Skip to main content

Fuzzy Real Lines And Dual Real Lines As Poslat Topological, Uniform, And Metric Ordered Semirings With Unity

  • Chapter
Mathematics of Fuzzy Sets

Part of the book series: The Handbooks of Fuzzy Sets Series ((FSHS,volume 3))

Abstract

Nontrivial examples of objects and morphisms are fundamentally important to establishing the credibility of a new category or discipline such as lattice-dependent or fuzzy topology; and often the justifications of the importance of certain objects and the importance of certain morphisms are intertwined. In [33], we established classes of variable-basis morphisms between different fuzzy real lines and between different dual real lines, but left untouched the issue of the canonicity of these objects. In this chapter, we attempt to demonstrate the canonicity of these spaces stemming from the interplay between arithmetic operations and underlying topological structures. We shall summarize the definitions of fuzzy addition and fuzzy multiplication on the fuzzy real lines and indicate their joint-continuity—along with that of the addition and multiplication on the usual real line—with respect to the underlying poslat topologies, as well as the quasi-uniform and uniform continuity (in the case of fuzzy addition and addition) with respect to the underlying quasi-uniform, uniform, and metric structures. These results not only help establish fuzzy topology w.r.t. objects, but enrich our understanding of traditional arithmetic operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Dubois and H. Prade, Operations on fuzzy numbers, Internat. J. Systems Sci. 9 (1978), 613–626.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Dubois and H. Prade, Fuzzy real algebra: some results, Fuzzy Sets and Systems 2 (1979), 327–348.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979), 205–230.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. E. Gantner, R. C. Steinlage, and R. H. Warren, Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), 547–562.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Goetschel, Jr. and W. Voxman, Topological properties of fuzzy numbers, Fuzzy Sets and Systems 10 (1983), 87–99.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. A. Goguen, The fuzzy Tychonoff Theorem, J. Math. Anal. Appl. 43 (1973), 734–742.

    Article  MathSciNet  MATH  Google Scholar 

  7. U. Höhle, Probabilitische Metriken auf der Menge der nicht negativen Verteilungsfunktionen, Aequationes Mathematicae 18 (1978), 345–356.

    Article  MathSciNet  MATH  Google Scholar 

  8. U. Höhle and A. Šostak, Axiomatic foundations of fixed-basis fuzzy topology (Chapter 3 in this Volume).

    Google Scholar 

  9. B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl. 50 (1975), 74–79.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Hutton, Uniformities on fuzzy topological spaces, J. Math. Anal. Appl. 58 (1977), 559–571.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. J. Klein, α-Closure in fuzzy topology, Rocky Mount. J. Math. 11 (1981) 553–560.

    Article  MATH  Google Scholar 

  12. A. J. Klein, Generating fuzzy topologies with semi-closure operators, Fuzzy Sets and Systems 9 (1983), 267–274.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. J. Klein, Generalizing the L-fuzzy unit interval, Fuzzy Sets and Systems 12 (1984), 271–279.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Kotzé, Uniform spaces (Chapter 8 in this Volume).

    Google Scholar 

  15. W. Kotzé and T. Kubiak, Fuzzy topologies of Scott continuous functions and their relationship to the hypergraph functor, Quaestiones Mathemati-cae 15(1992), 175–187.

    Article  MATH  Google Scholar 

  16. W. Kotzé and T. Kubiak, Inserting L-fuzzy-valued functions, Mathematische Nachrichten 164(1993), 5–11.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Kubiak, Extending continuous L-real valued functions, Math. Japon 31(1986), 875–887.

    MathSciNet  MATH  Google Scholar 

  18. T. Kubiak, L-fuzzy normal spaces and Tietze Extension Theorem, J. Math. Anal. Appl. 125 (1987), 141–153.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Kubiak, The fuzzy unit interval and the Helly space, Math. Japonica 33 (1988), 253–259.

    MathSciNet  MATH  Google Scholar 

  20. T. Kubiak, The topological modification of the L-fuzzy unit interval, in: “Applications of Category Theory to Fuzzy Subsets”, S. E. Rodabaugh et al., editors, (Kluwer Academic Publishers, Dordrecht 1992).

    Google Scholar 

  21. T. Kubiak, On L-Tychonoff spaces, Fuzzy Sets and Systems 73(1995), 25–53.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Kubiak, Separation axioms: extension of mappings and embeddings of spaces (Chapter 6 in this Volume).

    Google Scholar 

  23. R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl. 64 (1978), 446–454.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Lowen, On (ℝ(L),⊕), Fuzzy Sets and Systems 10 (1983), 203–209.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. E. Rodabaugh, The Hausdorff separation axiom for fuzzy topological spaces, Topology and its Applications 11 (1980), 319–334.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. E. Rodabaugh, Fuzzy addition in the L-fuzzy real line, Fuzzy Sets and Systems 8 (1982), 39–51.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. E. Rodabaugh, Separation axioms and the L-fuzzy real lines, Fuzzy Sets and Systems 11 (1983), 163–183.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. E. Rodabaugh, Complete fuzzy topological hyperfields and fuzzy multiplication in the fuzzy real lines, Fuzzy Sets and Systems 15 (1985), 285–310.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. E. Rodabaugh, A theory of fuzzy uniformities with applications to the fuzzy real lines, J. Math. Anal. Appl. 129 (1988), 37–70.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. E. Rodabaugh, Dynamic topologies and their applications to crisp topologies, fuzzification of crisp topologies, and fuzzy topologies on the crisp real line, J. Math. Anal. Appl. 131 (1988), 25–66.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. E. Rodabaugh, Lowen, para-Lowen, and α-level functors and fuzzy topologies on the crisp real line, J. Math. Anal. Appl. 131 (1988), 157–169.

    Article  MathSciNet  MATH  Google Scholar 

  32. S. E. Rodabaugh, Point-set lattice-theoretic topology, Fuzzy Sets and Systems 40 (1991), 297–345.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. E. Rodabaugh, Categorical foundations of variable-basis fuzzy topology(Chapter 4 in this Volume).

    Google Scholar 

  34. S. E. Rodabaugh, Powerset operator foundations for poslat fuzzy set theories and topologies (Chapter 2 in this Volume).

    Google Scholar 

  35. S. E. Rodabaugh, Separation axioms: representation theorems, compactness, and compactifications (Chapter 7 in this Volume).

    Google Scholar 

  36. E. S. Santos, Topology versus fuzzy topology, Preprint, Youngstown State University (1977).

    Google Scholar 

  37. C. K. Wong, Fuzzy topology: product and quotient theorems, J. Math. Anal. Appl. 45 (1974), 512–521.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rodabaugh, S.E. (1999). Fuzzy Real Lines And Dual Real Lines As Poslat Topological, Uniform, And Metric Ordered Semirings With Unity. In: Höhle, U., Rodabaugh, S.E. (eds) Mathematics of Fuzzy Sets. The Handbooks of Fuzzy Sets Series, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5079-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5079-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7310-0

  • Online ISBN: 978-1-4615-5079-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics