Advertisement

Axiomatic Foundations Of Fixed-Basis Fuzzy Topology

  • U. Höhle
  • A. P. Šostak
Part of the The Handbooks of Fuzzy Sets Series book series (FSHS, volume 3)

Abstract

This paper gives the first comprehensive account on various systems of axioms of fixed-basis, L-fuzzy topological spaces and their corresponding convergence theory. In general we do not pursue the historical development, but it is our primary aim to present the state of the art of this field. We focus on the following problems:

Keywords

Topological Space Complete Lattice Idempotent Element Complete Boolean Algebra Fuzzy Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Adám ek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories (John Wiley & Sons, New York 1990).Google Scholar
  2. [2]
    D. Adnadjević, Separation properties of F-spaces, Mat. Vesnik 6 (1982), 1–8.MathSciNetGoogle Scholar
  3. [3]
    A. Badrikian, Séminaire sur les Fonctions Aléatoires Linéaires et Mesures Cylindriques, Lecture Notes in Mathematics 139 (Springer-Verlag, Berlin, Heidelberg, New York, 1970).Google Scholar
  4. [4]
    L.P. Belluce, Semi-simple and complete MV-algebras, Algebra Universalis 29 (1992), 1–9.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    —, α-Complete MV-algebras, in: U. Hőhle and E.P. Klement, Eds., Nonclassical Logics and Their Applications to Fuzzy Subset, 7–21 (Kluwer Academic Publishers, Dordrecht, Boston, 1995).CrossRefGoogle Scholar
  6. [6]
    G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Publications, third edition (Amer. Math. Soc., RI, 1973).Google Scholar
  7. [7]
    N. Bourbaki, General Topology, Part I (Addison Wesley, Reading, MA, 1966).Google Scholar
  8. [8]
    J.J. Chadwick, A general form of compactness in fuzzy topological spaces, J. Math. Anal. Appl. 162 (1991), 92–110.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    K.C. Chattopadhyay, S.K. Samanta, Fuzzy topology: fuzzy closure, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207–212.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    C. De Mitri, E. Pascali, Characterization of fuzzy topologies from neighbourhoods of fuzzy points, J. Math. Anal. Appl. 93 (1983), 324–327.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    P. Eklund, W. Gähler, Basic notions for fuzzy topology I, Fuzzy Sets and Systems 26 (1988), 333–356.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    P. Eklund, W. Gähler, Contributions to fuzzy convergence, Math. Res. 87 (1992), 118–123.Google Scholar
  15. [15]
    P. Eklund, W. Gähler, Fuzzy filter functor and convergence, In: S.E. Rod-abaugh et al., Eds., Application of Category Theory to Fuzzy Subsets, 109–136. (Kluwer Academic Publishers, Dodrecht, Boston 1992).CrossRefGoogle Scholar
  16. [16]
    J.C. Fodor, Contrapositive symmetry of fuzzy implications(Technical Report 1993/1, Eőtvős Loránd University, Budapest 1993).Google Scholar
  17. [17]
    O. Frink, New algebras of logic, Amer. Math. Monthly 45 (1938), 210–219.MathSciNetCrossRefGoogle Scholar
  18. [18]
    L. Fuchs, Űber Ideale arithmetischer Ringe, Commentarii Math. Helv. 23 (1949), 334–341.MATHCrossRefGoogle Scholar
  19. [19]
    N. Funayama, Imbedding infinitely distributive lattices completely isomorphic into Boolean algebras, Nagoya Math. 15 (1959), 71–81.MathSciNetMATHGoogle Scholar
  20. [20]
    T.E. Gantner, R.C. Steinlage, R.H. Warren, Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), 547–562.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    G. Gerla, Generalized fuzzy points, J. Math. Anal. Appl. 120 (1986), 761–768.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, A Compendium of Continuous Lattices (Springer-Verlag, Berlin, New York 1980).MATHCrossRefGoogle Scholar
  23. [23]
    J.A. Goguen, L-Fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145–174.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    —, The fuzzy Tychonoff theorem, J. Math. Anal. Appl. 43 (1973), 734–742.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    S. Gottwald, Fuzzy points and local properties of fuzzy topological spaces, Fuzzy Sets and Systems 5 (1981), 199–201.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    J. Gutiérrez García, I. Mardones Pérez and M. Burton, The relationship between different filter notions on a GL-monoid (to appear in J. Math. Anal. Appl.).Google Scholar
  27. [27]
    H. Herrlich, R. Lowen, On simultaneously reflective and coreflective sub-constructs, In: Proceedings of the SoCAT 94 (On the occasion of the 60th birthday of Guillaume Brümmer), Capetown, 1998 (to appear).Google Scholar
  28. [28]
    H. Herrlich and G.E. Strecker, Category Theory (Allyn and Bacon, Boston 1973).MATHGoogle Scholar
  29. [29]
    P. Hamburg and L. Florescu, Topological structures in fuzzy lattices, J. Math. Anal. Appl. 101 (1984), 475–490.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    U. Hőhle, Probabilistische Topologien, Manuscripta Math. 26 (1978), 223–245.MathSciNetCrossRefGoogle Scholar
  31. [31]
    —, Probabilistisch kompakte L-unscharfe Mengen Google Scholar
  32. [32]
    —, Uppersemicontinuous fuzzy sets and applications, J. Math. Anal. Appl. 78 (1980), 659–673.MathSciNetCrossRefGoogle Scholar
  33. [33]
    —, Probabilistic topologies induced by L-fuzzy uniformities, Manuscripta Math. 38 (1982), 289–323.MathSciNetCrossRefGoogle Scholar
  34. [34]
    —, Probabilistic metrization of fuzzy topologies Fuzzy Sets and Systems 8 (1982), 63–69.MathSciNetCrossRefGoogle Scholar
  35. [35]
    —, Compact &-fuzzy topological spaces, Fuzzy Sets and Systems 13 (1984), 113–150.CrossRefGoogle Scholar
  36. [36]
    —, G-Fuzzy topologies on algebraic structures, J. Math. Anal. Appl. 108 (1985), 113–150.MathSciNetCrossRefGoogle Scholar
  37. [37]
    —, Fuzzy topologies and topological space objects in a topos, Fuzzy Sets and Systems 19 (1986), 299–304.MathSciNetCrossRefGoogle Scholar
  38. [38]
    —, Almost everywhere convergence and Boolean-valued topologies, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 29 (1992), 215–227.Google Scholar
  39. [39]
    —, Commutative, residuated l-monoids, in: U. Hőhle and E.P. Klement, Eds., Nonclassical Logics and Their Applications to Fuzzy Subsets, 53–106 (Kluwer Academic Publishers, Dordrecht, Boston 1995).CrossRefGoogle Scholar
  40. [40]
    —, Presheaves over GL-monoids, in: U. Hőhle and E.P. Klement, Eds., Nonclassical Logics and Their Applications to Fuzzy Subsets, 127–157 (Kluwer Academic Publishers, Dordrecht, Boston 1995).CrossRefGoogle Scholar
  41. [41]
    —, MV-Algebra valued filter theory, Questiones Math. 19 (1996), 23–46.CrossRefGoogle Scholar
  42. [42]
    —, Locales and L-topologies, in: Hans-E. Porst, Ed., Categorical Methods in Algebra and Topology — A collection of papers in honour of Horst Herrlich, Mathematik-Arbeitspapiere 48, 223–250 (Universität Bremen, September 1997).Google Scholar
  43. [43]
    —, Characterization of L-topologies by L-valued neighborhoods, (in this Volume).Google Scholar
  44. [44]
    U. Hőhle and S. Weber, On conditioning operators (Chapter 12 in this Volume).Google Scholar
  45. [45]
    U. Hőhle and A.P. Šostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems 73 (1995), 131–149.MathSciNetCrossRefGoogle Scholar
  46. [46]
    B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl. 50 (1975), 74–79.MathSciNetMATHCrossRefGoogle Scholar
  47. [47]
    —, Products of fuzzy topological spaces, Topology Appl. 11 (1980), 59–67.MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    B. Hutton, I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems 3 (1980), 93–104.MathSciNetMATHCrossRefGoogle Scholar
  49. [49]
    P.T. Johnstone, Stone Spaces (Cambridge University Press, Cambridge 1982).MATHGoogle Scholar
  50. [50]
    D.A. Kappos, Probability Algebras and Stochastic Spaces (Academic Press, New York, London, 1969).MATHGoogle Scholar
  51. [51]
    A.K. Katsaras, Convergence of fuzzy filters in fuzzy topological spaces, Bull. Math. Soc. Sci. Math. Roum. 27 (1983) 131–137.MathSciNetGoogle Scholar
  52. [52]
    E.E. Kerre, P.L. Ottoy, On the different notions of neighbourhoods in fuzzy topological spaces, Simon Steven 61:2 (1987), 131–145.MathSciNetGoogle Scholar
  53. [53]
    W. Kotzé, Quasi-coincidence and quasi-fuzzy Hausdorff, J. Math. Anal. Appl. 116 (1986), 465–472.MathSciNetMATHCrossRefGoogle Scholar
  54. [54]
    W. Kotzé and T. Kubiak, Fuzzy topologies of Scott continuous functions and their relation to the hypergraph functor, Questiones Mathematicae 15 (1992), 175–187.MATHCrossRefGoogle Scholar
  55. [55]
    T. Kubiak, On Fuzzy Topologies (PhD Thesis, Adam Mickiewicz University Poznan (Poland) 1985).Google Scholar
  56. [56]
    —, Extending continuous L-real functions, Math. Japonica 31 (1986), 875–887.MathSciNetMATHGoogle Scholar
  57. [57]
    —, The topological modification of the L-fuzzy unit interval, in: S.E. Rodabaugh et al., Eds., Applications of Category Theory to Fuzzy Subsets, 275–305 (Kluwer Academic Publishers, Dordrecht, Boston 1992).CrossRefGoogle Scholar
  58. [58]
    —, On L-Tychonoff spaces, Fuzzy Sets and Systems 73 (1995), 25–53.MathSciNetMATHCrossRefGoogle Scholar
  59. [59]
    —, Separation axioms: Extending of mappings and embeddings of spaces (Chapter 6 in this Volume).Google Scholar
  60. [60]
    C.H. Ling, Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189–212.MathSciNetGoogle Scholar
  61. [61]
    Liu Yingming, On fuzzy convergence classes, Fuzzy Sets and Systems 30 (1989), 47–51.MathSciNetCrossRefGoogle Scholar
  62. [62]
    Liu Yingming, Luo Maokang Fuzzy Stone-Cech type compactifications, Fuzzy Sets and Systems 33 (1989), 355–372.MathSciNetMATHCrossRefGoogle Scholar
  63. [63]
    Liu Yingming, Luo Maokang On convergence classes in L-fuzzy topological spaces, In: IFSA′97 Prague Proceedings, vol. II, 58–63 (Prague, 1997).Google Scholar
  64. [64]
    R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. App. 56 (1976), 621–633.MathSciNetMATHCrossRefGoogle Scholar
  65. [65]
    —, Initial and final fuzzy topologies and the fuzzy Tychonoff Theorem, J. Math. Anal. Appl. 58 (1977), 11–21.MathSciNetMATHCrossRefGoogle Scholar
  66. [66]
    —, A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl. 64 (1978), 446–454.MathSciNetMATHCrossRefGoogle Scholar
  67. [67]
    —, Convergence in fuzzy topological spaces, Genaral Topology and Appl. 10 (1979), 147–160.MathSciNetMATHCrossRefGoogle Scholar
  68. [65]
    —, The relation between filter and net convergence in fuzzy topological spaces, Fuzzy Mathematics 3(4) (1983), 41–52.MathSciNetMATHGoogle Scholar
  69. [66]
    —, On the existence of natural fuzzy topologies on spaces of probability measures, Math. Nachr. 115 (1984), 33–57.MathSciNetMATHCrossRefGoogle Scholar
  70. [70]
    R. Lowen and P. Wuyts, Concerning the constants in fuzzy topology, J. Math. Anal. Appl. 129 (1988), 256–268.MathSciNetMATHCrossRefGoogle Scholar
  71. [71]
    R. Lowen and P. Wuyts, Stable subconstructs of FTS I, J. Fuzzy Math. 1 (1993), 475–489.MathSciNetMATHGoogle Scholar
  72. [72]
    R. Lowen and P. Wuyts, Stable subconstructs of FTS II, J. Fuzzy Sets and Systems 76 (1995), 169–189.MathSciNetMATHCrossRefGoogle Scholar
  73. [73]
    R. Lowen, P. Wuyts and E. Lowen, On the reflectiveness and coreflectiveness of subcategories in FTS, Math. Nachrichten 141 (1989), 55–65.MathSciNetMATHCrossRefGoogle Scholar
  74. [74]
    M. Macho Stadler, M.A. de Prada Vicente, Fuzzy t-net theory Fuzzy Sets and Systems 37 (1990), 225–235.MATHCrossRefGoogle Scholar
  75. [75]
    M. Macho Stadler, M.A. de Prada Vicente, On N-convergence of fuzzy nets Fuzzy Sets and Systems 51 (1992), 203–217.MATHCrossRefGoogle Scholar
  76. [76]
    M. Macho Stadler, M.A. de Prada Vicente, t-prefilter theory Fuzzy Sets and Systems 38 (1990), 115–124.MATHCrossRefGoogle Scholar
  77. [77]
    S.R. Malghan, S.S. Benchalli, On fuzzy topological spaces, Glasnik Matematicki 16 (1981), 313–325.MathSciNetGoogle Scholar
  78. [78]
    H.W. Martin, Weakly induced fuzzy topological spaces, J. Math. Anal. Appl. 78 (1980), 634–639.MathSciNetMATHCrossRefGoogle Scholar
  79. [79]
    G. Matheron, Random Sets and Integral Geometry (Wiley, New York, London 1975).Google Scholar
  80. [80]
    C.J. Mulvey and M. Nawaz, Quantales: Quantal sets, in: U. Hőhle and E.P. Klement, Eds., Nonclassical Logics and Their Applications to Fuzzy Subsets, 159–217 (Kluwer Academic Publishers, Dordrecht, Boston 1995).CrossRefGoogle Scholar
  81. [81]
    C.V. Negoita and D. Ralescu, Representation theorems for fuzzy concepts, Kybernetes 4 (1975), 169–174.MATHCrossRefGoogle Scholar
  82. [82]
    D. Ralescu —, Application of Fuzzy Sets to System Analysis (Johm Wiley & Sons, New York 1975).Google Scholar
  83. [83]
    A.B. Paalman de Miranda, Topological Semigroups (Amsterdam: Math. Centrum 1964).MATHGoogle Scholar
  84. [84]
    Pu Paoming, Liu Yingming, Fuzzy topology I: Neighborhood structure of a fuzzy point, J. Math. Anal. Appl. 76 (1980), 571–599.MathSciNetCrossRefGoogle Scholar
  85. [85]
    Pu Paoming, Liu Yingming, Fuzzy topology II: Product and quotient spaces, J. Math. Anal. Appl. 77(1980), 20–37.MathSciNetCrossRefGoogle Scholar
  86. [86]
    K.I. Rosenthal, Quantales and Their Applications, Pitman Research Notes in mathematics 234 (Longman, Burnt Mill, Harlow 1990).Google Scholar
  87. [87]
    S.E. Rodabaugh, The Hausdorff separation axiom for fuzzy topological spaces, Topology and Appl. 11 (1980), 319–334.MathSciNetMATHCrossRefGoogle Scholar
  88. [88]
    —, A categorical accomodation of various notions of fuzzy topology, Fuzzy Sets and Systems 9 (1983), 241–265.MathSciNetMATHCrossRefGoogle Scholar
  89. [89]
    —, Separation axioms and the fuzzy real lines Fuzzy sets and Systems 11 (1983), 163–183.MathSciNetMATHGoogle Scholar
  90. [90]
    —, Complete fuzzy topological hyperfields and fuzzy multiplication, Fuzzy Sets and Systems 15 (1985), 241–265.MathSciNetCrossRefGoogle Scholar
  91. [91]
    —, A theory of fuzzy uniformities with applications to the fuzzy real line, J. Math. Anal. Appl. 129 (1988), 37–70.MathSciNetMATHCrossRefGoogle Scholar
  92. [92]
    —, Point-set lattice-theoretic topology, Fuzzy Sets and Systems 40 (1991), 297–345.MathSciNetMATHCrossRefGoogle Scholar
  93. [93]
    —, Categorical frameworks for Stone representation theories, in: S.E. Rodabaugh et al., Eds., Applications of Category Theory to Fuzzy Subsets, 177–231 (Kluwer Academic Publishers, Dordrecht, Boston 1992).CrossRefGoogle Scholar
  94. [94]
    —, Applications of localic separation axioms, compactness axioms, representations and compactifications to poslat topological spaces, Fuzzy Sets and Systems 73 (1995), 55–87.MathSciNetMATHCrossRefGoogle Scholar
  95. [95]
    —, Separation axioms: Representation theorems, compactness, and compactifications (Chapter 7 in this Volume).Google Scholar
  96. [96]
    E.S. Santos, Topology versus fuzzy topology, (Preprint, Youngstwon State University, Youngstwon, Ohio, 1977).Google Scholar
  97. [97]
    M. Sarkar, On fuzzy topological spaces, J. Math. Anal. Appl. 79 (1981), 384–394.MathSciNetMATHCrossRefGoogle Scholar
  98. [98]
    M. Sarkar, On L-fuzzy topological spaces, J. Math. Anal. Appl. 84 (1981), 431–442.MathSciNetMATHCrossRefGoogle Scholar
  99. [99]
    B. Schweizer and A. Sklar, Probabilistic Metric Spaces (North Holland, New York 1983).Google Scholar
  100. [100]
    R. Sikorski, Boolean Algebras, third edition (Springer-Verlag, Heidelberg, New York, Berlin, 1969).MATHCrossRefGoogle Scholar
  101. [101]
    A.P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo2 Ser II 11 (1985), 89–103.MATHGoogle Scholar
  102. [102]
    A. Šostak, Coreflexivity in the categories of fuzzy topology, In: Continuous Functions on Topological Spaces, Latvian Univ. Publ., Riga, Latvia — 1986, 159–165 (in Russian).Google Scholar
  103. [103]
    —, On compactness and connectedness degrees of fuzzy sets in fuzzy topological spaces, in: General Topology and its relations to Modern Analysis and Algebra (Proc. Sixth Prague Top. Symp. 1986), Ed. Z. Frolík, 519–532 (Heldermann Verlag, Berlin 1988).Google Scholar
  104. [104]
    —, Two decades of fuzzy topology: Basic ideas, notions and results, Russian Math. Surveys 44 (1989), 125–186.MathSciNetMATHCrossRefGoogle Scholar
  105. [105]
    A. Šostak, On the neighbourhood structure of a fuzzy topological space, Zb. Radova Univ. Nis, Ser Math. 4 (1990), 7–14.MATHGoogle Scholar
  106. [106]
    A. Šostak, On the convergence structure of a fuzzy topological space, In: 2nd International Conference of the Balcanic Union of Fuzzy Systems and Artificial Intelligence, BUFSA, Trabson, Turkey. 1992. — Extended Abstracts-pp. 146–149.Google Scholar
  107. [107]
    A. Šostak Basic structures of fuzzy topology, J. of Math. Sciences 78, N 6(1996), 662–701.MATHCrossRefGoogle Scholar
  108. [108]
    R. Srivastava, S.N. Lal, A.K. Srivastava, Fuzzy Hausdorff topological spaces, J. Math. Anal. Appl. 81 (1981), 497–506.MathSciNetMATHCrossRefGoogle Scholar
  109. [109]
    R. Srivastava, A.K. Srivastava, On fuzzy Hausdorff concepts, Fuzzy Sets and Syst. 17 (1985), 67–71.MATHCrossRefGoogle Scholar
  110. [110]
    L.N. Stout, Topological space objects in a topos II: ε-Completeness and ε-Cocompleteness, Manuscripta math. 17 (1975), 1–14.MathSciNetMATHCrossRefGoogle Scholar
  111. [111]
    E. Tsiporkova, B. De Baets, τ-compactness in separated fuzzy topological spaces, Tatra Mountains Mathematical Publications 12 Fuzzy Sets: Theory and Appl. (1997), 99–112.Google Scholar
  112. [112]
    Wang Guojun, Topological molecular lattices, Fuzzy Sets and Systems 47 (1992), 351–376.MathSciNetMATHCrossRefGoogle Scholar
  113. [113]
    Wang Guojun, A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl. 94 (1983), 1–23.MathSciNetCrossRefMATHGoogle Scholar
  114. [114]
    R. Warren, Neighborhoods, bases and continuity in fuzzy topological spaces, Rocky Mountain J. Math. 8 (1978), 459–470.MathSciNetMATHCrossRefGoogle Scholar
  115. [115]
    —, Fuzzy topologies, characterized by neighborhood bases Rocky Mountain J. Math. 9 (1979), 761–764.MathSciNetMATHCrossRefGoogle Scholar
  116. [116]
    —, Convergence in fuzzy topology Rocky Mountain J. Math. 13 (1983), 31–36.MathSciNetMATHCrossRefGoogle Scholar
  117. [117]
    C.K. Wong, Fuzzy points and local properties in fuzzy topology, J. Math. Anal. Appl. 46 (1974), 316–328.MathSciNetMATHCrossRefGoogle Scholar
  118. [118]
    P. Wuyts, R. Lowen, On separation axioms in fuzzy topological spaces, fuzzy neighborhood spaces and fuzzy uniform spaces, J. Math. Anal. Appl., 93 (1983), 27–41.MathSciNetMATHCrossRefGoogle Scholar
  119. [119]
    Zhao Xiaodong, Local property, normality and uniformity in fuzzy topological spaces, J. Math. Anal. Appl. 127 (1987), 285–298.MathSciNetMATHCrossRefGoogle Scholar
  120. [120]
    Zhao Dongsheng, The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl., 108 (1987), 64–79.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • U. Höhle
    • 1
  • A. P. Šostak
    • 2
  1. 1.Fachbereich 7 Mathematik BergischeUniversiät Wuppertal GaußstraßeWuppertalGermany
  2. 2.Department of Mathematics University of LatviaLatvia

Personalised recommendations