle Scholar
  82. 82.
    Morosova KI, Aronova GV, Katsnelson BA, Velichkovski BT, Genkin AM, Einichnykh LN, Privalova LI: On the defensive action of glutamate against the cytotoxicity and fibrogenicity of quartz dust On the defensive action of glutamate against the cytotoxicity and fibrogenicity of quartz dust. Br J Indust Med 39: 244–252, 1982Google Scholar
  83. 83.
    Morosova KI, Katsnelson BA, Rotenberg YS, Belobragina GV: A further experimental study of the antisilicotic effect of glutamate. Br J Indust Med 41: 518–525, 1984Google Scholar
  84. 84.
    Flowers ES: Metal-Micelle asbestos and treatment of asbestos and other mineral silicates to reduce their harmful properties: US Patent 4,328,197; May 4; assigned to Flow General Inc. McLean, Va., 1982Google Scholar
  85. 85.
    Gulumian M, van Wyk JA, Kolk B: Detoxified crocidolite exhibits reduced radical generation which could explain its lower toxicity: ESR and Mössbauer studies. In: BT Mossman, RO Bégin (eds). Effects of Mineral Dusts on Cells. NATO ASI Series, Vol. H30. Springer-Verlag, Berlin, Heidelberg, 1989, pp 197–204CrossRefGoogle Scholar
  86. 86.
    Gulumian M, van Wyk JA, Hearne GR, Kolk B, Pollak H: ESR and Mössbauer studies on detoxified crocidolite: Mechanism of reduced toxicity. J Inorg Biochem 50: 133–143, 1993CrossRefGoogle Scholar
  87. 87.
    Hahon N, Vallyathan V, Booth JA, Sepulveda MJ: In vitro biologic response to native and surface-modified asbestos. Environ Res 39: 345–355, 1986PubMedCrossRefGoogle Scholar
  88. 88.
    Gulumian, M, Nkosibomvu ZL, Channa K, Pollak H: Can microwave radiation at high temperatures reduce the toxicity of fibrous crocidolite asbestos? Environ Health Perspect 105(suppl 5): 1041–1044, 1997PubMedGoogle Scholar
  89. 89.
    Kamp DW, Israbian VA, Preusen SE, Zhang CX, Weitzman SA: Asbestos causes DNA strand breaks in cultured pulmonary epithelial cells: Role of iron-catalyzed free radicals. Am J Physiol 268: L471–L480, 1995PubMedGoogle Scholar
  90. 90.
    Kamp DW, Israbian VA, Yeidandi AV, Panos RJ, Graceffa P, Weitzman SA: Phytic acid, an iron chelator, attenuates pulmonary inflammation and fibrosis in rats after intratracheal instillation of asbestos. Toxicol Pathol 23: 689–695, 1995PubMedCrossRefGoogle Scholar
  91. 91.
    Weitzman SA, Weitberg AB: Asbestos-catalysed lipid peroxidation and its inhibition by desferroxamine. Biochem J 225: 259–262, 1985PubMedGoogle Scholar
  92. 92.
    Weitzman SA, Chester JF, Graceffa P: Binding of deferoxamine to asbestos fibers in vitro and in vivo. Carcinogenesis 9: 1643–1645, 1988PubMedCrossRefGoogle Scholar
  93. 93.
    Chao C-C, Aust AE: Effect of long-term removal of iron from asbestos by desferrioxamine B on subsequent mobilization by other chelators and induction of DNA single-strand breaks. Archiv Biochem Biophys 308: 64–69, 1994CrossRefGoogle Scholar
  94. 94.
    Driscoll KE, Maurer JK: Cytokine and growth factor release by alveolar macrophages: Potential biomarkers of pulmonary toxicity. Toxicol Pathol 19: 398–405, 1991PubMedGoogle Scholar
  95. 95.
    Williams AO, Saffiotti U: Growth factors and gene expression in silica-induced fibrogenesis and carcinogenesis. Appl Occup Environ Hyg 10: 1089–1098, 1995CrossRefGoogle Scholar
  96. 96.
    Piguet PF, Vesin C, Grau GE, Thompson RC: Interleukin 1 receptor antagonist (IL-Ira) prevents or cures pulmonary fibrosis elicited in mice by bleomycin or silica. Cytokine 5: 57–61, 1993PubMedCrossRefGoogle Scholar
  97. 97.
    Henderson RF, Harkema JR, Hotchkiss JA, Boehme DS: Effect of blood leukocyte depletion on the inflammatory response of the lung to quartz. Toxicol Appl Pharmacol 109: 127–136, 1991PubMedCrossRefGoogle Scholar
  98. 98.
    DiMatteo M, Reasor MJ: Modulation of silica-induced pulmonary toxicity by dexamethasone-containing liposomes. Toxicol Appl Pharmacol 142: 411–421, 1997PubMedCrossRefGoogle Scholar
  99. 99.
    Liu K, Situ R, Liao J: The effect of anti basic fibroblast growth factor on the development of experimental silicosis bacillus. Chung Hua Chieh Ho Ho Hsi Tsa Chih (CYH) 18: 351–353, 1995Google Scholar
  100. 100.
    Piguet PF, Rosen H, Vesin C, Grau GE: Effective treatment of the pulmonary fibrosis elicited in mice by bleomycin or silica with anti-CD-11 antibodies. Am Rev Resp Dis 147: 435–441, 1993PubMedCrossRefGoogle Scholar
  101. 101.
    Rosmanith J, Breining H: The reduction of quartz effect by natural anhydrite in animal experiment. Wiss Umwelt 182–188, 1988Google Scholar
  102. 102.
    Plastinina IuV, Privalova LI, Tereshin Slu, Katsnel’son BA, Kislitsina NS: Precutaneous effects of iodine inhibit the development of experimental silicosis. Med Tr Prom Ekol 7: 16–20, 1996PubMedGoogle Scholar
  103. 103.
    Li H, Wu Z, Zeng X, Liu S, Zheng Z, Zeng L, Duanmu B, Ke F, Yang H, Qing Y: Pathological observation of experimental asbestosis treated by hydroxypiperquin phosphate in dogs. Huaxi Yike Daxue Xuebao 22:181–184, 1991PubMedGoogle Scholar
  104. 104.
    Soodaeva SK, Ostrakhovich EA, Velichkovskii BT: Changes in the blood serum antioxidant system and peroxidation of lipids during exposure to asbestos. Byull Eksp Biol Med 118: 145–147, 1994CrossRefGoogle Scholar
  105. 105.
    Yu L, Zhou CQ, Li YR, Qu L, Xing KJ, Du QC: A biochemical study on combined treatment of experimental silicosis with tetrandrine-PVNO and tetrandrine-QOHP in rats. Biomed Environ Sci 8: 265–268, 1995PubMedGoogle Scholar
  106. 106.
    Muhle H, Bellmann B, Pott F: Durability of various mineral fibres in rat lungs. In: R.C. Brown, J.A. Hoskins, N.F. Johnson (eds). Mechanisms in Fibre Carcinogenesis. NATO ASI Series A. Life Sciences 223, Plenum Press, New York, 1991, pp 181–187CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • M. Gulumian
    • 1
    • 2
  1. 1.National Centre for Occupational Health and Department of Medical BiochemistryJohannesburgSouth Africa
  2. 2.National Centre for Occupational Health and Department of Medical BiochemistryUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations