Skip to main content

Mechanisms of beneficial effects of probucol in adriamycin cardiomyopathy

  • Chapter
Stress Adaptation, Prophylaxis and Treatment

Part of the book series: Molecular and Cellular Biochemistry ((DMCB,volume 32))

Abstract

Probucol, a lipid-lowering drug, has been shown to offer protection against adriamycin-induced cardiomyopathy. In order to define the mechanism of this protection, we examined changes in antioxidants and lipid peroxidation in hearts as well as lipids in hearts and plasma from rats treated with either adriamycin or adriamycin and probucol with appropriate controls. Any potential free radical quenching as well as growth inhibitory effects of probucol were also examined using Chinese hamster ovary (CHO) cells in culture. In animal model, adriamycin caused a significant depression in glutathione peroxidase and increased plasma and cardiac lipids as well as lipid peroxidation. Probucol treatment modulated adriamycin-induced cardiomyopathy changes and increased glutathione peroxidase and superoxide dismutase activities. In the presence of adriamycin under hypoxic conditions, formation of adriamycin semiquinone radical was detected by ESR. The cell growth in these cultures was also inhibited by adriamycin in a dose-dependent manner. Probucol had no effect on adriamycin-induced growth inhibition as well as formation of semiquinone radicals. It is proposed that probucol protection against adriamycin cardiomyopathy is mediated by increased antioxidants and lipid-lowering without any effect on free radical production. ((Mol Cell Biochem 196: 43-49, 1999)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubost M, Ganter P, Maral R, et al.: Rubidomycin: A new antibiotic with cytostatic properties. Cancer Chemother Rep 41: 35–36, 1964

    PubMed  CAS  Google Scholar 

  2. Lefrak EA, Pitha J, Rosenheim S, Gottleib JA: A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32: 302–314, 1973

    Article  PubMed  CAS  Google Scholar 

  3. Singal PK, Siveski-Iliskovic N, Li T, Seneviratne C: Cardiomyopathie due á l’adriamycine et sa prévention. L’information Cardiologique 19: 289–302, 1995

    Google Scholar 

  4. Berlin V, Haseltine WA: Reduction of adriamycin to a semiquinone-free radical by NADPH cytochrome P-450 reductase produces DNA cleavage in a reaction mediated by molecular oxygen. J Biol Chem 256:4747–4756, 1981

    PubMed  CAS  Google Scholar 

  5. Panneerselvam M, Bredehorst R, Vogel CW: Cell surface cytotoxic effect of immobilized doxorubicin is target cell-dependent and involves oxygen radical formation. Proc Am Assoc Cancer Res 28: 267, 1987

    Google Scholar 

  6. Freeman RW, MacDonald JS, Olson RD, Boerth RC, Oates JA, Harbison RD: Effect of sulfhydryl-containing compounds on the antitumor effects of adriamycin. Toxic Appl Pharmac 54: 168–175, 1980

    Article  CAS  Google Scholar 

  7. Yoda Y, Nakazawa M, Abe T, Kawakami Z: Prevention of doxorubicin myocardial toxicity in mice by reduced glutathione. Cancer Res 46: 2551–2556, 1986

    PubMed  CAS  Google Scholar 

  8. Eliot H, Gianni L, Myers C: Oxidative destruction of DNA by the adriamycin-iron complex. Biochemistry 23: 928–936, 1984

    Article  PubMed  CAS  Google Scholar 

  9. Sinha BK, Chignell CF: Binding mode of chemically activated semiquinone free radicals from quinone anticancer agents to DNA. Chem Biol Interact 28: 301–308, 1979

    Article  PubMed  CAS  Google Scholar 

  10. Deffie AM, Batra JK, Goldenberg GJ: Direct correlation between DNA topoisomerase II activity and cytotoxicity in adriamycin-sensitive and-resistant P388 leukemia cell lines. Cancer Res 49: 58–62, 1989

    PubMed  CAS  Google Scholar 

  11. Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF: Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226: 466–468, 1984

    Article  PubMed  CAS  Google Scholar 

  12. Buja LM, Ferrans VJ, Mayer RJ, Roberts WC, Henderson ES: Cardiac ultrastructural changes induced by daunorubicin therapy. Cancer 32: 771–778, 1973

    Article  PubMed  CAS  Google Scholar 

  13. Bristow MR, Sageman WS, Scott RH, Billingham ME, Bowden RE, Kemoff RS, Snidow GH, Daniels JR: Acute and chronic cardiovascular effects of doxorubicin in the dog: The cardiovascular pharmacology of drug-induced histamine release. J Cardiovasc Pharmacol 2: 487–515, 1980

    Article  PubMed  CAS  Google Scholar 

  14. Tong J, Ganguly PK, Singal PK: Myocardial adrenergic changes at two stages of heart failure due to adriamycin tratment in rats. Am J Physiol 260: H909–H916, 1991

    PubMed  CAS  Google Scholar 

  15. Singal PK, Segstro RJ, Singh RP, Kutryk MJ: Changes in lysosomal morphology and enzyme activities during the development of adriamycin-induced cardiomyopathy. Can J Cardiol 1: 139–147, 1985

    PubMed  CAS  Google Scholar 

  16. Kalyanarainan B, Perez-Reyes E, Mason RP: Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anti-cancer drugs. Biochem Biophys Acta 630: 119–130, 1980

    Article  Google Scholar 

  17. Doroshow JH: Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res 43: 460–472, 1983

    PubMed  CAS  Google Scholar 

  18. Singal PK, Deally CMR, Weinberg LE: Subcellular effects of adriamycin in the heart: A concise review. J Moll Cell Cardiol 19: 817–828, 1987

    Article  CAS  Google Scholar 

  19. Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Singal PK: Free radicals and the heart. J Pharmacol Toxicol Meth 30: 55–67, 1993

    Article  CAS  Google Scholar 

  20. Revis NW, Marusic N: Glutathione peroxidase activity and selenium concentration in the hearts of doxorubicin-treated rabbits. J Mol Cell Cardiol 10: 945–951, 1978

    Article  PubMed  CAS  Google Scholar 

  21. Siveski-Iliskovic N, Kaul N, Singal PK: Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation 89: 2829–2835, 1994

    Article  PubMed  CAS  Google Scholar 

  22. Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC: Adriamycin: The role of lipid peroxidation in cardiac toxicity and tumor response. Science 197: 165–167, 1977

    Article  PubMed  CAS  Google Scholar 

  23. Siveski-Iliskovic N, Hill M, Chow D, Singal PK: Probucol protects against adriamycin cardiomyopathy without interfering with its anti-tumor properties. Circulation 91: 10–15, 1995

    Article  PubMed  CAS  Google Scholar 

  24. Clairborne A: Catalase activity. In: RA Greenwald (ed). Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, 1985, pp 283–284

    Google Scholar 

  25. Marklund SL: Pyrogallol autooxidation. In: RA Greenwald (ed). Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, 1985, pp 243–247

    Google Scholar 

  26. Paglia DE, Valentine WN: Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169, 1967

    PubMed  CAS  Google Scholar 

  27. Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malondialdehyde) in biochemical systems. Anal Biochem 16: 359–365, 1966

    Article  PubMed  CAS  Google Scholar 

  28. Aust SD: Lipid peroxidation. In: RA Greenwald (ed). Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, 1985, pp 203–207

    Google Scholar 

  29. Marks DC, Belov L, Davey MW, Davey RD, Kidman AD: The MTT cell viability assay for cytotoxicity testing in multidrug-resistant human leukemic cells. Leuk Res 16: 1165–1173, 1992

    Article  PubMed  CAS  Google Scholar 

  30. Lowry OH, Rosenbrough NT, Farr AL, Randall AT: Protein measurements with the folin phenol reagent. J Biol Chem 193: 265–275,1951

    PubMed  CAS  Google Scholar 

  31. Fisher GR, Patterson LH: Lack of involvement of reactive oxygen in the cytotoxicity of mitoxantrone, CI941 and ametantrone in MCF-7 cells: Comparison with doxorubicin. Cancer Chemother Pharmacol 30:451–458, 1992

    Article  PubMed  CAS  Google Scholar 

  32. Barranco SC: Cellular and molecular effects of adriamycin on dividing and nondividing cells. Pharmacol Ther 24: 303–319, 1984

    Article  PubMed  CAS  Google Scholar 

  33. Malisza KL, Hasinoff BB: Inhibition of anthracycline semiquinone formation by ICRF-187 (dexrazoxane) in cells. J Clin Invest 20: 905–914, 1996

    CAS  Google Scholar 

  34. Sato S, Iwaizumi M, Hanada K, Tainura Y: Electron spin resonance study on the mode of generation of free radicals of daunomycin, adriamycin, and carboquone in NAD(P)H microsome system. Gann 68: 603–608, 1977

    PubMed  CAS  Google Scholar 

  35. Kalyanarwnan B, Morehouse KM, Mason RP: An electron paramagnetic resonance study of the interactions between the adriamycin semiquinone, hydrogen peroxide, iron-chelators, and radical scavengers. Arch Biochem Biophys. 286: 164–171, 1991

    Article  Google Scholar 

  36. Yeung ST, Yoong C, Spink J, Galbraith A, Smith PJ: Functional myocardial impairment in children treated with anthracyclines for cancer. Lancet 337: 816–818, 1991

    Article  PubMed  CAS  Google Scholar 

  37. Singal PK, Iliskovic N: Adriamycin cardiomyopathy. N Eng J Med 1998

    Google Scholar 

  38. Chalcroft SC, Gavin JB, Herdson PB: Fine structural changes in rat myocardium induced by daunorubicin. Pathology 5: 99–105, 1973

    Article  PubMed  CAS  Google Scholar 

  39. Jones SM, Kirby MS, Harding SE, Vescova G, Wanless RB, Dalla-Libera LD, Poole-Wilson PA: Adriamycin cardiomyopathy in the rabbit: Alterations in contractile proteins and myocyte function. Cardiovasc Res 24: 834–842, 1990

    Article  PubMed  CAS  Google Scholar 

  40. Steinherz LJ, Steinherz PG, Tan CT, Heller G, Murphy ML: Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 266: 1672–1677, 1991

    Article  PubMed  CAS  Google Scholar 

  41. Washio M, Nanishi F, Okuda S, Onoyama K, Fujishima M: Alpha tocopherol improves focal glomerulosclerosis in rats with adriamycin-induced progressive renal failure. Nephron 68: 347–352, 1994

    Article  PubMed  CAS  Google Scholar 

  42. Iliskovic N, Singal PK: Lipid-lowering: An important factor in preventing adriamycin induced heart failure. Am J Pathol 150: 727–734, 1997

    PubMed  CAS  Google Scholar 

  43. Kunitomo M, Yamaguchi Y, Matsushima K, Futagawa Y, Bando Y: Hyperlipidemic effects of adriamycin in rats. Jpn J Pharmacol 39: 323–329, 1985

    Article  PubMed  CAS  Google Scholar 

  44. Willebrands AF, Ter Welle HF, Tasseron SJA: The effect of a high molar FFA/albumin ration in the perfusion medium on rhythm and contractility of the isolated rat heart. J Mol Cell Cardiol 5: 259–273, 1979

    Article  Google Scholar 

  45. Doroshow JH, Locker GY, Myers CE: Enzymatic defenses of the mouse heart against reactive oxygen metabolites. J Clin Invest 65:128–135, 1980

    Article  PubMed  CAS  Google Scholar 

  46. Olson RD, MacDonald JS, van Boxtel CJ, Boerth RC, Harbison RD, Slonim AE, Freeman RW, Oates JA: Regulatory role of glutathione and soluble sulfhydryl groups in the toxicity of adriamycin. J Pharmacol Exp Ther 215: 450–545, 1980

    PubMed  CAS  Google Scholar 

  47. Singal PK, Kirshenbaum LA: A relative deficit in antioxidant reserve may contribute in cardiac failure. Can J Cardiol 6: 47–49, 1990

    PubMed  CAS  Google Scholar 

  48. Kalyanarainan B, Darley-Usmar VM, Wood J, Joseph J, Parthasarathy S: Synergistic inteaction beb ween the probucol phenoxyl radical and ascorbic acid in inhibiting the oxidation of low density lipoprotein. J Biol Chem 267: 6789–6795, 1992

    Google Scholar 

  49. Singal PK, Siveski-Iliskovic N, Hill M, Thomas TP, Li T: Combination therapy with probucol prevents adriamycin-induced cardiomyopathy. J Mol Cell Cardiol 27: 1055–1063, 1995

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Iliskovic, N., Hasinoff, B.B., Malisza, K.L., Li, T., Danelisen, I., Singal, P.K. (1999). Mechanisms of beneficial effects of probucol in adriamycin cardiomyopathy. In: Das, D.K. (eds) Stress Adaptation, Prophylaxis and Treatment. Molecular and Cellular Biochemistry, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5097-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5097-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7319-3

  • Online ISBN: 978-1-4615-5097-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics