Ocular Regulation of the Human Pineal Gland: the Significance of Total Retinal Exposure for Melatonin Suppression

  • Jenny Y. Wang
  • John P. Hanifin
  • Mark D. Rollag
  • George C. Brainard


It is known that two systems exist for processing light detected by the retina. The visual system serves to process images, while nonvisual photic information is used primarily for regulating circadian rhythms. Both anatomical and physiological studies suggest that these systems use separate neural pathways with a small degree of overlap. While the visual neuroanatomy and neurophysiology has been fairly well established, the circadian pathways and physiology are less understood. It is known that the circadian pathway involves the relay of information from the retina directly through the retinohypothalamic tract (RHT) to the suprachiasmatic nucleus (SCN), and indirectly by way of a projection to the thalamic intergeniculate leaflets which then project back to the SCN. [1, 2, 3] Ultimately, information about light is relayed from the SCN to the pineal gland by way of a multisynaptic pathway. Signals from the retina and associated circadian neuroantomy are responsible for the photic regulation of melatonin biosynthesis and secretion in the pineal gland. [2]


Pineal Gland Melatonin Level Spatial Summation Seasonal Affective Disorder Jefferson Medical College 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moore, R. Y. and N. J. Lenn 1972. A retinohypothalamic projection in the rat.J. Comp. Neurol 146:1–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Klein, D. C., R. Y. Moore and S. M. Reppert, eds., 1991. Suprachiasmatic Nucleus: The Mind’s Clock. Oxford:Oxford University Press, 5–456.Google Scholar
  3. 3.
    Moore, R. Y., J. C. Speh and J. P. Card 1995. The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J. Comp. Neurol. 352:351–366.PubMedCrossRefGoogle Scholar
  4. 4.
    Soni, B. G., A. R. Philp, R. G. Foster and B. E. Knox 1998. Novel retinal photoreceptors. Nature 394:27–28.PubMedCrossRefGoogle Scholar
  5. 5.
    Brainard, G. C., M. D. Rollag and J. P. Hanifin 1997. Photic regulation of melatonin in humans: ocular and neural signal transduction. J Biol. Rhythms 12:537–546.PubMedCrossRefGoogle Scholar
  6. 6.
    Webb, S. M., T. H. Champney, A. K. Lewinski and R. J. Reiter 1985. Photoreceptor damage and eye pigmentation: influence on the sensitivity of rat pineal N-acetyltransferase activity and melatonin levels to light at night. Neuroendocrinology 40:205–209.PubMedCrossRefGoogle Scholar
  7. 7.
    Foster, R. G., I. Provencio, D. Hudson, S. Fiske, W. DeGrip and M. Menaker 1991. Circadian photoreception in the retinally degenerate mouse (rd/rd). J. Comp. Physiol. [A] 169:39–50.Google Scholar
  8. 8.
    Provencio, I. and R. G. Foster 1995. Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res. 694:183–190.PubMedCrossRefGoogle Scholar
  9. 9.
    Czeisler, C. A., T. L. Shanahan, E. B. Klerman, H. Martens, D. J. Brotman, J. S. Emens, T. Klein and J. F. Rizzo, III 1995. Suppression of melatonin secretion in some blind patients by exposure to bright light. N. Engl. J. Med. 332:6–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Ruberg, F. L., D. J. Skene, J. P. Hanifin, M. D. Rollag, J. English, J. Arendt and G. C. Brainard 1996. Melatonin regulation in humans with color vision deficiencies. J. Clin. Endocrinol. Metab. 81:2980–2985.PubMedCrossRefGoogle Scholar
  11. 11.
    Minneman, K. P., H. Lynch and R. J. Wurtman 1974. Relationship between environmental light intensity and retina-mediated suppression of rat pineal serotonin-Nacetyltransferase. Life Sci. 15:1791–1796.PubMedCrossRefGoogle Scholar
  12. 12.
    Brainard, G. C., B. A. Richardson, T. S. King, S. A. Matthews and R. J. Reiter 1983. The suppression of pineal melatonin content and N-acetyltransferase activity by different light i rradiances in the Syrian hamster: a dose-response relationship. Endocrinology 113:293–296.PubMedCrossRefGoogle Scholar
  13. 13.
    Brainard, G. C., A. J. Lewy, M. Menaker, L. S. Miller, R. H. Fredrickson, R. G. Weleber, V. Casson and D. Hudson 1988. Dose-response relationship between light irradiance and the suppression of melatonin in human volunteers. Brain Res. 454:212–218.PubMedCrossRefGoogle Scholar
  14. 14.
    McIntyre, I. M., T. R. Norman, G. D. Burrows and S. M. Armstrong 1989. Human melatonin suppression by light is intensity dependent. J. Pineal Res. 6:149–156.PubMedCrossRefGoogle Scholar
  15. 15.
    Brainard, G. C., J. M. Greeson and J. P. Hanifin 1999. Action spectra for circadian and neuroendocrine regulation in mammals. In Proceedings of the 1998 International Symposium on Measurements of Optical Radiation Hazards, ICNIRP, in press.Google Scholar
  16. 16.
    Gaddy, J. R., M. Edelson, K. Stewart, G. C. Brainard and M. D. Rollag 1992. Possible retinal spatial summation in melatonin suppresion. In Biologic Effects of Light,M. F. Holick and A. M. Kligman, eds. New York: Walter de Gruyter & Co., 196–204.Google Scholar
  17. 17.
    Gaddy, J. R., F. L. Ruberg, G. C. Brainard and M. D. Rollag 1994. Pupillary modulation of light-induced melatonin suppression. In The Biologic Effects of Light M. F. Holick and E. G. Jung, eds. Berlin:Walter de Gruyter & Co., 159–168.Google Scholar
  18. 18.
    Rollag, M. D. and G. D. Niswender 1976. Radioimmunoassay of serum concentrations of melatonin in sheep exposed to different lighting regimens. Endocrinology 98:482–489.PubMedCrossRefGoogle Scholar
  19. 19.
    Gaddy, J. R., M. D. Rollag and G. C. Brainard 1993. Pupil size regulation of threshold of light-induced melatonin suppression.J Clin. Endocrinol. Metab. 77:1398–1401PubMedCrossRefGoogle Scholar
  20. 20.
    Adler, J. S., D. F. Kripke, R. T. Loving and S. L. Berga 1992. Peripheral vision suppression of melatonin. J Pineal Res. 12:49–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Lasko, T. A., D. F. Kripke and J. A. Elliott 1998. Melatonin suppression by illumination of upper and lower visual fields. J Biol. Rhythms, in press.Google Scholar
  22. 22.
    Visser, E. K., D. G. M. Beersma and S. Daan 1998. Melatonin suppression by light in humans is maximal when the nasal part of the retina is illuminated. J Biol. Rhythms, in press.Google Scholar
  23. 23.
    Wetterberg, L., ed., 1993. Light and Biological Rhythms in Man. Stockholm:Pergamon Press, 1–448.Google Scholar
  24. 24.
    Lam, R. W., ed., 1998. Seasonal Affective Disorder and Beyond: Light Treatment for SAD and Non-SAD Disorders. Washington, D.C.:American Psychiatric Press, 1–327.Google Scholar
  25. 25.
    Lockley, S. W., D. J. Skene, J. Arendt, H. Tabandeh, A. C. Bird and R. Defrace 1997. Relationship between melatonin rhythms and visual loss in the blind. J Clin. Endocrinol. Metab. 82:3763–3770.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Jenny Y. Wang
    • 1
    • 2
  • John P. Hanifin
    • 1
    • 2
  • Mark D. Rollag
    • 1
    • 2
  • George C. Brainard
    • 1
    • 2
  1. 1.Department of NeurologyJefferson Medical CollegePhiladelphiaUSA
  2. 2.Department of Anatomy, Uniformed ServicesUniversity of Health SciencesBethesdaUSA

Personalised recommendations