Immunobiology of Transplants: Specific and Nonspecific Mechanisms Involved in Allograft Rejection

  • Stanislaw M. Stepkowski


Allograft transplantation plays a critical role in the treatment of patients with end-stage renal, cardiac, hepatic, and pulmonary diseases. Although systemic administration of immunosuppressive agents inhibits allograft rejection, both alloantigen-specific and nonspecific processes continuously damage graft tissues, eventually leading to graft destruction. Damage to graft tissues begins during graft procurement, when cold and warm ischemia followed by reperfusion with recipient blood causes an accumulation of granulocytes on the wails of blood vessels. The processes of ischemia and reperfusion also lead to an increase the production of nitric oxide (NO) and other free radicals that damage blood vessels. Following the transplant operation, organ allografts are infiltrated with leukocytes, including T cells, which recognize alloantigens expressed on the graft.


Nitric Oxide Major Histocompatibility Complex Allograft Rejection Organ Allograft Acute Cardiac Allograft Rejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adkins WK, Taylor AE. Role of xanthine oxidase and neutrophils in ischemia-reperfusion injury in rabbit lung. J Appl Physiol 1990;69:2012–2018PubMedGoogle Scholar
  2. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990;87:620–624CrossRefGoogle Scholar
  3. Bevilacqua MP. Endothelial-leukocyte adhesion molecules. Annu Rev Immunol 1993; 11:767–804.PubMedCrossRefGoogle Scholar
  4. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329(6139):506–512.PubMedCrossRefGoogle Scholar
  5. Borg DC. Oxygen free radicals and tissue injury. In Tarr M, Samson F eds. Oxygen Free Radicals in Tissue Damag., Elsevier Science, Boston, MA, USA. 1993Google Scholar
  6. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC. The three-dimensional structure of the human class II histocompatibility HLA-DR1. Nature 1993; 364 (6432):33–39.PubMedCrossRefGoogle Scholar
  7. Chicz RM, Urban RG, Lane WS, Gorga JC, Stern LJ, Vignali DA, Strominger JL. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogenous in size. Nature 1992; 358(6389):764–768.PubMedCrossRefGoogle Scholar
  8. Ding AH, Nathan CF, Stuehr DJ. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J Immunol 1988; 141:2407–2012PubMedGoogle Scholar
  9. Feletou M, Canet E, Vanhoutte PM. Endothelial no and vascular regulation. In Marsaki T, ed. Endothelim-Derived Factors and Vascular Functio. Exerpta Medica, Amsterdam. 1994Google Scholar
  10. Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA Jr, Lombard LA, Gray GS, Nadler LM. Cloning of B7-2: A CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 1993; 262(5135):909–911.PubMedCrossRefGoogle Scholar
  11. Freeman GJ, Gribben JG, Boussiotis VA, et al. Cloning of B7-2: A CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 1993;262(5135):909–911PubMedCrossRefGoogle Scholar
  12. Furchgott RF. Studies on relaxation of rabbit aorta by sodium nitrate: The basis for proposal that the acid-activatable inhibitory factors from bovine retractor penis is inorganic nitrate and the endothelium-derived relaxing factor is nitric oxide. In Vanhoutte PM, ed. Vasodialation. Raven Press, New York. 1988Google Scholar
  13. Germain RN, Margulies DH. The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol 1993;11:403–450PubMedCrossRefGoogle Scholar
  14. Haller H, Dragun D, Miethke A, Park JK, Weis A, Lippoldt A, Groph V, Luft FC. Antisense oligonucleotides for ICAM-1 attenuate reperfusion injury and renal failure in the rat. Kidney Int 1996; 50:473–480PubMedCrossRefGoogle Scholar
  15. Harris NR, Zimmerman BJ, Granger DN. Radicals mediate ischemia-reperfusion-induced leukocyte-endothelial cell adhesive interactions. In Tarr M, Samson, F, eds. Oxygen Free Radicals in Tissue Damage. Elsevier Science, Boston, MA, USA. 1993Google Scholar
  16. Hunt DF, Michel H, Dickinson TA, Shabanowitz J, Cox AL, Sakaguchi K, Appella E, Grey HM, Sette A. Peptides presented to immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 1992; 256(5065):1817–1820.PubMedCrossRefGoogle Scholar
  17. Ignarro JL, Byrns RE, Wood KS. Biochemical and pharmacological properties of endothelium-derived relaxing factor and its similarity to nitric oxide radical. In Vanhoutte PM, ed. Vasodialation. Raven Press, New York. 1988Google Scholar
  18. Ioculand M, Squadrito F, Altavilla D, Canale P, Aquadrito G, Campo GM, Saitta A, Caputi AP. Antibodies against intercellular adhesion molecule-1 protect against myocardial ischaemia-reperfusion injury in rat. Eur J Pharmacol 1994;264:143–149CrossRefGoogle Scholar
  19. Isobe M, Yagita H, Okumura K, Ihara A. Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science 1992;255:1125–1127PubMedCrossRefGoogle Scholar
  20. Jerome SN, Dore M, Paulson JC, Smith CW, Korthuis RJ. P-selectin and ICAM-1 dependent adherence reactions: Role in the genesis of postischemic no-reflow. Am J Physiol (Heart Circ Physiol) 1994;266: H1316–H1321Google Scholar
  21. Kelly KJ, Williams W, Colvin RB, Bonventre JV. Antibody to intracelellular adhesion molecule-1 protects the kidney against ischemic injury. Proc Natl Acad Sci U S A 1994;91:812–816PubMedCrossRefGoogle Scholar
  22. Kuhlman P, Moy VT, Lollo BA, Brian, AA. The accessory function of murine intercellular adhesion molecules-1 in T lymphocyte activation. J Immunol 1991; 146:1773–1782PubMedGoogle Scholar
  23. Langrehr JM, Muller AR, Bergonia HA, Jacob TD, Lee TK, Schraut WH, Lancaster JR, Hoffman RA, Simmons RL. Detection of nitric oxide by electron paramagnetic resonance spectroscopy during rejection and graft-versus-host disease after small bowel transplantation in the rat. Surgery 1992; 112:395–402PubMedGoogle Scholar
  24. Ma X-L, Tsao PS, Lefer DJ. Antibody to CD18 exerts endothelial and cardiac protective effects in myocardial ischemia and reperfusion. J Clin Invest 1991;88:1237–1243PubMedCrossRefGoogle Scholar
  25. Marlin, SD, Springer TA. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen-1 (LFA-1). Cell 1987;51:811–819CrossRefGoogle Scholar
  26. Miyaijma A, Kitamura T, Harada N, Yokota T, Arai KI. Cytokine receptors and signal transduction. Annu Rev Immunol 1992;10:295–331CrossRefGoogle Scholar
  27. Ohdan H, Fukuda Y, Sozuki S, Amemiya H, Dohi K. Simultaneous evaluation of nitric oxide synthesis and tissue oxygenation in rat liver allograft rejection using near-infrared spectroscopy. Transplantation 1995;60:530–535PubMedCrossRefGoogle Scholar
  28. Rabb H, Mendiola CC, Dietz J, Saba SR, Issekutz TB, Aranilla F, Bonventre JV, Ramirez G. Role of CD11a and CD11b in ischemic acute renal failure in rats. Am J Physiol 1994;267:F1002–F1008Google Scholar
  29. Rice-Evans CA. Formation of free radicals and mechanisms of action in normal biochemical processes and pathological states. In Tarr M, Samson F. eds. Oxygen Free Radicals in Tissue Damage. Elsevier Science, Boston, MA, USA. 1993Google Scholar
  30. Rothlein R, Dustin ML, Marlin SD, Springer TA. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol 1986;137:1270–1274PubMedGoogle Scholar
  31. Ruth M. Antigen receptors on B lymphocytes. Annu Rev Immunol 1992;10:97–121CrossRefGoogle Scholar
  32. Schoenberg MH, Poch B, Younes M, Schwarz A, Baczako K, Lunberg C, Haglund U, Berger HG. Involvement of neutrophils in postischemic damage to the small intestine. Gut 1991;32:905–912PubMedCrossRefGoogle Scholar
  33. Seewaldt-Becker E, Rothlein R, Damgen JW. CD18-dependent adhesion of leukocytes to endothelium and its relevance for cardiac reperfusion. In Springer TA, Anderson DC, Rosenthal AC, Rothlein R, eds. Leukocytes Adhesion Molecules: Structure, Function, and Regulation. Springer-Verloag, Heidelberg. 1991.Google Scholar
  34. Sherman LA, Chattopadhyay S. The molecular basis of allorecognition. Annu Rev Immunol 1993; 11:385–402PubMedCrossRefGoogle Scholar
  35. Shoskes DA, Wood KJ. Indirect presentation of MHC antigens in transplantation. Immunol Today 1994; 15(l):32–38PubMedCrossRefGoogle Scholar
  36. Simpson PJ, Todd RF, Fantone JC, Gallagher KP, Lee KA, Tamura Y, Cronin M, Lecchesi BR. Sustained limitation on myocardial reperfusion injury by a monoclonal antibody that alters leukocyte function. Circulation 1990;81:226–237PubMedCrossRefGoogle Scholar
  37. Springer TA. Adhesion receptors of the immune system. Nature 1990;346:425–434PubMedCrossRefGoogle Scholar
  38. Springer TA. The sensation and regulation of interactions with the extracellular environment: The cell biology of lymphocyte adhesion receptors. Ann Rev Cell Biol 1990;6:359–402PubMedCrossRefGoogle Scholar
  39. Stepkowski SM. Transplantation immunobiology. Surg Clinics of N Am 1994;74:991Google Scholar
  40. Stepkowski SM, Tu Y, Condon T, Bennett FC. Blocking of heart allograft rejection by ICAM-1 antisense oligonucleotides alone or in combination with other immunosuppressive modalities. J Immunol 1994; 153:5336–5346PubMedGoogle Scholar
  41. Suciu-Foca N, Reed E, D’Agati VD, Ho E, Cohen DJ, Benvenisty AI, McCabe R, Brensilver JM, King DW, Hardy MA. Soluble HLA-antigens, anti-HLA antibodies and anti-iditypic antibodies in the circulation of renal transplant recipients. Transplantation 1991; 51(3):593–601.PubMedCrossRefGoogle Scholar
  42. Takahata N, Satta Y, Klein J. Polymorphism and balancing selection at major histocompatibility complex loci. Genetic 1992;130(4):925–938Google Scholar
  43. Tanaka S, Kamiike W, Ito T, Nozaki S, Uchikoshi F, Miyata M, Nakata S, Shirakura R, Matsuda H, Kumura E, Shiga T, Kosaka H. Evaluation of nitric oxide during rejection after heart transplantation in rats. Transpl Proc 1995a;27:576–577Google Scholar
  44. Tanaka S, Kamiike W, Ito T, Uchikoshi F, Matsuda H, Nozawa M, Kumura E, Shiga T, Kosaka H. Generation of nitric oxide as a rejection marker in rat pancreas transplantation. Transplantation 1995b; 60:713–717Google Scholar
  45. Van Seventer GA, Newman W, Shimizu Y, Nutman TB, Tanaka Y, Horgan KJ, Gopal TV, Ennis E, O’Sullivan D, Grey H, Show S. Analysis of T cell stimulation by superantigen plus major histocompatibility complex class II molecules or by CD3 monoclonal antibody: Costimulation by purified adhesion ligands VCAM-1, ICAM-1 but not ELAM-1. J Exp Med 1991;174:901–913PubMedCrossRefGoogle Scholar
  46. Weiss A. Molecular and genetic insights into T cell antigen receptor structure and function. Annu Rev Genet 1991;25:487–510PubMedCrossRefGoogle Scholar
  47. Weiss A, Littman DR. Signal transduction by lymphocyte antigen receptors. Cell 1994;76(2):263–274PubMedCrossRefGoogle Scholar
  48. Winlaw DS, Schyvens CG, Smythe GA, Du Z, Rainer SP, Krogh AM, Mundy JA, Lord RSA, Spratt PM, MacDonald PS. Urinary nitrate excretion is a noninvasive indicator of acute cardiac allograft rejection and nitric oxide production in the rat. Transplantation 1994;58:1031–1036PubMedCrossRefGoogle Scholar
  49. Yui Y, Kaoru M, Sase K, Kawamato T, Tada K, Doi Y, Ogashi S, Hattori R, Aoyama T, Yamamoto Y, Hashimoto K, Yang R-X, Kawai C, Sasayama S, Shizuta Y. Molecular biology of nitric oxide synthase and structure of endothelial nitric oxide synthase gene. In Marsaki T, ed. Endothelim-Derived Factors and Vascular Functions. Exerpta Medica, Amsterdam. 1994Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Stanislaw M. Stepkowski
    • 1
  1. 1.Department of Surgerythe University of Texas Medical School at HoustonHoustonUSA

Personalised recommendations