Myocardial preconditioning: Basic concepts and potential mechanisms

  • Shinji Okubo
  • Lei Xi
  • Nelson L. Bernardo
  • Kazu-ichi Yoshida
  • Rakesh C. Kukreja
Part of the Molecular and Cellular Biochemistry book series (DMCB, volume 32)

Abstract

Preconditioning is a phenomenon, where brief periods of stress such as ischemia, heat shock or certain pharmacological agents make the heart tolerant to subsequent lethal ischemic injury. Preconditioning seems to involve a variety of stress signals which include activation of membrane receptors and signaling molecules such as protein kinase C, mitogen-activated protein kinases, opening of ATP-sensitive potassium channel and expression of a number of protective proteins. In this review, the potential role of these mechanisms is discussed. (Mol Cell Biochem 196: 3-12, 1999)

Key words

ischemia preconditioning adenosine protein kinase C KATP channel free radicals heat shock proteins antioxidants nitric oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124–1136, 1986PubMedCrossRefGoogle Scholar
  2. 2.
    Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB: Four brief periods of ischemia cause no cummulative ATP loss or necrosis. Am J Physiol 251: H1306–H1315, 1986PubMedGoogle Scholar
  3. 3.
    Kanazawa T: Coronary collateral circulation. Its development and function. Jpn Circ J 58: 151–163, 1994PubMedCrossRefGoogle Scholar
  4. 4.
    Ovize M, Kloner RA, Hale SL, Przyklenk K: Coronary cyclic flow variations ‘Precondition’ ischemic myocardium. Circulation 85: 779–789, 1992PubMedCrossRefGoogle Scholar
  5. 5.
    Hale SL, Kloner RA: Effect of ischemic preconditioning on regional myocardial blood flow in the rabbit heart. Cor Art Dis 3: 133–140, 1992CrossRefGoogle Scholar
  6. 6.
    Li Y, Kloner RA: The cardioprotective effects of ischemic ‘preconditioning’ are not mediated by adenosine receptors in rat hearts. Circulation 87: 1642–1648, 1993PubMedCrossRefGoogle Scholar
  7. 7.
    Schott RJ, Rohmann S, Braun ER, Schaper W: Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res 66: 1133–1142, 1990PubMedCrossRefGoogle Scholar
  8. 8.
    Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P: Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87: 889–899, 1993CrossRefGoogle Scholar
  9. 9.
    Li Y, Whittaker P, Kloner RA: The transient nature of the effect of ischemic preconditioning on myocardial infarct size and ventricular arrhythmias. Am Heart J 123: 346–353, 1992PubMedCrossRefGoogle Scholar
  10. 10.
    Qian YZ, Levasseur JE, Yoshida KI, Kukreja RC: KATP channels in rat heart: Blockade of ischemic and acetylcholine-mediated preconditioning by glibenclamide. Am J Physiol 271: H23–H28, 1996PubMedGoogle Scholar
  11. 11.
    Marber MS, Latchman DS, Walker JM, Yellon DM: Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88: 1264–1272, 1993PubMedCrossRefGoogle Scholar
  12. 12.
    Nao BS, McClanahan TB, Groh MA, Schott RJ, Gallagher KP: The time limit of effective ischemic preconditioning in dogs. Circulation 82(Suppl): 111–271, 1990 (Abstract)Google Scholar
  13. 13.
    Ovize M, Przyklenk K, Hale SL, Kloner RA: Preconditioning does not attenuate myocardial stunning. Circulation 85: 2247–2254, 1992PubMedCrossRefGoogle Scholar
  14. 14.
    Murry CE, Richard VJ, Reimer KA, Jennings RB: Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res 66: 913–931, 1990PubMedCrossRefGoogle Scholar
  15. 15.
    Xi L, Hess ML, Kukreja RC: Ischemic preconditioning in isolated perfused mouse heart: Reduction in infarct size without improvement of post-ischemic ventricular function. Mol Cell Biochem 186: 69–77, 1998PubMedCrossRefGoogle Scholar
  16. 16.
    Murry CE, Richard VJ, Jennings RB, Reimer KA: Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol 260: H796–H804, 1991PubMedGoogle Scholar
  17. 17.
    Miura T, Goto M, Urabe K, Endoh A, Shimamoto K, Iimura O: Does myocardial stunning contribute to infarct size limitation by ischemic preconditioning. Circulation 84: 2504–2512, 1991PubMedCrossRefGoogle Scholar
  18. 18.
    Sack S, Mobri M, Margarete A, Schwarz ER, Wolfgang S: Ischaemic preconditioning — time course of renewal in the pig. Cardiovasc Res 27:551–555, 1993PubMedCrossRefGoogle Scholar
  19. 19.
    Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M: Delayed effects of sublethal ischemia on the aquisition of tolerence to ischemia. Circ Res 72: 1293–1299, 1993PubMedCrossRefGoogle Scholar
  20. 20.
    Murry CE, Richard VJ, Jennings RB, Reimer KA: Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol 260: H796–H804, 1991PubMedGoogle Scholar
  21. 21.
    Van Winkle DM, Thornton J, Downey JM: Cardioprotection from ischemic preconditioning is lost following prolonged reperfusion in rabbits. Circulation 84(Suppl): 11–432, 1991 (Abstract)Google Scholar
  22. 22.
    Baxter GF, Marber MS, Patel VC, Yelion DM: Adenosine receptor involvement in a delayed phase of myocardial protection 24 h after ischemic preconditioning. Circulation 90: 2993–3000, 1994PubMedCrossRefGoogle Scholar
  23. 23.
    Marber MS, Walker JM, Latchman DS, Yellon DM: Myocardial protection after whole body heat stress in the rabbit is dependent on metabolic substrate and is related to the amount of the inducible 70-kD heat stress protein. J Chin Invest 93: 1087–1094, 1994CrossRefGoogle Scholar
  24. 24.
    Currie RW, Tanguay RM, Kingma JG Jr.: Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation 87: 963–971, 1993PubMedCrossRefGoogle Scholar
  25. 25.
    Karmazyn M, Mailer K, Curie RW: Acquisition and decay of heat-shock enhanced postischemic ventricular recovery. Am J Physiol 259: H424–H431, 1990PubMedGoogle Scholar
  26. 26.
    Currie RW, Karmazyn M, Kloc M, Mailer K: Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ Res 63: 543–549, 1988PubMedCrossRefGoogle Scholar
  27. 27.
    Hutter MW, Sievers RE, Barbosa V, Wolfe CL: Heat-shock protein induction in rat hearts: A direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation 89: 355–360, 1994PubMedCrossRefGoogle Scholar
  28. 28.
    Nayeem MA, Hess ML, Qian Y, Loesser KE, Kukreja RC: Delayed preconditioning of cultured adult rat cardiac myocytes. Role of 70 and 90 kD heat stress proteins in protection against lethal cellular injury. Am J Physiol 42: H861–H868, 1997Google Scholar
  29. 29.
    Zhou XB, Zhai XL, Ashraf M: Direct evidence that initial oxidative stress triggered by preconditioning contributes to second window of protection by endogenous antioxidant enzyme in myocytes. Circulation 93:1177–1184, 1996PubMedCrossRefGoogle Scholar
  30. 30.
    Yoshida KI, Maaieh MM, Shipley JB, Doloresco M, Bernardo NL, Qian YZ, Elliott GT, Kukreja RC: Monophosphoryl lipid A induces pharmacologic ‘preconditioning’ in rabbit hearts without concomitant expression of 70-kDa heat shock protein. Mol Cell Biochem 159:73–80, 1996PubMedCrossRefGoogle Scholar
  31. 31.
    Bernardo NL, Maaieh M, Hoag J, Nayeem M, Kukreja R: Delayed myocardial protection with 2-chloro-N6-cyclopentyl-adenosine (CCPA) is mediated by ATP-sensitive potassium channel but not synthesis of 70-kilodalton heat shock protein. J Am Coll Cardiol 29: 129A, 1997 (Abstract)Google Scholar
  32. 32.
    Steenbergen C, Murphy E, Levy L, London RE: Elevation in cytosolic free calcium concentration against ischemic injury via protein kinase C signaling pathway. Circ Res 60: 700–707, 1987PubMedCrossRefGoogle Scholar
  33. 33.
    Ashraf M, Suleiman J, Abmad M: Ca2+preconditiong elicits a unique protection against the Ca2+ paradox injury in rat heart: Role of adenosine. Circ Res 74: 360–367, 1994PubMedCrossRefGoogle Scholar
  34. 34.
    Ikonomidis JS, Tumiati LC, Weisel RD, Mickle DAG: Preconditioning protects human cardiac myocytes from ischemic injury. Cradiovasc Res 28: 1285–1291, 1994CrossRefGoogle Scholar
  35. 35.
    Walker DM, Walker JM, Pugsley WB, Pattison CW, Yellon DM: Preconditioning in isolated superfused human muscle. J Mol Cell Cardiol 27: 1349–1357, 1995PubMedCrossRefGoogle Scholar
  36. 36.
    Arstall MA, Zhao Y, Hornberger L, Kennedy SP, Buchholz RA, Osathanondh R, Kelly RA: Human ventricular myocytes in vitro exhibit both early and delayed preconditioning responses to simulated ischemia. J Mol Cell Cardiol 30: 1019–1026, 1998PubMedCrossRefGoogle Scholar
  37. 37.
    Deutch E, Berger M, Kussmaul WG, Hirschfeld JWJ, Hermann HC, Laskey WK: Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features. Circulation 82: 2044–2051, 1990CrossRefGoogle Scholar
  38. 38.
    Kloner RA, Shook T, Przyklenk K, Davis V, Junio L, Matthews RV, Burstein S, Gibson M, Poole K, Cannon CP, McCabe C, Braunwald E: Previous angina alters in-hospital outcome in TIMI-4. A clinical correlate to preconditioning? Circulation 91: 37–45, 1995PubMedCrossRefGoogle Scholar
  39. 39.
    Tzivoni D, Maybaum S: Attenuation of severity of myocardial preconditioning during repeated daily ischemic episodes. J Am Coll Cardiol 30: 119–124, 1997PubMedCrossRefGoogle Scholar
  40. 40.
    Williams DO, Bass TA, Gewirtz H, Most AS: Adaptation to the stress of tachycardia in patients with coronary artery disease: Insight into the mechanism of the warm-up phenomenon. Circulation 71: 687–692, 1985PubMedCrossRefGoogle Scholar
  41. 41.
    Okazaki Y, Kodama K, Sato H, Kitakaze M, Hirayama A, Mishima M, Hori M, Inoue M: Attenuation of increased regional myocardial oxygen consumption during exercise as a major cause of warm-up phenomenon. J Am Coll Cardiol 21: 1597–1604, 1993PubMedCrossRefGoogle Scholar
  42. 42.
    Pasceri V, Lanza GA, Patti G, Pedrotti P, Crea F, Maseri A: Antiarrhythmic protection by ischemic preconditioning in man. J Am Coll Cardiol 27(Suppl): 311A, 1996 (Abstract)CrossRefGoogle Scholar
  43. 43.
    Alkhulaifi AM, Yellon DM, Pugsley WB: Preconditioning the human heart during aortocoronary bypass surgery. Eur J Cardiothorac Surg 8: 270–275, 1994PubMedCrossRefGoogle Scholar
  44. 44.
    Yellon DM, Alkhulaifi AM, Pugsley WB: Preconditioning the human myocardium. Lancet 342: 276–277, 1993PubMedCrossRefGoogle Scholar
  45. 45.
    Liu GS, Thornton J, Van Winkle DM, Stanley AWH, Olsson RA, Downey JM: Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84: 350–356, 1991PubMedCrossRefGoogle Scholar
  46. 46.
    Baneijee A, Locke-Winter CR, Rogers KB, Mitchell MB, Brew EC, Cairns CB, Bensard DD, Harken AH: Preconditioning against myocardial dysfunction after ischemia and reperfusion by an α-l adrenergic mechanism. Circ Res 73: 656–670, 1993CrossRefGoogle Scholar
  47. 47.
    Shultz JE, Hsu AK, Gross GJ: Ischemic preconditioning in the rat heart is mediated by delta, but not mu-or kappa-opioid receptors. Circulation 97: 1282–1289, 1998CrossRefGoogle Scholar
  48. 48.
    Van Wylen DG, Willis J, Sodhi J, Weiss R, Lasley RD, Mentzer RM: Cardiac microdialysis to estimate interstitial adenosine and coronary blood flow. Am J Physiol 258: H1642–H1649, 1990PubMedGoogle Scholar
  49. 49.
    Belardinelli L, Linden J, Berne RM: The cardiac effects of adenosine. Prog in Cardiovasc Dis 32: 73–97, 1989CrossRefGoogle Scholar
  50. 50.
    Matherne GP, Linden J, Byford AM, Gauthier NS, Headrick JP: Al adenosine receptor overexpression increases resistance to ischemia. Proc Natl Acad Sci USA 94: 6541–6546, 1997PubMedCrossRefGoogle Scholar
  51. 51.
    Liu GS, Richards SC, Olsson RA, Mullane K, Walsh RS, Downey JM: Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart. Cardiovasc Res 28:1057–1061, 1994PubMedCrossRefGoogle Scholar
  52. 52.
    Armstrong S, Ganote CE: Adenosine receptor specificity in preconditioning of isolated rabbit cardiomyocytes. Evidence of A3 receptor involvement. Cardiovasc Res 28: 1049–1056, 1994PubMedCrossRefGoogle Scholar
  53. 53.
    Tsuchida A, Thompson R, Olsson RA, Downey JM: The anti-infarct effect of an adenosine A1-selective agonist is diminished after prolonged infusion as is the cardioprotective effect of ischemic preconditioning in rabbit heart. J Mol Cell Cardiol 26: 303–311, 1994PubMedCrossRefGoogle Scholar
  54. 54.
    Dana A, Baxter GF, Walker JIM, Yelion DM: Prolonging the delayed phase of myocardial protection: Repetitive adenosine A1 receptor activation maintains rabbit myocardium in a preconditioned state. J Am Coll Cardiol 31: 1142–1149, 1998PubMedCrossRefGoogle Scholar
  55. 55.
    Weyrich AS, Ma XL, Lefer AM: The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circulation 86: 279–288, 1992PubMedCrossRefGoogle Scholar
  56. 56.
    Pabla R, Buda AJ, Flynn DM, Blesse SA, Shin AM, Curtis MJ, Lefer DJ: Nitric oxide attenuates neutrophil-mediated myocardial contractile dysfunction after ischemia and reperfusion. Circ Res 78: 65–72, 1996PubMedCrossRefGoogle Scholar
  57. 57.
    Hartman JC, Houshyar H, Leva SC, Wall TM: A role for nitric oxide in myocardial ischemic preconditioning. Circulation 92(Suppl): 1–716, 1995 (Abstract)CrossRefGoogle Scholar
  58. 58.
    Paratt JR: Endogenous myocardial protective (antiarrhythmic) substances. Cardiovase Res 109: 592–599, 1993Google Scholar
  59. 59.
    Vegh A, Papp JG, Parratt JR: Prevention by dexamethasone of the marked antiarrhythmic effects of preconditioning induced 20 h after rapid cardiac pacing. Br J Pharmacol 113: 1081–1082, 1994PubMedCrossRefGoogle Scholar
  60. 60.
    Cameron JS, Kibler KKA, Berry H, Barron DN, Sodder VH, Barn F: Nitric oxide activates ATP-sensitive potassium channels in hyper-trophied ventricular myocytes. Faseb J 10: A65, 1996 (Abstract)Google Scholar
  61. 61.
    Nishizuka Y: Studies and perspectives of protein kinase C. Science 233:305–312, 1986PubMedCrossRefGoogle Scholar
  62. 62.
    Ferriola PC, Cody V, Middleton EJ: Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure-activity relationships. Biochem Pharmacol 38: 1617–1624, 1989PubMedCrossRefGoogle Scholar
  63. 63.
    Strasser RH, Braun-Dullaeus R, Walendzik H, Marquetant R: Alpha 1-receptor-independent activation of protein kinase C in acute myocardial ischemia. Mechanisms for sensitization of the adenyl cyclase system. Circ Res 70: 1304–1312, 1992PubMedCrossRefGoogle Scholar
  64. 64.
    Mitchell MB, Meng X, Ao L, Brown JM, Harken AH, Banerjee A: Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res 76: 73–81, 1995PubMedCrossRefGoogle Scholar
  65. 65.
    Speechly-Dick ME, Mocannu MM, Yellon DM: Protein kinase C. Its role in ischemic preconditioning in the rat. Circ Res 75: 586–590,1994PubMedCrossRefGoogle Scholar
  66. 66.
    Ytrehus K, Liu Y, Downey JM: Preconditioning protects the ischemic rabbit heart by protein kinase C activation. Am J Physiol 266: H1145–H1152, 1994PubMedGoogle Scholar
  67. 67.
    Liu Y, Ytrehus K, Downey JM: Evidence that translocation of protein kinase C is a key event during ischemic preconditioning of rabbit myocardium. J Mol Cell Cardiol 26: 661–668, 1994PubMedCrossRefGoogle Scholar
  68. 68.
    Cohen MV, Downey JM: Ischaemic preconditioning: can the protection be bottled? Lancet 342: 6, 1993PubMedCrossRefGoogle Scholar
  69. 69.
    Thornton JD, Liu GS, Downey JM: Pretreatment with pertussis toxin blocks the protective effects of preconditioning: Evidence for a Gi-protein mechanism. J Mol Cell Cardiol 24: 311–320, 1993CrossRefGoogle Scholar
  70. 70.
    Hendrikx M, Toshima Y, Mubagwa K, Fleming W: Muscarinic receptor stimulation by carbachol improves functional recovery in isolated, blood perfused rabbit heart. Cardiovasc Res 27: 980–989, 1993PubMedCrossRefGoogle Scholar
  71. 71.
    Przyklenk K, Kloner RA: Acetylcholine acts as a ‘preconditioning-mimetic’ in the canine model. J Am Coll Cardiol 23(Suppl): 396A, 1994 (Abstract)Google Scholar
  72. 72.
    Yao Z, Gross GJ: Role of nitric oxide, muscarinic receptos, and the ATP-sensitive K+ channel in mediating the effects of acetylcholine to mimic preconditioning in dogs. Circ Res 73: 1193–1201, 1993PubMedCrossRefGoogle Scholar
  73. 73.
    Thornton ID, Daly IF, Cohen MV, Yang X-M, Downey JM: Catecholamines can induce adenosine receptor-mediated protection of the myocardium but do not participate in ischemic preconditioning in the rabbit. Circ Res 73: 649–655, 1993PubMedCrossRefGoogle Scholar
  74. 74.
    Tsuchida A, Liu Y, Liu GS, Cohen MV, Downey JM: α1-adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of proteion kinase C. Circ Res 75: 576–585, 1994PubMedCrossRefGoogle Scholar
  75. 75.
    Goto M, Liu Y, Yang X-M, Ardell JL, Cohen MV, Downey JM: Role of bradykinin in the protection of ischemic preconditioning in rabbit hearts. Circ Res 77: 611–621, 1995PubMedCrossRefGoogle Scholar
  76. 76.
    Wall TM, Shehy R, Hartman JC: Role of bradykinin in myocardial preconditioning. J Pharmacol Exp Ther 270: 681–689, 1994PubMedGoogle Scholar
  77. 77.
    Fleming JW, Wisler PL, Watanabe AM: Signal transduction by G proteins in cardiac tissues. Circulation 85: 420–433, 1992PubMedCrossRefGoogle Scholar
  78. 78.
    Talosi L, Kranias EG: Effect of alpha-adrenergic stimulation on activation of protein kinase C and phosphorylation of proteins in intact rabbit hearts. Circ Res 70: 1304–1312, 1992CrossRefGoogle Scholar
  79. 79.
    Downey JM, Cohen MV, Ytrehus K, Liu Y: Cellular mechanisms in ischemic preconditioning: the role of adenosine and protein kinase C. Am NY Acad Sci 723: 82–98, 1994CrossRefGoogle Scholar
  80. 80.
    Kitakaze M, Node K, Minamino T, Komamura K, Funaya M, Shinozaki BS, Chujo M, Mori H, Inoue M, Hori M, Kamada T: Role of activation of protein kinase C in the infarct size-limiting effect of ischemic preconditioning through activation of ecto-5′-nucleotidase. Circulation 93: 781–791, 1996PubMedCrossRefGoogle Scholar
  81. 81.
    Yuan S, Sunhara FA, Sen AK: Tumor-promoting phorbol esters inhibit cardiac functions and induce redistribution of protein kinase C in perfused beating rat heart. Circ Res 61: 372–378, 1987PubMedCrossRefGoogle Scholar
  82. 82.
    Bogoyevitch MA, Parker PJ, Sugden PH: Characterization of protein kinase C expression in adult rat heart. Circ Res 72: 757–767, 1993PubMedCrossRefGoogle Scholar
  83. 83.
    Thornton ID, Daly IF, Cohen MV, Yang X, Downey JM: Cathecholamines induce adenosine receptor-mediated protection of the myocardium but do not participate in ischemic preconditioning in the rabbit. Am J Physiol 265: H504–H508, 1993PubMedGoogle Scholar
  84. 84.
    Hori M, Kitakaze M: Adenosine, the heart, and coronary circulation. Hypertension 18: 565–574, 1991PubMedCrossRefGoogle Scholar
  85. 85.
    Sparks HVJ, Bardenheuer H: Regulation of adenosine formation by the heart. Circ Res 58: 193–201, 1986PubMedCrossRefGoogle Scholar
  86. 86.
    Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Sato H, Shinozaki Y, Chujo M, Mori H, Inoue M, Kamada T: Alpha 1-adrenoreceptor activation mediates the infarct size-limiting effect of ischemic preconditioning through augmentation of 5′-nucleotidase activity. J Clin Invest 93: 2197–2205, 1994PubMedCrossRefGoogle Scholar
  87. 87.
    Wang JYJ, McWhirter JR: Tyrosine-kinase dependent signaling pathways. Trends Cardiovasc Med 4: 264–270, 1994PubMedCrossRefGoogle Scholar
  88. 88.
    Lenormand P, Sardet C, Pages G, L’Allemain G, Brunet A, Pouyssegur J: Growth factors induce nuclear translocation of MAP kinases (p42MAPK and p44MAPF) but not of their activator MAP kinase kinase (p45MAPKK) in fibroblasts. J Cell Biol 122: 1079–1088, 1993PubMedCrossRefGoogle Scholar
  89. 89.
    Maulik N, Watanabe M, Zu YL, Huang CK, Cordis GA, Schley JA, Das DK: Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Letts 396: 233–237, 1996CrossRefGoogle Scholar
  90. 90.
    Fatehi-Hassanabad Z, Parratt JR: Genistein, an inhibitor of tyrosine kinase, prevents the antiarrhythmic effects of preconditioning. Eur J Pharmacol 338: 67–70, 1997PubMedCrossRefGoogle Scholar
  91. 91.
    Okubo S, Bernardo NL, Jao AB, Elliott GT, Kukreja RC: Tyrosine phosphorylation is involved in second window of preconditioning in rabbit heart. Circulation 96(Suppl): 1–313, 1997 (Abstract)Google Scholar
  92. 92.
    Cole WC, McPherson CD, Sontag D: ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ Res 69:571–581, 1991PubMedCrossRefGoogle Scholar
  93. 93.
    DeWeille JR, Schmid-Antomarchi H, Fosset M, Lazdunski M: Regulation of ATP-sensitive K+ channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP. Proc Natl Acad Sci USA 86: 2971–2975, 1989CrossRefGoogle Scholar
  94. 94.
    Gross GJ, Auchampach JA: Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Cir Res 70: 223–233, 1992CrossRefGoogle Scholar
  95. 95.
    Toombs CF, Moore TL, Shebuski RJ: Limitation of infarct size in rabbit by ischaemic preconditioning is reversible with glibenclamide. Cardiovasc Res 27: 617–622, 1993PubMedCrossRefGoogle Scholar
  96. 96.
    Tan HL, Mazon P, Verberne HJ, Sleeswijk ME, Coronel R, Opthorf T, Janse MJ: Ischaemic preconditioning delays ischaemia induced cellular electrical uncoupling in rabbit myocardium by activation of ATP sensitive potassium channels. Cardiovasc Res 27: 644–651, 1993PubMedCrossRefGoogle Scholar
  97. 97.
    Yao Z, Gross GJ: Activation of ATP-sensitive potassium channels lowers threshold for ischemic preconditioning in dogs. Am J Physiol 267:H1888–H1994, 1994PubMedGoogle Scholar
  98. 98.
    Auchampach JA, Maruyama M, Cavero I, Gross GJ: Pharmacological evidence for a role of ATP-dependent potassium channels in myocardial stunning. Circulation 86: 311–319, 1992PubMedCrossRefGoogle Scholar
  99. 99.
    Menasche P, Kevelaitis E, Mouas C, Grousset C, Piwnica A, Bloch G: Preconditioning with potassium channel openers. A new concept for enhancing cardioplegic protection? J Thorac Cardiovasc Surg 110: 1606–1614, 1995PubMedCrossRefGoogle Scholar
  100. 100.
    Shigematsu S, Sato T, Abe T, Saikawa T, Sakata T, Arita M: Pharmacological evidence for the persistent activation of ATP-sensitive K+ channels in early phase of reperfusion and its protective role against myocardial stunning. Circulation 92: 2266–2275, 1995PubMedCrossRefGoogle Scholar
  101. 101.
    Yao Z, Gross GJ: Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation 89: 1769–1775, 1994PubMedCrossRefGoogle Scholar
  102. 102.
    Grover GJ, Dalonzo AJ, Parham CS, Darbenzio RB: Cardioprotection with the KATP opener is not correlated with ischemic myocardial action potential duration. J Cardiovasc Pharmacol 26: 145–152, 1995PubMedCrossRefGoogle Scholar
  103. 103.
    Garlid KD, Paucek P, Yarov-Yarovoy V, Murray RN, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ: Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81: 1072–1082, 1997PubMedCrossRefGoogle Scholar
  104. 104.
    Yao Z, Gross GJ: Acetylcholine mimics ischemic preconditioning via a glibenclamide sensitive mechanism in dogs. Am J Physiol 264: H2221–H2225, 1993PubMedGoogle Scholar
  105. 105.
    Liu B, McCullough JR, Vassalle M: On the mechanism of increased potassium conductance by the potassium channel opener BRL 34915 in isolated ventricular myocytes. Drug Dev Res 19: 409–423, 1990CrossRefGoogle Scholar
  106. 106.
    Grover GJ, Sleph PG, Dzwonczyk S: Role of myocardial ATP-sensitive potassium channels in mediating preconditioning in the dog heart and their possible interaction with adenosine Al-receptors. Circulation 86: 1310–1316, 1992PubMedCrossRefGoogle Scholar
  107. 107.
    Kirsch GE, Codina JI, Birnbaumer L, Brown AM: Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol 259: H820–H826, 1990PubMedGoogle Scholar
  108. 108.
    Ito H, Tung RT, Sugimoto T, Kobayashi I, Takahashi K, Katada T, Ui M, Kurachi Y: On the mechanism of G protein bG subunit activation of the muscarinic K+ channel in guinea pig atrial cell membrane. Comparison with the ATP-sensitive K+ channel. J Gen Physiol 99: 961–983, 1992PubMedCrossRefGoogle Scholar
  109. 109.
    Kurachi Y, Tung RT, Ito H, Nakajima T: G protein activation of cardiac muscarinic K+ channels. Prog Neurobiol 39: 229–246, 1992PubMedCrossRefGoogle Scholar
  110. 110.
    Hoag JB, Qian Y, Nayeem MA, D’Angelo M, Kukreja RC: ATP-sensitive potassium channel mediates delayed ischemic protection by heat stress in rabbit heart. Am J Physiol 42: H861–H868, 1997Google Scholar
  111. 111.
    Bernardo NL, D’Angelo M, Desai PV, Levasseur JE, Kukreja RC: ATP-sensitive potassium (KATP) channel is involved in the second window of ischemic preconditioning in rabbit. J Mol Cell Cardiol 29: A228, 1997 (Abstract)Google Scholar
  112. 112.
    Janin Y, Qian Y, Hoag J, Elliott GT, Kukreja RC: Pharmacologic preconditioning with monophosphoryl lipid A is abolished by 5-hydroxydecanoate, a specific inhibitor of the KAMP channel. J Cardiovasc Pharmacol 32: 337–342, 1998PubMedCrossRefGoogle Scholar
  113. 113.
    Li GC: Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and by ethanol. J Cell Physiol 115: 116–122, 1983PubMedCrossRefGoogle Scholar
  114. 114.
    Currie RW, Ross BM, David TA: Induction of the heat shock response in rats modulate heart rat, creatine kinase and protein synthesis after subsequent hyperthermic treatment. Cardiovasc Res 14: 87–93, 1990CrossRefGoogle Scholar
  115. 115.
    Knowlton AA, Brecher P, Apstein CS: Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. J Clin Invest 87: 139–147, 1991PubMedCrossRefGoogle Scholar
  116. 116.
    Marber MS, Metril R, Chi S, Sayen R, Yellon DM, Dillmann WH: Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95: 1446–1456, 1995PubMedCrossRefGoogle Scholar
  117. 117.
    Plumier JL, Ross BM, Curie RW, Angelidis CE, Kazlaris H, Kollias G, Pagoulatos GN: Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest 95: 1854–1860,1995PubMedCrossRefGoogle Scholar
  118. 118.
    Qian Y, Shipley JS, Levasseur JE, Kukreja RC: Dissociation of the expresion of 72 and 27 kDa heat shock proteins with ischemic tolerance following heat shock in rat heart. J Mol Cell Cardiol 30: 1163–1172, 1998PubMedCrossRefGoogle Scholar
  119. 119.
    Kukreja RC, Qian Y, Flaherty EE: Protein kinase C is involved in heat stress-induced protection of the heart. Circulation 94(Suppl): I–423, 1996 (Abstract)Google Scholar
  120. 120.
    Das DK, Engeiman RM, Kimura Y: Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischaemia. Cardiovasc Res 27: 578–584, 1993PubMedCrossRefGoogle Scholar
  121. 121.
    Von Ruecker AA, Han-Jeon BG, Wild M, Bidlingmaier F: Protein kinase C involvement in lipid peroxidation and cell damage induced by oxygen derived radicals in hepatocytes. Biochem Biophys Res Comm 163: 836–842, 1989CrossRefGoogle Scholar
  122. 122.
    Fujii J, Taniguchi N: Phorbol ester induces manganese-superoxide dismutase in tumor necrosis factor-resistant cells. J Biol Chem 266: 23142–23146, 1991PubMedGoogle Scholar
  123. 123.
    Yamashita N, Nishide M, Hoshida S, Kuzuya T, Hori M, Taniguchi N, Kamada T, Tada M: Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning. J Clin Invest 94: 2193–2199, 1994PubMedCrossRefGoogle Scholar
  124. 124.
    Hoshida S, Kuzuya T, Fuji H, Yamashita N, Oe H, Hori M, Suzuki K, Taniguchi N, Tada M: Sublethal ischemia alters myocardial antioxidant activity in canine heart. Am J Physiol 264: H33–H39, 1993PubMedGoogle Scholar
  125. 125.
    Zhou X, Zhai X, Ashraf M: Direct evidence that initial oxidative stress triggered by preconditioning contributes to second window of protection by endogenous antioxidative enzyme in myocytes. Circulation 93: 1177–1184, 1996PubMedCrossRefGoogle Scholar
  126. 126.
    Maggirwar SB, Dhanraj DN, Somani SM, Ramkumar V: Adenosine acts as an endogenous activator of the cellular antioxidant defense system. Biochem Biophys Res Comm 201: 508–515, 1994PubMedCrossRefGoogle Scholar
  127. 127.
    Thompson CB: Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456–1462, 1995PubMedCrossRefGoogle Scholar
  128. 128.
    Reed JC: Bcl-2 and the regulation of programmed cell death. J Cell Biol 124: 1–6, 1994PubMedCrossRefGoogle Scholar
  129. 129.
    Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P: Apoptosis in the failing human heart. N Eng J Med 336: 1131–1141, 1997CrossRefGoogle Scholar
  130. 130.
    Fliss H, Gattinger D: Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79: 949–956, 1996PubMedCrossRefGoogle Scholar
  131. 131.
    Kajstura J, Mansukhani M, Cheng W, Reiss K, Krajewski S, Reed JC, Quaini F, Sonnenblick EH, Anversa P: Programmed cell death and expression of the protooncogene bcl-2 in myocytes during postnatal maturation of the heart. Exp Cell Res 219: 110–121, 1995PubMedCrossRefGoogle Scholar
  132. 132.
    Hamet P, Richard L, Dam TV, Teiger E, Orlov SN, Gaboury L, Gossard F, Tremblay J: Apoptosis in target organs of hypertension. Hypertension 26: 642–648, 1995PubMedCrossRefGoogle Scholar
  133. 133.
    Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, Anversa P: Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 73: 771–787, 1995PubMedGoogle Scholar
  134. 134.
    Sharov VG, Sabbah RN, Shimoyama H, Goussev AV, Lesch M, Goldstein S: Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 148: 141–149, 1996PubMedGoogle Scholar
  135. 135.
    Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P: Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74: 86–107, 1996PubMedGoogle Scholar
  136. 136.
    Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL: Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94: 1621–1628, 1994PubMedCrossRefGoogle Scholar
  137. 137.
    Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, Lefer AM: Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci USA 92: 8031–8035, 1995PubMedCrossRefGoogle Scholar
  138. 138.
    Itoh G, Tamura J, Suzuki M, Suzuki Y, Ikeda H, Koike M, Nomura M, Jie T, Ito K: DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 146: 1325–1331, 1995PubMedGoogle Scholar
  139. 139.
    Piot C, Padmanaban D, Ursell PC, Sievers RE, Wolfe CE: Ischemic preconditioning decreases apoptosis in rat hearts in vivo. Circulation 96: 1598–1604, 1997PubMedCrossRefGoogle Scholar
  140. 140.
    Bernardo NL, Chelleya J, D’Angelo M, Loesser KB, Grant S, Kukreja RC: The second window of protection induces expression of protooncogene Bcl-2 and inhibits apoptosis in rabbit heart. Circulation (Suppl) 96: 1–553, 1997 (Abstract)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Shinji Okubo
    • 1
  • Lei Xi
    • 1
  • Nelson L. Bernardo
    • 1
  • Kazu-ichi Yoshida
    • 1
  • Rakesh C. Kukreja
    • 1
  1. 1.Eric Lipman Laboratories of Molecular and Cellular Cardiology, Division of Cardiology, Medical College of VirginiaVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations