Skip to main content

Molecular Biology of Transgenic Plants

  • Chapter
Molecular Biology of Plant Viruses

Abstract

Conventional plant breeding methods have been commonly used for introducing natural resistance genes into plants for controlling plant virus diseases. Introduction of one or more genes (transgene) from one to the other plant, which in many cases is not possible by conventional breeding methods because of sexual incompatibility, can also be done by plant transformation methods, based on DNA recombinant technology, to produce the transformed/transgenic plant. Such recombination techniques have proved very useful in several ways: they offer the possibility of genetic diversity, save time by avoiding cross-breeding, allow specific improvements in crops while preserving the desirable characteristics of an inbred line, and create novel types of resistance genes that do not occur in nature

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ares, X., Calamante, G., Cabral, S., Lodge, J., Hemenway, P., Beachy, R. N., and Mentaberry, A. (1998). Transgenic potato plants expressing potato virus X ORF2 protein (p24) are resistant to tobacco mosaic virus and Ob tobamoviruses. J. Virol. 72, 731–738.

    PubMed  CAS  Google Scholar 

  • Atreya, C. P., Raccah, B., and Pirone, T. P. (1990). A point mutation in the coat protein abolishes aphid virus transmissibility of a potyvirus. Virology 178, 161–165.

    Article  PubMed  CAS  Google Scholar 

  • Atreya, P. L., Atreya, C. D., and Pirone, T. P. (1991). Amino acid substitutions in coat protein result in loss of insect transmissibility of a plant virus. Proc. Natl. Acad. Sci. USA 88, 7887–7891.

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe, D. (1994). Novel strategies for engineering virus resistance in plants. Curr.Opinion Biotech. 5, 117–124.

    Article  CAS  Google Scholar 

  • Baulcombe, D. (1996). Mechanisms of pathogen-derived resistance to viruses in transgenic plants.Plant Ce11 8, 1833–1844.

    CAS  Google Scholar 

  • Bruening, G. M., and Falk, B. W. (1994). Risks in using transgenic plants? Response. Science 264, 1651–1652.

    Article  PubMed  CAS  Google Scholar 

  • Beachy, R. N. (1993). Transgenic resistance to plant viruses. Semin. Virol. 4, 327–416.

    Article  Google Scholar 

  • Beachy, R. N. (1997). Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr. Opin. Biotech. 8, 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Beck, D. L., Van Dolleweerd, C. J., Lough, T. J., Balmori, E., Voot, D., Andersen, M. T., O’Brien, I. E. M., and Forster, R. L. S. (1994). Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block. Proc. Natl. Acad. Sci. USA 91, 10310–10314.

    Article  PubMed  CAS  Google Scholar 

  • Bujarski, J. J., and Kaesberg, P. (1986). Genetic recombination between RNA components of a multipartite plant virus. Nature 321, 528–531.

    Article  PubMed  CAS  Google Scholar 

  • Bujarski, J. J., and Nagy, P. D. (1996). Different mechanisms of homologous and nonhomologous recombination in brome mosaic virus: Role of RNA sequences and replicase proteins. Semin. Virol. 7, 363–372.

    Article  CAS  Google Scholar 

  • Candelier-Harvey, P., and Hull, R. (1993). Cucumber mosaic virus genome is encapsidated in alfalfa mosaic virus coat protein expressed in transgenic tobacco plants. Transg. Res. 2, 277–285.

    Article  CAS  Google Scholar 

  • Chen, B., and Francki, R. I. B. (1990). Cucumovirus transmission by the aphid Myzus persicae is determined solely by the viral coat protein. J. Gen. Virol. 71, 939–944.

    Article  CAS  Google Scholar 

  • Cooper, B., Lapidot, M., Heick, J. A., Dodds, J. A., and Beachy, R. N. (1995). A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206, 307–313.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, J. I., Edwards, M. L, Rosenwasser, O., and Scott, N. W. (1994). Transgenic resistance genes from nepoviruses: Efficacy and other properties. New Zealand J. Crops & Hort. Sci. 22, 129–137.

    Article  CAS  Google Scholar 

  • de Zoeten, G. A. (1991). Risk assessment: Do we let history repeat itself? Phytopathology 81, 585–586.

    Google Scholar 

  • Dempsey, D. M. A., Silva, H., and Klessig, D. F. (1998). Engineering disease and pest resistance in plants. Trends Microbiol. 54, 54–61.

    Article  Google Scholar 

  • Dodds, J. A., and Hamilton, R. I. (1974). Masking of the RNA genome of tobacco mosaic viruses by the protein of barley stripe mosaic virus in doubly infected barley. Virology 59, 418–427.

    PubMed  CAS  Google Scholar 

  • Dodds, J. A. and Hamilton, R. I. (1976). Structural interactions between viruses as a consequence of mixed infections. Adv. Virus Res. 20, 33–86.

    Article  PubMed  CAS  Google Scholar 

  • Dolja, V. V., and Carrington, J. C. (1992). Evolution of positive-strand RNA viruses. Semin. Virol. 3, 315–326.

    CAS  Google Scholar 

  • Falk, B. W., and Bruening, G. (1994). Will transgenic crops generate new viruses and new diseases? Science 263, 1395–1396.

    Article  PubMed  CAS  Google Scholar 

  • Falk, B. W., and Duffs, J. E. (1981). Epidemiology of helper-dependent persistent aphid-transmitted virus complexes. In: “Plant Disease and Vectors: Ecology and Epidemiology” (K. Maramorosch and K.F. Harris, Eds.), pp. 162–181. Academic Press, New York.

    Google Scholar 

  • Falk, B. W., Passmore, B. K., Watson, M. T., and Chin, L.- S. (1995). T he specificity and significance of heterologous encapsidation of virus and virus-like RNAs. In “Biotechnology and Plant protection:Viral Pathogenesis and Disease Resistance” (D. D. Bills et al., Eds.), pp. 391–415. World Scientific, Singapore.

    Google Scholar 

  • Farinelli, L., Malnoe, L., and Collet, G. F. (1992). Heterologous encapsidation of potato virus Y strain O (PVY0), with the transgenic coat protein of PVY strain N (PVYN) in Solanum tuberosum cv.Bintje. Bio/Technology 10, 1020–1025.

    Article  CAS  Google Scholar 

  • Fitchen, J. H., and Beachy, R. N. (1993). Genetically engineered protection against viruses in transgenic plants. Annu. Rev. Microbiol. 47, 739–763.

    Article  PubMed  CAS  Google Scholar 

  • Frischmuth, T. A., and Stanley, J. (1994). Beet curly top virus symptom amelioration in Nicotiana benthamiana transformed with a naturally occurring viral subgenomic DNA. Virology 200, 826–830.

    Article  PubMed  CAS  Google Scholar 

  • Frischmuth, T., and Stanley, J. (1998). Recombination between viral DNA and the transgenic coat protein gene of African cassava mosaic geminivirus. J. Gen. Virol. 79, 1265–1271.

    PubMed  CAS  Google Scholar 

  • Fuchs, M., and Gonsalves, D. (1995). Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus2 to mixed infections by both potyviruses. Bio/Technology 13, 1466–1471

    Article  CAS  Google Scholar 

  • Gal, S., Pisan, B., Hohn, T., Grimsley, N., and Hohn, B. 1992. Agroinfection of transgenic plants leads to viable cauliflower mosaic virus by intermolecular recombination. Virology 187, 525–533.

    Article  PubMed  CAS  Google Scholar 

  • Gera, A., Deom, M., Donson, J., Shaw, J. J., Lewandowski, D. J., and Dawson, W. O. (1995). Tobacco mosaic tobamovirus does not require concomitant synthesis of movement protein during vascular transport. Mol. Plant Microbe Ineract. 8, 784–787.

    Article  CAS  Google Scholar 

  • Gibbs, M. (1994). Risks in using transgenic plants? Science 264, 1650–1651.

    Article  PubMed  CAS  Google Scholar 

  • Golemboski, D. B., Lomonossoff, G. D., and Zaitln, M. (1990). Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Natl. Acad. Sci. USA. 87, 6311–6315.

    Article  PubMed  CAS  Google Scholar 

  • Greene, A. E., and Allison, R. F. (1994). Recombination between viral RNA and transgenic plant transcripts. Science 263: 1423–1425.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, R. I. (1980). Defences triggered by previous invaders. In “Plant Disease: An Advanced Treatise. Vol. V.” (J.G. Horsfall and E.B. Cowling, Eds.), pp. 279–303. Academic Press, New York.

    Google Scholar 

  • Hanky-Bowdoin, L., Elmer, J. S., and Rogers, S. G. (1990). Expression of functional replication protein from tomato golden mosaic virus in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 87, 1446–1450.

    Article  Google Scholar 

  • Harris, P. S. (1998). Environmental and regularity aspects of using genetically transformed plants and micro-organisms. In “Comprehensive Potato Biotechnology” (S. M. Paul Khurana, R. Chandra, and M. D. Upadhya, Eds.), pp. 307–354. Malhotra Publ. House, New Delhi.

    Google Scholar 

  • Hemenway, C., Haley, L., Kaniewski, W. K., Lawson, E. C., Connell, O’Connell, K. M., Sanders, P. R., Thomas, P.E., and Tumer, N.E. (1990). Genetically engineered resistance: Transgenic plants. In “Plant Viruses. Vol. II. Pathology” (Mandahar, C. L., Ed.), pp. 347–363. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Holt, C. A., and Beachy, R. N. (1991). In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology 181, 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Hull, R. (1990). The use and misuse of viruses in cloning and expression in plants. In “Recognition and Response in Plant Virus Interactions” (Fraser, R. S. S., Ed.), pp. 443–457. NATO ASI, Vol. 441. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Hull, R. (1994). Risks in using transgenic plants. Science 264, 1649–1650.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, I. B., Shintaku, M. H., Li, Q., Zhang, L., Marsh, L. E., and Palukaitis, P. (1995).Complementation of virus movement in transgenic tobacco expressing the cucumber mosaic virus 3a gene. Virology 209, 188–199.

    Article  PubMed  CAS  Google Scholar 

  • Koonin, E. V., and Dolja, V.V. (1993). Evolution and taxonomy of positive-strand RNA viruses: Implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 28, 375–430.

    Article  PubMed  CAS  Google Scholar 

  • Lecoq, H., Ravelonandro, M., Wipf-Scheibel, C., Monsion, M., Raccah, B., and Dunez, J. (1993). Aphid transmission of a non-aphid-transmissible strain of zucchini yellow mosaic potyvirus from transgenic plants expressing the capsid protein of plum pox potyvirus. Mol. Plant-Microbe Interact. 6, 403–406.

    Article  CAS  Google Scholar 

  • Lindbo, J. A., and Dougherty, W. G. (1992a). Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189, 725–733.

    Article  CAS  Google Scholar 

  • Lindbo, J. A., and Dougherty, W. G. (1993b). Pathogen-derived resistance to a potyvirus. Immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol. Plant-Microbe Interact. 5, 144–153.

    Article  Google Scholar 

  • Lindbo, J. A., Silva-Rosales, L., and Dougherty, W. G. (1993a). Pathogen-derived resistance to potyviruses. Working but why? Semin. Virol. 4, 369–379.

    Article  CAS  Google Scholar 

  • Lindbo, J. A., Silva-Rosales, L., Proebsting, W. M., and Dougherty, W. G. (1993b). Induction of a highly specific antiviral state in transgenic plants. Implications for the regulation of gene expression and virus resistance. Plant Cell 5, 1749–1759.

    CAS  Google Scholar 

  • Lommel, S. A., and Xiong, Z. (1991). Reconstitution of a functional red clover necrotic mosaic virus by recombinational rescue of the cell-to-cell movement gene expressed in a transgenic plant. J. Cell. Biochem. 15 A, 151.

    Google Scholar 

  • Lomonossoff, G. P. (1992). Virus resistance mediated by a non-structural viral gene sequence. In “Transgenic Plants: Fundamentals and Applications” (A. Hiatt, Ed.). pp. 79–91. Marcel Dekker, New York.

    Google Scholar 

  • Lomonossoff, G. P. (1995). Pathogen-derived resistance to plant viruses. Annu.Rev. Phytopathol. 33, 323–343.

    Article  PubMed  CAS  Google Scholar 

  • Maiss, E., Koenig, R., and Lesemann, D. E. (1994). Heterologous encapsidation of viruses in transgenic plants and in mixed infections. In “Third International Symposium on the Biosafety Results of Field Tests of Genetically Modified Plants and Micro-organisms”, pp. 129–139. Univ. California Press, Oakland.

    Google Scholar 

  • Mandahar, C. L. (1990). Variability of plant viruses. In “Plant Viruses. Vol. II. Pathology” (C. L. Mandahar, Ed.), pp. 109–151. CRC, Press, Boca Raton, Florida.

    Google Scholar 

  • Nagy, P. D., and Simon, A. E. (1997). New insights into the mechanisms of RNA recombination. Virology 235, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Noris, E., Accotto, G. P., Tavazza, R., Brunetti, A., Crespi, S., and Tavazza, M. (1996). Resistance to tomato yellow leaf curl geminivirus in Nicotiana benthamiana plants transformed with a truncated viral C 1 gene. Virology 224, 130–138.

    Article  PubMed  CAS  Google Scholar 

  • Osboume, J. K., Sarkar, S., Wilson, T. M. A. (1990). Complementation of coat protein defective TMV mutants in transgenic tobacco plants expressing TMV coat protein. Virology 179, 92I-925.

    Google Scholar 

  • Palukaitis, P., and Zaitlin, M. (1997). Replicase mediated resistance to plant virus disease. Adv. Virus Res. 48, 349–377.

    Article  PubMed  CAS  Google Scholar 

  • Powell, P. A., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N. (1986). Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743.

    Article  Google Scholar 

  • Provvidenti, R., and Gonsalves, D. (1995). Inheritance of resistance to cucumber mosaic virus in a transgenic tomato line expressing the coat protein gene of the white leaf strain. J. Hered. 86, 85–88.

    CAS  Google Scholar 

  • Ratcliff, F., Harrison, B. D., and Baulcombe, D. C. (1997). A similarity between viral defence and gene silencing in plants. Science 276, 1558–1560.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, D. V. R., Murant, A. F., and Ducan, G. H. (1985). Viruses associated with chlorotic rosette and green rosette disease of groundnut in Nigeria. Ann. Appl. Biol. 107, 57–64.

    Article  Google Scholar 

  • Rochow, W. F. (1977). Dependent virus transmission from mixed infections. In. “Aphids as Virus Vectors” (K. F. Harris and K. Maramarosch, Eds.), pp. 253–273. Academic Press, New York.

    Google Scholar 

  • Sanford, J. C., and Johnston, S. A. (1985). The concept of parasite-derived resistance ¨C deriving resistance genes from the parasite’s own genome. J. Theorm. Biol. 113, 395–405.

    Article  Google Scholar 

  • Santa Cruz, S., and Baulcombe, D. (1995). Analysis of potato virus X coat protein genes in relation to resistance conferred by the genes Nx, Nb,and Rxl of potato. J. Gen. Virol. 76, 2057–2061.

    Article  Google Scholar 

  • Schoelz, J. E., and Wintermantel, W. M. (1993). Expansion of viral host range through complementation and recombination in transgenic plants. Plant Cell 5, 1669–1679.

    PubMed  CAS  Google Scholar 

  • Schoelz, J. E., and Wintermantel, W. M. (1996). Isolation of recombination viruses between cauliflower mosaic virus and a viral gene in transgenic plants under conditions of moderate selection pressure. Virology 223, 156–164.

    Article  PubMed  Google Scholar 

  • Schoelz, J. E., Goldberg, K.-B., and Kiernan, J. (1991). Expression of cauliflower mosaic virus (CaMV) gene VI in transgenic Nicotiana bigelovii complements a strain of CaMV defective in long-distance movement in non-transformed N. bigelovii. Mol.Plant-Microbe Interact. 4, 350–355.

    Article  CAS  Google Scholar 

  • Simon, A. E., and Bujarski, J. J. (1994). RNA-RNA recombination and evolution in virus infected plants. Annu. Rev. Phytopathol. 32, 337–362.

    Article  CAS  Google Scholar 

  • Tacke, E., Salamini, F., and Rohde, W. (1996). Genetic engineering of potato for broad-spectrum protection against virus infection. Nature Biotechnol. 14, 1597–1601.

    Article  CAS  Google Scholar 

  • Tepfer, M. (1993). Viral genes and transgenic plants. What are potential environmental risks? Bio/Technology 11, 1125–1132.

    Article  CAS  Google Scholar 

  • Tricoli, D. M., Carney, K. J., Russell, P. F., McMaster, J. R., Groff, D. W., Hadden, K. C., Himmel, P. T., Hubbard, J. P., Boeshore, M. L., and Quemada, H. D. (1995). Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus 2 and zucchini yellow mosaic vi rus. Bio/Technology 13, 1458–1465.

    Article  CAS  Google Scholar 

  • Van Dun, C. M. P., van Vloten-Doting, L., and Bol. J. F. (1988). Expression of alfalfa mosaic virus eDNA I and 2 in transgenic tobacco plants. Virology 163, 572–578.

    Article  PubMed  Google Scholar 

  • Valkonen, J. P. T., Koivu, K., Slack, S. A., and Pehu, E. (1995). Modified resistance of Solanum brevidens to potato Y potyvirus and tobacco mosaic tobamovirus following genetic transformation and explant regeneration. Plant Sci. (Limerick) 106, 71–79.

    Article  CAS  Google Scholar 

  • Vance, V. B., Berger, P. H., Carrington, J. C., Hunt, A. G., and Shi, X. M. (1995). 5’ proximal potyviral sequences mediate potato virus X/potyviral synergistic disease in transgenic tobacco. Virology 206, 583–590.

    Article  PubMed  CAS  Google Scholar 

  • Wassenegger, M., Heimes, S., and Sanger, H. L. (1994). An infectious viroid RNA replicon evolved from an in vitro generated non-infectious viroid deletion mutant via a complementary deletion in vivo. EMBO J. 13, 6172–6177.

    PubMed  CAS  Google Scholar 

  • Wintermantel, W. M., and Schoelz, J. E. (1996). Isolation of recombination viruses between cauliflower mosaic virus and a viral gene in transgenic plants under conditions of moderate selection pressure. Virology 223, 156–164.

    Article  PubMed  CAS  Google Scholar 

  • Zaitlin, M., Anderson, T. M., Perry, K. L., Zhang, L., and Palukaitis, P. (1994). Specificity of replicase-mediated resistance to cucumber mosaic virus. Virology 291, 200–205.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mandahar, C.L. (1999). Molecular Biology of Transgenic Plants. In: Mandahar, C.L. (eds) Molecular Biology of Plant Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5063-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5063-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7302-5

  • Online ISBN: 978-1-4615-5063-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics