Skip to main content

Abstract

Platelets circulate in the blood stream as anucleate discoid cells, at a number of 150,000–350,000 per μl and have a life span of 10 days in man. They are involved in the early phase of the hemostatic process. When a blood vessel is damaged, platelets are exposed to subendothelial collagen. Together with von Willebrand factor (vWF) an activation process is started in which the platelets immediately adhere to the exposed collagen fibrils, change their shape from discs to spheres with long pseudopods and empty their granule contents (degranulation). Few seconds later more platelets are deposited on the collagen fibrils and the platelets are now also sticking to each other (platelet aggregation). A growing platelet plug is formed in the lesion of the vessel wall as more platelets aggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif AA. “Metabolism of phosphoinositides.” In: Handbook of Neurochemistry. Ed: A Lajtha. Plenum Publ Corp. (New York) pp 91–131, 1983.

    Google Scholar 

  • Abrams C, Shattil, SJ. Immunological detection of activated platelets in clinical disorders. Thromb Haemost 65: 467–473, 1991.

    CAS  Google Scholar 

  • Abrams CS, Wu H, Zhao W, Belmonte E, White D, Brass L. Pleckstrin inhibits phosphoinositide hydrolysis initiated by G-protein coupled and growth factor receptors-a role for pleckstrin PH domains. J Biol Chem 270: 14485–14492, 1995a

    Article  CAS  Google Scholar 

  • Abrams CS, Zhao W, Belmonte E, Brass LF. Protein kinase C regulates pleckstrin by phosphorylation of sites adjacent to the N-terminal pleckstrin homology domain. J Biol Chem 270: 23317–23321, 1995b.

    Article  CAS  Google Scholar 

  • Abrams CS, Zhang W, Downes CP, Tang X-W, Zhao W, Rttienhouse S. Phospho-pleckstrin inhibits Gβγ-activatible platelet phosphatidylinositol (4,5) bisphosphate-3-kinase. J Biol Chem 271: 25192–25197, 1996.

    Article  CAS  Google Scholar 

  • Aderem A. Signal transduction and the actin cytoskeleton: the roles of MARCKS and profilin. Trends Biochem Sci 17: 438–443, 1992.

    Article  CAS  Google Scholar 

  • Aken ML, Ginsberg MH, Plow EF. Mechanisms for expression of thrombospondin on the platelet cell surface. Semin Thromb Haemost 13: 307–316, 1987.

    Article  Google Scholar 

  • Akkerman JWN, Holmsen H, Loughnane M. Simultaneous measurement of aggregation, secretion, oxygen uptake, proton production, and intracellular metabolites in the same platelet suspension. Anal Biochem 97: 387–393, 1979.

    Article  CAS  Google Scholar 

  • Akkerman JWN, Holmsen H. Interrelationships among platelet responses: studies on the burst in proton liberation, lactate production and oxygen uptake during platelet aggregation and Ca2+ secretion. Blood 57: 956–966, 1981.

    CAS  Google Scholar 

  • Akkerman JWN, Verhoeven AJM. “Energy metabolism and fonction.” In: Platelet responses and metabolism, Vol III. Ed: H Holmsen. CRC Press (Boca Raton, FL), pp 69–99, 1987.

    Google Scholar 

  • Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J 4: 2868–2880, 1990.

    CAS  Google Scholar 

  • Amatruda TTI, Steele DA, Slepak VZ, Simon MI. Gαl6 a G protein α subunit specially expressed in hematopoietic cells. Proc Natl Acad Sci USA 88: 5587–5593, 1991.

    Article  CAS  Google Scholar 

  • Anderson NG, Maller JL, Tonks NK, Sturgill TW. Requirements for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 343: 651–653, 1990.

    Article  CAS  Google Scholar 

  • Ando B, Wiedmer T, Hamilton KK, Sims PJ. Complement proteins C5b-9 initiate secretion of platelet storage granules without increased binding of fibrinogen or von Willebrand Factor to newly expressed cell surface GPIIb-IIIa. J Biol Chem 263: 11907–11914, 1988.

    CAS  Google Scholar 

  • Armstrong RA, Jones RL, Wilson NH. Ligand binding to thromboxane receptors on human platelets: correlation with biological activity. Br J Pharmacol 79: 953–964, 1983.

    Article  CAS  Google Scholar 

  • Auethavekiat V, Abrams CS, Majerus PW. Phosphorylation of platelet pleckstrin activates inositol polyphosphate 5-phosphatase I. J Biol Chem 272: 1786–1790, 1997.

    Article  CAS  Google Scholar 

  • Baldassare JJ, Henderson PA, Burns D, Loomis C, Fisher GJ. Translocation of protein kinase C isoenzymes in thrombin-samulated human platelets. Correlation with 1,2-diacylglycerol levels. J Biol Chem 267, 15585–15590, 1992.

    CAS  Google Scholar 

  • Banno Y, Yada Y, Nozawa Y. Purification and characterization of membrane-bound phospholipase C specific for phosphoinositides from human platelets. J Biol Chem 263:11459–11465, 1988.

    CAS  Google Scholar 

  • Banno Y, Yu A, Nakasmma T, Homma Y, Takenava T, Nozawa Y. Purification and characterization of acytosolic phosphoinositide-phospholipase C (γ2-type) from human platelets. Biochem Biophys Res Commun 167: 396–401, 1990.

    Article  CAS  Google Scholar 

  • Banno Y, Nakashima T, Kumada T, Ebisawa K, Nonomura Y, Nozawa Y. Effects of gelsolin on human platelet cytosolic phosphoinositide-phospholipase C isozymes. J Biol Chem 267: 6488–6494, 1992.

    CAS  Google Scholar 

  • Banno Y, Nakashima T, Hashiya T, Nozawa Y. Endogenous cleavage of phospholipase C-β3 by agonist-induced activation of calpain in human platelets. J Biol Chem 270: 4318–4324, 1995.

    Article  CAS  Google Scholar 

  • Baumgartner HR, Tscopp TB, Meyer D. Shear rate dependent inhibition of platelet adhesion and aggregation on collagenous surfaces by antibodies to Factor VIII/von Willebrand factor. Br J Haematol 44: 127–139, 1980.

    Article  CAS  Google Scholar 

  • Bencxe-Marti K, Lapetina EG. Epinephrine suppresses rap 1B. GAP-activated GTPase activity in human platelets. Proc Natl Acad Sci USA 89: 2784–2788, 1992.

    Article  Google Scholar 

  • Berman CL, Ybo EL, Wencel-Drake JD, Furie BC, Ginsberg MH, Furie B. A platelet alphagranule membrane protein that is associated with the plasma membrane after activation: characterization and subcellular localization of platelet activation-dependent graule-external membrane protein. J Clin Invest 78: 130–137, 1986.

    Article  CAS  Google Scholar 

  • Berridgde MJ. Calcium oscillations. J Biol Chem 265: 9583–9586, 1990.

    Google Scholar 

  • Berrigde MJ. Inositol trisphosphate and calcium signalling. Nature 361, 315–317, 1993.

    Article  Google Scholar 

  • Bevers EM, Comfurius P, Zwaal RFA. Changes in membrane phospholipid distribution during platelet activation. Biochim Biophys Acta 736: 57–66, 1983.

    Article  CAS  Google Scholar 

  • Bevilacqua M, Butcher E, Furie B, Furie B, Gallatin M, Gimbrone M, Harlan J, Kishimoto K, Lasky L, Mcever R. Selectins: a family of adhesion receptors. Cell 67: 233, 1991.

    Article  CAS  Google Scholar 

  • Bevilacqua MP, Nelson RM. Selectin. J Clin Invest 91: 379–387, 1993.

    Article  CAS  Google Scholar 

  • Bhullar RP, Chardin P, Haslam RJ. Identification of multiple ral gene products in human platelets that account for some but not all of the platelet Ga proteins. FEBS Lett 260: 48–52, 1990.

    Article  CAS  Google Scholar 

  • Bischoff FP, Ponstingl H. Mitotic regulator protein RCC1 is complexed with a nuclear ras-related polypeptide. Proc Natl Acad Sci USA 88: 10831–10834, 1991.

    Article  Google Scholar 

  • Blaas P, Berger B, Weber S, Peter HH, Hänsch GM. Paroxysmal nocturnal hemoglobinuria. Enhanced stimulation of platelets by the terminal complement components is related to the lack of C8bp in the membrane. J Immunol 140: 3045–3051, 1988.

    CAS  Google Scholar 

  • Blake RA, Schieven GL, Watson SP. Collagen stimulates tyrosine phosphorylation of phospholipase C-gamma 2 but not phospholipase C-gamma 1 in human platelets. FEBS Lett 353: 212–216, 1994.

    Article  CAS  Google Scholar 

  • Blockmans D, Deckmyn H, Vermylen J. Platelet activation. Blood Rev 9: 143–156, 1995.

    Article  CAS  Google Scholar 

  • Boguski MS, Mccormick F. Proteins regulating Ras and its relatives. Nature 366: 643–654, 1993.

    Article  CAS  Google Scholar 

  • Bokoch GM, Der CJ. Emerging concepts in the ras superfamily of GTP-binding proteins. FASEB J7: 750–759, 1993.

    Google Scholar 

  • Bonne C, Martin B, Watada M, Regnault F. The antagonism of prostaglandins I2, E1 and D2 by prostaglandin E2 in human platelets. Thromb Res 21: 13–22, 1981.

    Article  CAS  Google Scholar 

  • Bootman MD, Berridgde MJ. The elemental principles of calcium signalling. Cell 83: 675–678, 1995.

    Article  CAS  Google Scholar 

  • Borsch-Haubold AG, Kramer RM, Watson SP. Cytosolic phospholipase A2 is phosphorylated in collagen-and thrombin-stimulated human platelets independent of protein kinase C and mitogen-activated protein kinase. J Biol Chem 270: 25885–25892, 1995.

    Article  CAS  Google Scholar 

  • Bowen R, Haslam RJ. Effects of nitrovasodilators on platelet cyclic nucleotide levels in rabbit blood: role for cyclic AMP in synergistic inhibition of platelet function by SIN-1 and prostaglandin El. J Cardiovasc Pharmacol 17: 424–433, 1991.

    Article  CAS  Google Scholar 

  • Brass LF, Laposata M, Banga HS, Rittenhouse SE. Regulation of the phosphoinositide hydrolysis pathway in thrombin-stimulated platelets by pertussis toxin-sensitive guanine nucleotide-binding protein: Evaluation of its contribution to platelet activation and comparisons with the adenylate cyclase inhibitory protein, G1. J Biol Chem 261: 16838–16847, 1986.

    CAS  Google Scholar 

  • Brass LF, Hoxie JA, Manning DR. Signalling through G proteins and G protein-coupled receptors during platelet activation. Thromb Haemost 70: 217–223, 1993.

    CAS  Google Scholar 

  • Brass LF. “Molecular basis for platelet activation.” In: Hematology: basic principles and practice. 2nd ed. Ed: R. Hoffman. Churchill Livingstone (New York), pp 1536–1552, 1995.

    Google Scholar 

  • Brass LF, Manning DR, Cishowski K, Abrams CS. Signalling through G proteins in platelets: to the integrals and beyond. Thromb Haemost 78 581–589, 1997.

    CAS  Google Scholar 

  • Burch RM, Mais DE, Saussy DL Jr, Halushka PV. Solubilization of a thromboxane A2/prostaglandin H2 antagonist binding site from human platelets. Proc Natl Acad Sci USA 82: 7434–7438, 1985.

    Article  CAS  Google Scholar 

  • Bustelo XR, Ledbetier JA, Barbacid M. Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature 356: 68–71, 1992.

    Article  CAS  Google Scholar 

  • Butt E, Walter U. Platelets: a practical approach. Eds: Watson SP & Authi KS. IRL Press (Oxford, UK), 1996.

    Google Scholar 

  • Butt E, Abel K, Krieger M, Palm D, Hoppe V, Hoppe J, Walter U. CAMP-and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 269: 14509–14517, 1994.

    CAS  Google Scholar 

  • Capitanio AM, Niewiarowski S, Rucinski B, Tuszynski GP, Cierniewski CS, Hershock D, Kornecki E. Interaction of platelet factor 4 with human platelets. Biochim Biophys Acta 839: 161–173, 1985.

    Article  CAS  Google Scholar 

  • Carlson KE, Brass LF, Manning DR. Thrombin and phorbol esters cause the selective phosphorylation of a G protein other than Gi in human platelets. J Biol Chem 264: 13298–13305, 1989.

    CAS  Google Scholar 

  • Carty DJ, Padrell E, Codina J, Birnbaumer L, Hildenbrandt JD, Iyengar RJ. Distinct guanine nucleotide binding and release properties of the three Gi proteins. J Biol Chem 265: 6268–6273, 1990.

    CAS  Google Scholar 

  • Casey PJ. Lipid modifications of G proteins. Curr Opinion in Cell Biol 6: 219–225, 1994.

    Article  CAS  Google Scholar 

  • Casey PJ. Protein lipidation in cell signalling. Science 268: 221–225, 1995.

    Article  CAS  Google Scholar 

  • Castle AG, Crawford N. Platelet microtubule subunit proteins. Thromb Haemostas 42: 1630–1633, 1979.

    Google Scholar 

  • Cavallini L, Coassin M, Borean A, Alexandre A. J Biol Chem 271: 5541–5551, 1996.

    Google Scholar 

  • Chang N-S, Leu RW, Rummage JA, Anderson JK, Mole JE. Regulation of complement functional efficiency by histidine-rich glycoprotein. Blood 79: 2973–2980, 1992.

    CAS  Google Scholar 

  • Chao W, Olson MS. Platelet-activating factor: receptors and signal transduction. Biochem J 292: 617–629, 1993.

    CAS  Google Scholar 

  • Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM. The mammalian G protein rhoC is ADP ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J 8: 1087–1092, 1988.

    Google Scholar 

  • Chen JW, Murphy TL, Willingham MC, Pastan I, August JT. Identification of two lysosomal membrane glycoproteins. J Cell Biol 101: 85–95, 1985.

    Article  CAS  Google Scholar 

  • Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79: 507–513, 1994.

    Article  CAS  Google Scholar 

  • Cichowski K, McCormick F, Brugge JS. p21DGAP association with Fyn, Lyn and Yes in thrombinactivated platelets. J Biol Chem 267: 5025–5028, 1992.

    CAS  Google Scholar 

  • Cichowski K, Brugge JS, Brass LF. Thrombin receptor activation and integrin engagement stimulate tyrosine phosphorylation of the proto-oncogene product, p95vav, in platelets. J Biol Chem 271: 7544–7550, 1996.

    Article  CAS  Google Scholar 

  • Clapham DE, Neer EJ. New roles for G-protein βγ-dimers in transmembrane signalling. Nature 365: 403–406, 1993.

    Article  CAS  Google Scholar 

  • Clark EA, Shatttil SJ, Ginsberg MH, Bolen J, Brugge JS. Regulation of the protein tyrosine kinase pp72syk by platelet agonists and the integrin αIbβ3. J Biol Chem 269: 28859–28864, 1994a.

    CAS  Google Scholar 

  • Clark EA, Brugge JS. Regulation of protein tyrosine kinases in platelets. Trends Biochem Sci 19: 464–469, 1994b.

    Article  CAS  Google Scholar 

  • Clark EA, Brugge JS. Integrins and signaltransduction pathways: the road taken. Science 268: 233–239, 1995.

    Article  CAS  Google Scholar 

  • Cobb MH, Goldsmith EJ. How MAP kinases are regulated. J Biol Chem 270: 14843–14846, 1995.

    Article  CAS  Google Scholar 

  • Cockcroft S, Thomas GMH: Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J. 288: 1–9, 1992.

    CAS  Google Scholar 

  • Cohen GB, Ren R, Baltimore D. Modular Binding Domains in Signal Transduction Proteins. Cell 80: 237–248, 1995.

    Article  CAS  Google Scholar 

  • Cohen I, Gerrard JM, White JG. Ultrastructure of clots during isometric contraction. J Cell Biol 93: 775–787, 1982.

    Article  CAS  Google Scholar 

  • Coller BS. Platelets and thrombolytic therapy. N Engl J Med 322: 33–42, 1990.

    Article  CAS  Google Scholar 

  • Conti MA, Adelstein RS. Phosphorylation by cyclic adenosine 3’,5’-monophosphate-dependent protein kinase regulates myosin light chain kinase. Fed Proc 39: 1569–1573 1980.

    CAS  Google Scholar 

  • Cooper B, Ahern D. Characterization of the platelet PGD2 receptor. Loss of PGD2 receptors in platelets with myeloproliferative disorders. J Clin Invest 64: 586–590, 1979.

    Article  CAS  Google Scholar 

  • Coppola J, Bryant S, Roda T, Conway D, Barbacid M. Mechanism of action of the vav protooncogene, Cell Growth Diffl 2: 95–105, 1991.

    CAS  Google Scholar 

  • Cox AD, Goodall AH. “Activation-specific neo-antigen on platelet detected by monoclonal antibodies.” In: Current Studies in Haematology and Blood Transfusion, Vol 58. Eds: Albertini A, Lenfant CL, Mannucci PM, Sixma JJ. (Karger, Basel), pp 194–199, 1991.

    Google Scholar 

  • Crespo P, Xu N, Simonds WF, Gutxind JS. Ras-dependent activation of MAP kinase pathway mediated by G-protein βγ subunits. Nature 369: 418–420, 1994.

    Article  CAS  Google Scholar 

  • Crespo P, Bustelo XR, Aaronson DS. Rac-1 dependent stimulation of the JNK/SAPK signaling pathway by Vav. Oncogene 13: 455–460, 1996.

    CAS  Google Scholar 

  • Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385: 169–172, 1997.

    Article  CAS  Google Scholar 

  • Cross MJ. Effect of fibrinogen on the aggregation of platelets by adenosine diphosphate. Thrombs Diath Haemorrh 12: 521, 1964.

    Google Scholar 

  • Dachary-Prigent J, Totif Satta N, Pasquet JM, Uzan A, Freyssinet JM. Physiopathological significance of catalytic phospholipids in the generation of thrombin. Semin Thromb Hemostas 22: 157–164, 1996.

    Article  CAS  Google Scholar 

  • Daniel JL, Mulish IR, Holmsen H. Myosin phosphorylation in intact platelets. J Biol Chem 256: 7510–7514, 1981.

    CAS  Google Scholar 

  • Daniel JL, Molish IR, Rigmaiden M, Steward G. Evidence for a role of myosin phosphorylation in the initiation of the platelet shape change response. J Biol Chem 259: 9826–9831, 1984.

    CAS  Google Scholar 

  • Daniel JL, Dangelmaier C, Jin J, Ashby B, Smith JB, Kunapuli SP. Molecular basis for ADP-induced platelet activation. I. Evidence for three distinct ADP receptors on human platelets. J Biol Chem 273: 2024–2029, 1998.

    Article  CAS  Google Scholar 

  • De-Caterina M, Strazzullo P, Iacone R, Pompeo F, Varriale V, Grimaldi E, Scopacasa F. Determination of the kinetics of Na+/H+ exchange in platelets using the Coulter S-plus cell counter. Eur J Clin Biochem 32: 57–60, 1994.

    CAS  Google Scholar 

  • De Chaffoy De Courcelles D, Roevens P, Belle H. Agents that elevate platelet cAMP stimulate the formation of phosphatidylinositol 4-phosphate in intact human platelets. FEBS Lett 195: 115–118, 1986.

    Article  Google Scholar 

  • De Chaffoy De Courcelles D, Roevens P, Belle H. Prostaglandin E1 and forskolin antagonize C-kinase activation in the human platelet. Biochem J 244: 93–99, 1987.

    Google Scholar 

  • Deckert M, Tartare-Deckert S, Couture C, Mustelin T, Altman A. Functional and physical interactions of Syk family kinases with the Vav proto-oncogene product. Immunity 5: 591–604, 1996.

    Article  CAS  Google Scholar 

  • De Marco L, Mazzucato M, Masotti A, Fenton JW, Ruggeri ZM. Function of glycoprotein Ibα in platelet activation induced by α-thrombin. J Biol Chem 266: 23776–23783, 1991.

    Google Scholar 

  • Derenleau DA, Luthy R, Luscher EF. Stochastic response of human platelets to stimulation of shape changes and secretion. Proc Natl Acad Sci USA 83: 2076–2080, 1986.

    Article  Google Scholar 

  • Derenleau DA. Blood platelet shape change ABCs. Trends Biochem Sci 12: 439–442, 1987.

    Article  Google Scholar 

  • Detwiler TC, Feinman RD. Kinetics of the thrombin-induced release of calcium (II) by platelets. Biochemistry 12: 282–289, 1973.

    Article  CAS  Google Scholar 

  • Devine DV, Rosse WF. Regulation of the activity of platelet-bound C3 convertase of the alternative pathway of complement by factor H. Proc Natl Acad Sci USA 84: 5873–5877, 1987.

    Article  CAS  Google Scholar 

  • DeVivo M, Iyengar R. G protein pathways: signal processing by effectors. Mol Cell Endocrinol 100: 65–70, 1994.

    Article  CAS  Google Scholar 

  • Dhar A, Shukla SD. Tyrosine kinases in platelet signalling. Br J Haematol 84: 1–7, 1993.

    Article  CAS  Google Scholar 

  • Dickeson SK, Walsh JJ, Santoro SA. Contributions of the I and EF hand domains to the divalent cationdependent collagen binding activity of the alpha2betal integrin. J Biol Chem 272: 7661–7668, 1997.

    Article  CAS  Google Scholar 

  • Dikic I, Tokiwa G, Lev S, Courtnedge SA, Schlessinger J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383: 547–550, 1996.

    Article  CAS  Google Scholar 

  • Downes CP, Carter AN. Phosphoinositide 3-kinase — A new effector in signal transduction. Cell Signal 3: 501–513, 1991.

    Article  CAS  Google Scholar 

  • Downward J. The ras superfamily of small GTP-binding proteins. Trends Biochem Sci 15: 469–472, 1990.

    Article  Google Scholar 

  • Downward J. “Role of phosphoinostide-3-OH kinase in ras signaling.” In: Signal Transduction in Health and Disease, Advances in Second Messenger and Phosphoprotein Research, Vol 31. Eds: J Corbin and S Francis. Lippincott-Raven Publishers (Philadelphia), 1997.

    Google Scholar 

  • Enouff J, Giraud F, Bredoux R, Bordeau N, Sarkadi B, Levy-Toledano S. Stimulation of the 23-Kd protein cAMP dependent phosphorylation by inositol 1,4,5 trisphosphate in human platelet membrane vesicles. Biochem Biophys Commun 145: 139–145, 1987.

    Article  Google Scholar 

  • Exton JH. Phosphoinositide phospholipases and G proteins in hormone action. Annu Rev Physiol 56: 349–369, 1994.

    Article  CAS  Google Scholar 

  • Febbraio M, Silverstein RL. Identification and characterization of LAMP-1 as an activation-dependent platelet surface glycoprotein. J Biol Chem 265: 18531–18537, 1990.

    CAS  Google Scholar 

  • Fisher TH, Gatling MN, Lacal JC, White GC. Rap 1B, a cAMP-dependent protein kinase substrate, associates with the platelet cytoskeleton. J Biol Chem 265: 19405–19408, 1990.

    Google Scholar 

  • Fitzgerald GA. Mechanisms of platelet activation: thromboxane A2 as an amplifying signal for other agonists. Am J Cardiol 68: 11B–15B, 1991.

    Article  CAS  Google Scholar 

  • Fox JEB, Boyles JK, Reynolds CC, Phillips DR. Actin filament content and organization in unstimulated platelets. J Cell Biol 98: 1985–1991, 1984.

    Article  CAS  Google Scholar 

  • Fox JEB. Linkage of a membrane skeleton to integral membrane glycoproteins in human platelets. Identification of one of the glycoproteins as glycoprotein Ib. J Clin Invest 75: 1673–1683, 1985.

    Article  Google Scholar 

  • Fox JEB, Lipfert L, Clark EA, Reynolds CC, Austin CD, Brugge JS. On the role of the platelet membrane skeleton in mediating signal transduction. J Biol Chem 268: 25973–25984, 1993a

    CAS  Google Scholar 

  • Fox JEB. The platelet cytoskeleton. Thromb Haemost 70: 884–893, 1993b

    CAS  Google Scholar 

  • Fox JEB. Platelet activation: New aspects. Haemostasis 26: 102–131, 1996.

    CAS  Google Scholar 

  • Frangioni JV, Oda A, Smith M, Salzman EW, Neel BG. Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO J 12. 4843–4856, 1993.

    CAS  Google Scholar 

  • Fredholmi BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M. Nomenclature and classification of purinoceptors. Pharmacol Rev 46: 143–156, 1994.

    Google Scholar 

  • Frølich KW, Aarbakke GM, Holmsen H. Chlorpromazine increases the turnover of metabolically active phosphoinositides and elevates the steady-state level of phosphatidylinositol-4-phosphate in human platelets. Biochem Pharmacol 44: 2013–2020, 1992.

    Article  Google Scholar 

  • Fujimoto T, Ohara S, Hawiger J. Thrombin-induced exposure and prostacyclin inhibition of the receptor for factor VIII/von Willebrand factor on human platelets. J Clin Invest 69: 1212–1222, 1982.

    Article  CAS  Google Scholar 

  • Fukami M, Holmsen H. Diacylglycerol elevations in control platelets are unaccompanied by pleckstrin phosphorylation. Implications for the role of diacylglycerol in platelet activation. Eur J Biochem 228: 579–586, 1995.

    Article  CAS  Google Scholar 

  • Fukuda M, Vntala J, Matteson J, Carlsson SR. Cloning of cDNAs encoding human lysosomal membrane glycoproteins, h-Lamp-1 and h-Lamp-2. Comparison of their deduced amino acid sequences. J Biol Chem 263: 18920–18928, 1988.

    CAS  Google Scholar 

  • Gaarder A, Jonsen J, Laland S, Hellem AJ, Owren P. Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. Nature 192: 531–532, 1961.

    Article  CAS  Google Scholar 

  • Gagn WA Manning DR Catani L Gerwirtz A Poncz M Brass LF Identification of G as a pertussis toxin-insensitive G protein in human platelets and megakaryocytes. Blood 781247–1253 1991

    CAS  Google Scholar 

  • Gartner IX, Ogilvie ML. Peptides and monoclonal antibodies which bind to platelet glycoproteins IIb and/or IIIa inhibit clot retraction. Thromb Res 49: 43–53, 1988.

    Article  CAS  Google Scholar 

  • Gemmel CH, Sefton MV, Yeo EL. Platelet-derived microparticle formation involves glycoprotein IIb-IIIa. J Biol Chem 268: 14586–14589, 1993.

    Google Scholar 

  • George PY, Helkamp Jr GM. Purification and characterization of a phosphatidylinositol transfer protein from human platelets. Biochim Biophys Acta 836: 176–184, 1985.

    Article  CAS  Google Scholar 

  • Gerhard JM, White JG, Peterson DA. The platelet dense tubular system: its relationship to prostaglandin synthesis and calcium flux. Thromb Haemost. 40: 224–231, 1978.

    Google Scholar 

  • Gerrard JM, Lint D, Sims PJ, Wiedmer T, Fugate RD, McMillan E, Robertson C, Israels SJ. Identification of a platelet dense granule membrane protein that is deficient in a patient with the Hermansky-Pudlak syndrome. Blood 77: 101–112, 1991.

    CAS  Google Scholar 

  • Gibbins J, Asselin J, Farndale R, Barnes M, Law CL, Watson SP. Tyrosine phosphorylation of the Fc receptor gamma-chain in collagen-stimulated platelets. J Biol Chem 271: 18095–18099, 1996.

    Article  CAS  Google Scholar 

  • Gilbert GE, Sims PJ, Wiedmer T, Furie B, Furie BC, Shatitl SJ. Platelet-derived microparticles express high affinity receptors for factor VIII. J Biol Chem 266: 17261–17268, 1991.

    CAS  Google Scholar 

  • Gilman AG. G proteins: transducers and receptor generated signals. Annu Rev Biochem 56: 615–623, 1987.

    Article  CAS  Google Scholar 

  • Golden A, Nemeth SP, Brugge JS. Blood platelets express high levels of the pp60c-src-specific tyrosine kinase activity. Proc Natl Acad Sci USA 83: 852–856, 1986.

    Article  CAS  Google Scholar 

  • Goldschmidt-Clermont PJ, Machesky LM, Baldassare JJ, Pollard TP. The actin-binding protein binds PIP2 and inhibits its hydrolysis by phospholipase C. Science 247: 1575–1578, 1990.

    Article  CAS  Google Scholar 

  • Goody RS. Signal transduction: How G proteins turn off. Nature 372: 220–221, 1994.

    Article  CAS  Google Scholar 

  • Grabarek J, Raychowdhury M, Ravid K. Identification and functional characterization of protein kinase C isoenzymes in platelets and HEL cells. J Biol Chem 267: 10011–10020, 1992.

    CAS  Google Scholar 

  • Graber SE, Hawiger J. Evidence that changes in platelet cyclic AMP levels regulate the fibrinogen receptor on human platelets. J Biol Chem 257: 14606–14609, 1982.

    CAS  Google Scholar 

  • Grand RJA, Turnell AS, Grabham PW. Cellular consequences of thrombin-receptor activation. Biochem J 313: 353–368, 1996.

    CAS  Google Scholar 

  • Grant JA, Scrutton MC. Novel alpha2-adrenoreceptors primarily responsible for inducing platelet aggregation. Nature 227: 659–661, 1979.

    Article  Google Scholar 

  • Grant PG, Decamp DL, Bailey JM, Colman RF, Colman RW. LOW-KM cyclic AMP phosphodiesterase from human platelets. Adv second Messenger Phosphoprotein Res 25: 73–85, 1992.

    CAS  Google Scholar 

  • Grondin P, Plantavid M, Sultan C, Breton M, Mauco G, Chap H. Interaction of pp60c-src, phospholipase C, Inositol-lipid, and diacylglycerol kinases with the cytoskeletons of thrombin-stimulated platelets. J Biol Chem 266: 15705–15709, 1991.

    CAS  Google Scholar 

  • Gryglewski RJ, Botting RM, Vane JR Mediators produced by the endothelial cell. Hypertension 12: 530–548, 1988.

    Article  CAS  Google Scholar 

  • Gryglewski RJ. Interactions between nitric oxide and prostacyclin. Seminars Thromb Heam 19: 158–166, 1993.

    Article  CAS  Google Scholar 

  • Halenda SP, Volpi M, Zavoico GB, Sha’afi RI, Feinstein MB. Effects of thrombin, phorbol myristate acetate and prostaglandin D2 on 40–41 kDa protein that is ADP ribosylated by pertussis toxin in human platelets. FEBS Lett 204: 341–346, 1986.

    Article  CAS  Google Scholar 

  • Hamberg M, Samuelsson B. Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA 71: 3400–3408, 1974.

    Article  CAS  Google Scholar 

  • Hammacher A, Hellman U, Johnsson A, Ostman A, Gunnarsson K, Westermark B, Wasteson Å, Heldin C-H. A major part of platelet-derived growth factor purified from human platelets is a heterodimer of one A and one B chain. J Biol Chem 263: 16493–16498, 1988.

    CAS  Google Scholar 

  • Hanahan DJ, Demopoulos CA, Lehr J, Pinkard RN. Identification of platelet activating factor isolated from rabbit basophils as glyceryl ether phosphorylcholine. J Biol Chem 255: 5514–5516, 1980.

    CAS  Google Scholar 

  • Hanasaki K, Arita H. Recent aspects of TXA2 action on platelets and blood vessels. Platelets 2: 69–76, 1991.

    Article  CAS  Google Scholar 

  • Hänsch GM, Gemsa D, Resch K. Induction of prostanoid synthesis in human platelets by the late complement components C5b-9 and the channel forming antibiotic nystatin: inhibition of the recyclation of liberated arachidonic acid. J Immunol 135: 1320–1324, 1986.

    Google Scholar 

  • Hänsch GM. The homologous species restriction of the complement attack: structure and function of the C8 binding protein. Curr Top Microbiol Immunol 140: 109–118, 1988.

    Article  Google Scholar 

  • Harlan JE, Hajduk PJ, Yoon HS, Fesik SW. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371: 168–170, 1994.

    Article  CAS  Google Scholar 

  • Harmon JT, Jamieson GA. Activation of platelets by alpha-thrombin is a receptor-mediated event. J Biol Chem 261, 15928–15933, 1986.

    CAS  Google Scholar 

  • Harris HE, Weeds A. Platelet actin: subcellular distribution and association with profilin. FEBS Lett 90: 84–88, 1978.

    Article  CAS  Google Scholar 

  • Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A, Stossel TP. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82: 643–653, 1995.

    Article  CAS  Google Scholar 

  • Hartwig JH, Barkalow K. Polyphosphoinositide synthesis and platelet shape change. Curr Opinion Hematology 4: 351–356, 1997.

    Article  CAS  Google Scholar 

  • Hart MJ, Eva A, Evans T, Aaronson SA, Cerione RA. Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature 354: 311–314, 1991.

    Article  CAS  Google Scholar 

  • Hart MJ, Eva A, Zangrilli D, Aaronson SA, Evans T, Cerione RA, Zheng Y. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J Biol Chem 269: 62–65, 1994.

    CAS  Google Scholar 

  • Haslam RJ, Lynham JA, Fox JEB. Effects of collagen, ionophore A23187 and prostaglandin E1 on the phosphorylation of specific proteins in blood platelets. Biochem J 178: 397–406, 1979.

    CAS  Google Scholar 

  • Haslam RJ, Salama SE, Fox JEB, Lynham JA, Davidson MML. Platelets: Cellular response mechanisms and their biological significance, J. Wiley & Sons (NY), 1980.

    Google Scholar 

  • Haslam RJ, Kolde BJ, Hemmings BA. Pleckstrin domain homology. Nature 363: 309–310, 1993.

    Article  CAS  Google Scholar 

  • Hattori R, Hamilton KK, Mcever RP, Sims PJ. Complement proteins C5-9 induce secretion of high molecular weight multimers of endothelial von Willebrand Factor and translocation of granule membrane protein GMP-140 to the cell surface. J Biol Chem 264: 9053–9060, 1989.

    CAS  Google Scholar 

  • Hawes BE, van Biesen T, Koch WJ, Luttrell LM, Lefkowitz RJ. Distinct pathways of Gi and Gq-mediated mitogen-activated protein kinase activation. J Biol Chem 270: 17148–17153, 1995.

    Article  CAS  Google Scholar 

  • Hawes BE, Luttrell LM, van Biesen T, Lefkowitz RJ. Phosphatidylinositol 3-kinase is an early intermediate in the Gβγ-mediated mitogen-activated protein kinase signalling pathway. J Biol Chem 271: 12133–12136, 1996.

    Article  CAS  Google Scholar 

  • Heemskerk JWM, Sage SO. Calcium signalling in platelets and other cells. Platelets 5: 295–316, 1994.

    Article  CAS  Google Scholar 

  • Henn V, Slupsky Jr, Gräfe M, Anagnostopoulos I, Förster R, Müller-Berghaus G, Kroczek RA. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391: 591–594, 1998.

    Article  CAS  Google Scholar 

  • Hoffman M, Monroe DM, Roberts HR. Coagulation factor IXa binding to activated platelets and plateletderived microparticles: a flow cytometric study. Thromb Haemost 68: 74–78, 1992.

    CAS  Google Scholar 

  • Holme R, Sixma JJ, Murer EH, Hovig T. Demonstration of platelet fibrinogen secretion via the surface connecting system. Thromb Res 3: 347–356, 1973.

    Article  Google Scholar 

  • Holme R, Sdcma JJ, Murer EH, Hovig T. Errata: Demonstration of platelet fibrinogen secretion via the surface connecting system. Thromb Res 4: 377–382, 1974.

    Article  CAS  Google Scholar 

  • Holmsen H, Day HJ. The selectivity of the thrombin-induced platelet release reaction: subcellular localization of released and retained constituents. J Clin Med 75: 840–855, 1970.

    CAS  Google Scholar 

  • Holmsen H, Setkowsky CA, Day HJ. Effects of antimycin and 2-deoxyglucose on adenine nucleotides in human platelets. Role of metabolic adenosine triphosphate in primary aggregation, secondary aggregation and shape change in platelets. Biochem J 144: 385–396, 1974.

    CAS  Google Scholar 

  • Holmsen H. Classification and possible mechanisms of action of drugs that inhibit platelet aggregation. Ser Haematol 8: 50–80, 1976.

    Google Scholar 

  • Holmsen H, Weiss HJ. Secretable storage pools in platelets. Annu Rev Med 30: 119–134, 1979.

    Article  CAS  Google Scholar 

  • Holmsen H, Kaplan KL, Dangelmaier CA. Differential energy requirements for platelet responses: a simultaneous study of aggregation, three secretory processes, arachidonate liberation, phosphatidylinositol breakdown and phosphatidate production. Biochem J 208: 9–18, 1982.

    CAS  Google Scholar 

  • Holmsen H. “Cyclic AMP-dependent protein kinases and protein kinase C.” In: Platelet responses and Metabolism. Response-Metabolism Relationships, Vol III Ed: H Holmsen. CRC Press (Boca Raton, FL), pp 51–68, 1987.

    Google Scholar 

  • Holmsen H, Tysnes OB, Verhoeven AJM. “Polyphosphoinositide metabolism in resting and stimulated platelets.” In: The platelet amine storage granule Eds. KM Meyers and CD Barnes. CRC Press (Boca Raton), pp 97–116, 1992.

    Google Scholar 

  • Horak ID, Corcoran ML, Thompson PA, Wahl LM, Bolen JB. Expression of p60fyn in human platelets. Oncogene 5: 597–602, 1990.

    CAS  Google Scholar 

  • Hordijk PL, Verlaan I, van Corven EJ, Moolenaar WH. Protein tyrosine phosphorylation induced by lysophosphatidic acid in rat-1 fibroblasts. Evidence that phosphorylation of MAP kinase is mediated by the Gip21Irs-pathway. J Biol Chem 269: 645–651, 1994.

    CAS  Google Scholar 

  • Horne WC, Norman NE, Schwartz DB, Simons ER. Changes in cytoplasmic pH and membrane potential in thrombin-stimulated human platelets. Eur J Biochem 120: 295–302, 1981.

    Article  CAS  Google Scholar 

  • Houle JJ, Leddy JP, Rosenfeld SI. Secretion of the terminal complement proteins, C5-C9, by human platelets. Clin Immunol Immunopathol 50: 385–393, 1989.

    Article  CAS  Google Scholar 

  • Houston DS, Shepherd JT, Vanhouette PM. Aggregating human platelets cause direct contraction and endothelium-dependent relaxation of isolated canine coronary arteries: role of serotonin, thromboxane A2 and adenine nucleotides. J Clin Invest 78: 539–544, 1986.

    Article  CAS  Google Scholar 

  • Hsu-Lin S, Berman CL, Furie BC, August D, Furie B. A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets. J Biol Chem 259: 9121–9126, 1984.

    CAS  Google Scholar 

  • Huang M-M, Bolen JB, Barnwell JW, Shattil SH, Brugge JS. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn and Yes protein tyrosine kinases in human platelets. Proc Natl Acad Sci USA 88: 7844–7848, 1991.

    Article  CAS  Google Scholar 

  • Huang M-M, Lipfert L, Cunningham M, Brugge JS, Ginsberg MH, Shattil SH. Adhesive ligand binding to integrin alpha IIb beta 3 stimulates tyrosine phosphorylation of novel protein substrates before phosphorylation of pp125FAK J Cell Biol. 122: 473–483, 1993.

    Article  CAS  Google Scholar 

  • Hung SC, Ghali NI, Venton DL, LE Breton GC. Specific binding of the thromboxane A2 antagonist 13-azaprostanoic acid to human platelet membranes. Biochem Biophys Acta 728: 171–178, 1983.

    Article  CAS  Google Scholar 

  • Hotteman E, Ukena D, Lenschow V, Schwabe U. Adenosine receptors in human platelets. Naunyn Schmieedebergs Arch Pharmacol 325: 226–233, 1984.

    Article  Google Scholar 

  • Imai A, Hattori H, Takahashi M, Nozawa Y. Evidence that cyclic AMP may regulate Ca2+-mobilization and phospholipases in thrombin-stimulated human platelets. Biochem Biophys Res Commun 112: 693–700; 1983.

    Article  CAS  Google Scholar 

  • Inaba K, Umeda Y, Yamana Y, Urakami M, Nada M. Characterization of human platelet vasopressininduced platelet aggregation and vasopressin binding to platelets. Clin Endocrinol 29: 377–386, 1988.

    Article  CAS  Google Scholar 

  • Inagaki M, Kawamoto S, Hidaka H. Serotonin secretion from human platelets may be modified by Ca2+-activated, phospholipid-dependent myosin phosphorylation. J Biol Chem 259: 14321–14323, 1984.

    CAS  Google Scholar 

  • I~arrea P, Gomez-Cambronero J, Nieto M, Sanchez Crespo M. Characteristics of the binding of platelet-activating factor to platelets of different animal species. Eur J Pharmacol 105: 309–315, 1984.

    Article  Google Scholar 

  • Inazu T, Taniguchi T, Yanagi S, Yamamura H. Protein-tyrosine phosphorylation and aggregation of intact human platelets by vanadate with H2O2. Biochem Biophys Res Commun 170: 259–263, 1990.

    Article  CAS  Google Scholar 

  • Inglesej Koch WJ, Touhara K, Lefkowitz RJ. G beta gamma interactions with PH domains and Ras-MAPK signaling pathways. Trends Biochem Sci 20: 151–156, 1995.

    Article  Google Scholar 

  • Ingley E, Hemmings BA. Plecksuin homology (PH) domains in signal transduction. J Cell Biochem 56: 436–443, 1994.

    Article  CAS  Google Scholar 

  • Isenberg WM, Bainton DF. “Megacarocyte and platelet structure.” In: Hematology: basic principles and practice, 2nd ed Ed: R Hoffman, Churchill Livingstone (New York), pp 1516, 1995.

    Google Scholar 

  • Israels S J, Gerrard JM, Jacques YV, McNicol A, Cham B, Nishbori M, Bainton DF. Platelet dense granule membranes contain both granulophysin and P-selectin (GMP-140). Blood 80: 143–152, 1992.

    CAS  Google Scholar 

  • Iwamoto S-I, Kawasaki T, Kambayashi J-I, Ariyoshi H, Monden M. Platelet microparticles: A carrier of platelet-activating factor? Biochem Biophys Res Commun 218: 940–944, 1996.

    Article  CAS  Google Scholar 

  • Janmey PA, Stossel TP. Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325: 362–364, 1987.

    Article  CAS  Google Scholar 

  • Janmey PA, Matsudaira PT. Functional comparison of villin and gelsolin. J Biol Chem 263: 16738–16743, 1988.

    CAS  Google Scholar 

  • Jensen BO, Holmsen H. Nitric oxide (NO)-platelet interactions: inhibition is independent of the prostanoid and ADP pathways. Platelets 6: 83–90, 1995.

    Article  CAS  Google Scholar 

  • Jin J, Daniel JL, Kunapuli SP. Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 273, 2030–2034, 1998.

    Article  CAS  Google Scholar 

  • Johansson JS, Nied LE, Haynes DH. Cyclic AMP stimulates Ca(2+)-ATPase-mediated Ca2+ extrusion from human platelets. Biochim Biophys Ada 1105. 19–28, 1992.

    Article  CAS  Google Scholar 

  • Jones TLZ, Simonds WF, Merendino JJ, Brann MR, Spiegel AM. Myristoylation of an inhibitory GTP-binding protein a subunit is essential for its membrane attachment Proc Natl Acad Sci 87: 568–572, 1990.

    Article  CAS  Google Scholar 

  • Jungi TW, Spücher MO, Nydegger UE, Barandun S. Platelet-leukocyte interaction: selective binding of thrombin-stimulated platelets to human monocytes, polymorphonuclear leukocytes and related cell lines. Blood 647: 629–636, 1986.

    Google Scholar 

  • Jy W, Horstman L, Wang F, Arce M, Mao WW, Ahn YS. Platelet factor 3 in plasma fractions: Its relation to microparticle size and thrombosis. Thromb Res 80: 471–482, 1995.

    Article  CAS  Google Scholar 

  • Kahn RA, Der CJ, Bokoch GM. The ras superfamily of GTP-binding proteins: Guidelines on nomenclature. FASEB J 6: 2512–1513, 1992.

    CAS  Google Scholar 

  • Kaibuchi K, Tarai Y, Sawamura M. Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J Biol Chem 258: 6701–6709, 1983.

    CAS  Google Scholar 

  • Kane WH, Davie EW. Blood coagulation factor V and VIII: Structural and functional similarities and their relationship to hemorrhagic and thrombotic disorders. Blood 71: 539–555, 1988.

    CAS  Google Scholar 

  • Kanoh H, Banno Y, Hirata M, Nozawa Y. Partial purification and characterization of phosphatidylinositol kinases from human platelets. Biochim Biophys Acta 1046: 120–126, 1990.

    Article  CAS  Google Scholar 

  • Kaplan DR, Chao FC, Stiles CD, Antoniades HN, Scher CD. Platelet alpha granules contain a growth factor for fibroblasts. Blood 53: 1043–1052, 1979.

    CAS  Google Scholar 

  • Kaplan KL, Broekman MJ, Chernoff A, Lesznik GR, Drillings M. Platelet alpha-granule proteins — studies on release and subcellular localization. Blood 53: 604–618, 1979.

    CAS  Google Scholar 

  • Karniguian A, Zahraoui A, Tavitian A. Identification of small GTP-binding rab proteins in human platelets: thrombin-induced phosphorylation of rab3B, rab6 and rab8 proteins. Proc Natl Acad Sci USA 90: 7647–7651, 1993.

    Article  CAS  Google Scholar 

  • Kaziro Y, Itoh H, Kozasa T, Nakafuku M, Satoh T. Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem 60: 349–400, 1991.

    Article  CAS  Google Scholar 

  • Keely P-J, Parise L-V. The alpha-2-beta-l integrin is a necessary co-receptor for collagen-induced activation of Syk and the subsequent phosphorylation of phospholipase C-gamma-2 in platelets. J Biol Chem 271: 26668–26676, 1996.

    Article  CAS  Google Scholar 

  • Kenney DM, Davis AE. Association of alternative complement pathway components with human blood platelets: secretion and localization of factor D and B1H globulin. Clin Immunol Immunopathol 21: 351–363, 1981.

    Article  CAS  Google Scholar 

  • Kim D, Lewis DL, Graziadei L. G-protein βγ-subunits activate the cardiac muscarinic K+ channel via phospholipase A2. Nature 337: 557–559, 1989.

    Article  CAS  Google Scholar 

  • Kinoshita T, Medof ME, Silber R, Nussenzweig V. Distribution of decay-accelerating factor in the periheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria. J Exp Med 162: 75–92, 1985.

    Article  CAS  Google Scholar 

  • Kitchens CS, Newcomb TF. Factor XIII. Medicine (Baltimore) 58: 413, 1979.

    CAS  Google Scholar 

  • Kloprogge E, Akkerman JWN. Binding kinetics of PAF-acether (l-O-alkyl-s-acetyl-sn-glycerol-3-phosphocholine) to intact platelets. Biochem J 223: 901–909, 1985.

    Google Scholar 

  • Kloprogge E, Mommersteg M, Akkerman JWN. Kinetics of platelet-activating factor l-O-alkyl-2-acetyl-sn-glycerol-3-phosphocholine-induced fibrinogen binding to human platelets. J Biol Chem 261: 11071–11076, 1986.

    CAS  Google Scholar 

  • Knight DE, Scrutton MC. Cyclic nucleotides control a system which regulates Ca2+ sensitivity of platelet secretion. Nature 309: 66–68, 1984.

    Article  CAS  Google Scholar 

  • Koch CA, Anderson D, Moran MF, Ellis C, Pawson T. SH2 and SH3 domains. Elements that control interactions of cytoplasmic signalling proteins. Science 252: 668–674, 1991.

    Article  CAS  Google Scholar 

  • Koerner TA, Cunningham MT, Zhang DS. The role of membrane lipid in the platelet storage lesion. Blood Cells 18: 481–497; discussion 498–500, 1992.

    Google Scholar 

  • Kometani M, Sato T, Fuji T. Platelet cytoskeletal components involved in shape change and secretion. Thromb Res 41: 801–810, 1986.

    Article  CAS  Google Scholar 

  • Kramer RM, Roberts EF, Hyslop PA, Utierback BG, Hui KY, Jakubowski JA. Differential activation of cytosolic phospholipase A2 (cPLA2) by thrombin and thrombin receptor agonist peptide in human platelets. J Biol Chem 270: 14816–14823, 1995.

    Article  CAS  Google Scholar 

  • Kucera GL, Rittenhouse SE. Human platelets form 3-phosphorylated phosphoinositides in response to_α-thrombin, U 46619 or GTPγS. J Biol Chem 265: 5345–5348, 1990.

    CAS  Google Scholar 

  • Lanza F, Beretz A, Stierle A, Hanau D, Kubina M, Cazenave JP. Epinephrine potentates human platelet activation but is not an aggregating agent. Am J Physiol 255: 1276–1288, 1988.

    Google Scholar 

  • Lapeitna EG, Reep B, Ganong BR, Bell RM. Exogenous sn-1,2-diacylglycerols containing saturated fatty acids function as bioregulators of protein kinase C in human platelets J Biol Chem 260: 1358–1365, 1985.

    Google Scholar 

  • Lapeitna EG, Reep B, Chang KJ. Treatment of human platelets with trypsin, thrombin or collagen inhibits the pertussis toxin-induced ADP-ribosylation of a 41-kDa protein. Proc Natl Acad Sci USA 83: 5880–5883, 1986a.

    Article  Google Scholar 

  • Lapetina EG. Incorporation of synthetic 1,2-diacylglycerol into platelet phosphatidylinositol is increased by cyclic AMP. FEBS Lett 195: 111–114, 1986b.

    Article  CAS  Google Scholar 

  • Lapetina EG, Lacal JC, Reep BR, Molina Y, Vedia L. A ras-related protein is phosphorylated and translocated by agonists that increase cAMP levels in human platelets. Proc Natl Acad Sci USA 86: 3131–3134, 1989.

    Article  CAS  Google Scholar 

  • Lassing I, Linderg U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314: 472–474, 1985.

    Article  CAS  Google Scholar 

  • Lassing I, Linderg U. Evidence that the phosphatidylinositol cycle is linked to cell motility. Exp Cell Res 174: 1–15, 1988.

    Article  CAS  Google Scholar 

  • Lassing I, Linderg U. Polyphosphoinositide synthesis in platelets stimulated with low concentrations of thrombin is enhanced before the activation of phospholipase C. FEBS Lett 262: 231–233, 1990.

    Article  CAS  Google Scholar 

  • Lebowitz EA, Cooke R. Contractile properties of actomyosin from human blood platelets. J Biol Chem 253: 5443–5447, 1978.

    CAS  Google Scholar 

  • Lerea KM, Glomset JA, Krebs EG. Agents that elevate cAMP levels in platelets decrease thrombin binding. J Biol Chem 262: 282–288; 1987.

    CAS  Google Scholar 

  • Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions. Nature 376: 739–744, 1995.

    Article  Google Scholar 

  • Li RY, Gatts F, Ragab A, Ragab-Thomas JMF, Chap H. Translocation of an SH2-containing protein tyrosine phosphatase (SH-PTP1) to the cytoskeleton of thrombin-activated platelets. FEBS Lett 343: 89–93, 1994.

    Article  CAS  Google Scholar 

  • Lin AH, Morton DR, Gorman RR. Acetyl glyceryl ether phosphorylcholine stimulates leukotriene B4 synthesis in human polymorphonuclear leukocytes. J Clin Invest 70: 1058–1065, 1982.

    Article  CAS  Google Scholar 

  • Linder ME, Mddelton P, Hepler JR, Taussig R, Gilman AG, Mumby SM. Lipid modification of G proteins: α subunits are palmitoylated. Proc Natl Acad Sci USA 90: 3675–3679, 1993.

    Article  CAS  Google Scholar 

  • Lipfert L, Haimovich B, Schaller MD, Cobb BS, Parsons JT, Brugge JS. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAk in platelets. J Cell Biol 119: 905–912, 1992.

    Article  CAS  Google Scholar 

  • Logotheis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325: 321–326, 1987.

    Article  Google Scholar 

  • Lopez-Ilasaca M, Crespo P, Pellici PG, Gutkind JS, Wetzker R. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science 275: 394–397, 1997.

    Article  CAS  Google Scholar 

  • López JA, Dong JF. Structure and function of the glycoprotein Ib-IX-V complex. Curr Opinion Hematol 4: 323–329, 1997.

    Article  Google Scholar 

  • Lowy DR, Willumsen BM. Function and regulation of ras. Annu rev Biochem 62: 851–891, 1993.

    Article  CAS  Google Scholar 

  • Lutirell LM, Hawes BE, van Biesen T, Luttrell DK, Lansing TJ, Lefkowitz RJ. Role of c-Src tyrosine kinase in G protein-coupled receptor-and Gβγ subunit-mediated activation of mitogen-activated protein kinases. J Biol Chem 271: 19443–19450, 1996.

    Article  Google Scholar 

  • Lynch JM, Henson PM. The intracellular retention of newly synthesized platelet-activating factor. J Immunol 137: 2653–2661, 1986.

    CAS  Google Scholar 

  • Macintyre DE, Armstrong RA. “Agonists and receptors: prostaglandins and thromboxanes.” In: Platelet Responses and Metabolism. Receptors and Metabolism, Vol II Ed. H Holmsen, CRC Press (Boca Raton FL), pp 93–103, 1987

    Google Scholar 

  • Mackenzie AB, Mahaut-Smith MP, Sage SO. Activation of receptor-operated cation channels via P2x1 not P2t purinoceptors in human platelets. J Biol Chem 271: 2879–2881, 1996.

    Article  CAS  Google Scholar 

  • Maclouf J, Fruteau DE, Laclos B, Borgeat P. Stimulation of leukotriene biosynthesis in human blood leukocytes by platelet-derived 12-hydroperoxyeicosatetraenoic acid. Proc Natl Acad Sci USA 79: 6042–6046, 1982.

    Article  CAS  Google Scholar 

  • Maclouf JA, Murphy RC. Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets: apotential source for leukotriene C4. J Biol Chem 263: 174–181, 1988.

    CAS  Google Scholar 

  • Madshus IH. Regulation of intracellular pH in eukaryotic cells. Biochem J 250: 1–8, 1988.

    CAS  Google Scholar 

  • Marcus AJ, Broekman MJ, Safier LB, Ullman HL, Islam N, Sherhan CN, Rutherford LE, Korchak HM, Weissmann G. Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro. Biochem Biophys Res Commun 109: 130–137, 1982.

    Article  CAS  Google Scholar 

  • Marcus AJ, Safer LB, Ullman HL. 12S-20-dihydroxyeicosatetraenoic acid: a new eicosanoid synthesized by neutrophils from 12S-hydroxyeicosatetraenoic acid produced by thrombin-or collagen-stimulated platelets. Proc Natl Acad Sci USA 81: 903–907, 1984.

    Article  CAS  Google Scholar 

  • Marcus AJ, Safer LB, Ullman HL. Platelet neutrophil interaction. J Biol Chem 263: 2223–2229, 1988.

    CAS  Google Scholar 

  • Marcus AJ, Safer LB, Hajjar KA. Inhibition of platelet function by an aspirin-insensitive endothelial cell ADPase: thromboregulation by endothelial cells. J Clin Invest 88: 1690–1696, 1991.

    Article  CAS  Google Scholar 

  • Margolis B, Hu P, Katzav S, Li W, Oliver JM, Ullrich A, Weiss A, Schlessinger J. Tyrosine phosphorylation of vav proto-oncogene product containing SH2 domain and transcription factor motifs. Nature 356: 71–74, 1992.

    Article  CAS  Google Scholar 

  • Markwardt F, Hoffman A. Effects of papaverine on cyclic AMP phosphodiesterase in human platelets. Biochem Pharmacol 19: 2519, 1970.

    Article  CAS  Google Scholar 

  • Mason RG, Zucker WH, Shimoda BA, Chuang HY, Kingdon HS, Clark HG. study of the reactions of blood with artificial surfaces. Use of the thrombogenerator. Lab Invest 31: 143–155, 1974.

    CAS  Google Scholar 

  • Matsumoto T, Beach D. Premature initiation of mitosis in yeast lacking RCC1 or an interacting GTPase. Cell 66, 347–360, 1991.

    Article  CAS  Google Scholar 

  • Mauco G, Dangelmaier CA, Smith JB. Inositol lipids, phosphatidate and diacylglycerol share stearoylarachidonoylglycerol as a common backbone in thrombin-stimulated human platelets. Biochem J 244: 933–940, 1984.

    Google Scholar 

  • Mauco G, Dajeans P, Chap H, Douste-Blazy L. Subcellular localization of inositol lipids in blood platelets as deduced from the use of labeled precursors. Biochem J 244: 757–761, 1987.

    CAS  Google Scholar 

  • Maurice DH, Haslam RJ. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol 37: 671–681, 1991.

    Google Scholar 

  • Markwardt F, Hoffman A. Effects of papaverine on cyclic AMP phosphodiesterase in human platelets. Biochem Pharmacol 19: 2519–2520, 1970.

    Article  CAS  Google Scholar 

  • Mayeeb J, Ren R, Clark KL, Baltimore DL. A putative modular domain present in diverse signalling proteins. Cell 73: 629–630, 1993.

    Article  Google Scholar 

  • McEver RP, Martin MN. A monoclonal antibody to a membrane glycoprotein binds only to activated platelets. J Biol Chem 259: 9799–9804, 1984.

    CAS  Google Scholar 

  • Mckean ML, Smith JB, Silver MJ. Formation of lysophosphatidylcholine by human platelets in response to thrombin. Support for the phospholipase A2 pathway for the liberation of arachidonic acid. J Biol Chem 156: 1522–1524, 1981.

    Google Scholar 

  • Mclean JR, Maxwell RE, Hertler D. Fibrinogen and adenosine diphosphate-induced aggregation of platelets. Nature 202: 605–606, 1964.

    Article  CAS  Google Scholar 

  • Mcmanama GP, Johnson PC, Salzman EW. “In vitro platelet responses: adhesion to artificial surfaces.” In: Platelet Responses and Metabolism, Vol I. Ed: H Holmsen. CRC Press (Boca Raton, FL), pp 63–79, 1986.

    Google Scholar 

  • Menche D, Israel A, Karpatkin K. Platelets and microtubules. Effect of colchicine and D2O on platelet aggregation and release induced by ionophore A23187. J Clin Invest 66: 284–291, 1980.

    Article  CAS  Google Scholar 

  • Meizelaar MJ, Heijnen HF, Sixma JJ, Nieuwenhuis HK. Identification of a 33-Kd protein associated with the alpha-granule membrane (GMP-33) that is expressed on the surface of activated platelets. Blood 79: 372–379, 1992.

    Google Scholar 

  • Miller OV, Johnson RA, Gorman RR. Inhibition of PGE1-stimulated cyclic AMP accumulation by thromboxane A2. Prostaglandins 13: 599–609, 1977.

    Article  CAS  Google Scholar 

  • Miller OV, Gorman RR. Evidence for distinct prostaglandin I2 and D2 receptors in human platelets. J Pharm Exp Ther 210: 134–140, 1979.

    CAS  Google Scholar 

  • Milligan G, Mullaney I, McCallum JF. Distribution and relative levels of expression of the phosphoinositidase-C-linked G-proteins G and G11α: Absence of G11α in human platelets and haemopoietically derived cell lines. Biochem Biophys Acta Mol Cell Res 1179: 208–212, 1993.

    Article  CAS  Google Scholar 

  • Milligan G, Parenti M, Magee AI. The dynamic role of palmitoylation in signal transduction. Trends Biochem Sci 20: 181–186, 1995.

    Article  CAS  Google Scholar 

  • Mills DCB, Robb IA, Roberts CCK. The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation. J Physiol 195: 715–729, 1968.

    CAS  Google Scholar 

  • Mills DCB, Smith JB. The influence on platelet aggregation of drugs that effect the accumulation of adenosine 3’,5’-cyclic monophosphate in platelets. Biochem J 121: 185–196, 1971.

    CAS  Google Scholar 

  • Mills DCB, Smtih JB. The control of platelet responsiveness by agents that influence cyclic AMP levels. Ann NY Acad Sci 201: 391–399, 1972.

    Article  CAS  Google Scholar 

  • Mills DCB. Changes in the adenylate energy charge in human blood platelets induced by adenosine diphosphate. Nature New Biol 243: 220, 1973.

    CAS  Google Scholar 

  • Mills DCB. “The mechanism of action of antiplatelet drugs.” In: Hemostasis and thrombosis. Eds: RW Colman, J Hirsh, VJ Marder, EW Salzman. JB Lippincott (Philadelphia) pp 1058–1067, 1982.

    Google Scholar 

  • Miyakawa Y, Oda A, Druker BJ, Ozaki K, Handa M, Ohashi H, Ikeda Y. Thrombopoietin and thrombin induce tyrosine phosphorylation of Vav in human blood platelets. Blood 89: 2789–2798, 1997.

    CAS  Google Scholar 

  • Miyazono K, Takaku F. Platelet-derived growth factors. Blood Rev 3. 269–276, 1989.

    Article  CAS  Google Scholar 

  • Monaco ME, Gershengorn MC. Subcellular organization of receptor-mediated phosphoinositide turnover. EndoocrineRev 13: 707–718, 1992.

    CAS  Google Scholar 

  • Moodie SA, Willumsen BM, Weber MJ, Wolfman A. Complexes of Ras-GTP with Raf-1 and mitogen-activated protein kinase. Science 260: 1658–1661, 1993.

    Article  CAS  Google Scholar 

  • Moore MS, Blobel G. The GTP binding protein ran/TC4 is required for protein import into the nucleus. Nature 365: 661–663, 1993.

    Article  CAS  Google Scholar 

  • Morii N, Teru-Uchi T, Tominaga T, Rumaci N, Kozaki S, Ushdcubi F, Narumiya S. A Rho gene product in human blood platelets. II. Effects of the ADP-ribosylation by botulinum C3 ADP-ribosyltransferase on platelet aggregation. J Biol Chem 267: 20921–20926, 1992.

    CAS  Google Scholar 

  • Moroi M, Jung SM. Platelet receptors for collagen. Thromb Haemost 78: 439–444, 1997.

    CAS  Google Scholar 

  • Mueller HW, Pritzker CR, Kubik A, Deykin D. Characterization of phospholipase A2 secretion from human platelets. Thromb Res 72: 519–530, 1993.

    Article  CAS  Google Scholar 

  • Musacchio A, Gibson T, Rice P, Thompson J, Saraste M. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem Sci 18: 343–348, 1993.

    Article  CAS  Google Scholar 

  • Nahas N, Plantavid M, Mauco G, Chap H. Association of phosphatidylinositol kinase and phosphatidylinositol 4-phosphate kinase activities with the human platelets. FEBS Lett 246: 30–34, 1989.

    Article  CAS  Google Scholar 

  • Naka M, Nishkawa M, Adelstein RS, Hidaka H. Phorbol ester-induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains. Nature 306: 490–492, 1983.

    Article  CAS  Google Scholar 

  • Nakashima S, Tohmatsu T, Hattori H, Okano Y, Nozawa Y. Inhibitory action of cyclic GMP on secretion, polyphosphoinositide hydrolysis and calcium mobilization in thrombin-stimulated human platelets. Biochem Biophys Res Commun 135: 1099–1104, 1986.

    Article  CAS  Google Scholar 

  • Nehr EJ. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80: 249–257, 1995.

    Article  Google Scholar 

  • Nemoto Y, Namba T, Teru-Uchi T, Ushikubi F, Morii N, Narumiya S. A rho gene product in human blood platelets. I. Identification of the platelet substrate for botulinum C3 ADP-ribosyltransferase as rhoA protein. J Biol Chem 267: 20916–20920, 1992.

    CAS  Google Scholar 

  • Nkholson-Weller A, Spicer DB, Austen KF. Deficiency of the complement regulatory protein, “decay-accelerating factor,” on membranes of granulocytes, monocytes, and platelets in paroxysmal nocturnal hemoglobinuria. N Engl J Med 312: 1091–1097, 1985a.

    Article  Google Scholar 

  • Nkholson-Weller A, March JP, Rosen CE, Spicer DB, Austen KF. Surface membrane expression by human blood leukocytes and platelets of decay-accelerating factor, a regulatory protein of the complement system. Blood 65: 1237–1244, 1985b.

    Google Scholar 

  • Nieuwenhub HK, van Oosterhout JJG, Rozemuller E, van Iwaarden F, Sixma JJ. Studies with amonoclonal antibody against activated platelets: Evidence that a secreted 53,000-molecular weight lysosomelike granule protein is exposed on the surface of activated platelets in the circulation. Blood 70: 838–845, 1987.

    Google Scholar 

  • Nieuwland R, Wijburg OLC, van Willigen G, Akkerman JWN. α2A adrenergic receptors activate protein kinase C in human platelets via a pertussis toxin-sensitive G-protein. FEBS Lett 339: 79–83, 1994.

    Article  CAS  Google Scholar 

  • Nishida E, Gotoh Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biol Sci 18: 128–131, 1993.

    Article  CAS  Google Scholar 

  • Nolte C, Eigenthaler M, Horstrup K, Hönig-Liedl P, Walter U. Synergistic phosphorylation of the focal adhesion-associated vasodilator-stimulated phosphoprotein in intact human platelets in response to cGMP-and cAMP-elevating platelet inhibitors. Biochem Pharmacol 48: 1569–1575, 1994.

    Article  CAS  Google Scholar 

  • Novick PJ, Brennwald P. Friends and family: the role of the rab GTPases in vesicular traffic. Cell 75, 597–602, 1993.

    Article  CAS  Google Scholar 

  • Nunez D, Charriaut-Marlangue C, Barel M, Benvenute J, Frade R. Activation of human platelets through gp140, the C3d/EBV receptor (CR2). Eur J Immunol 17: 515–520, 1987.

    Article  CAS  Google Scholar 

  • Nurden AT, Nurden P. A review of the role of platelet membrane glycoproteins in the platelet-vessel wall interaction. Baillière’s Clinical Haematology 6: 653–690, 1993.

    Article  CAS  Google Scholar 

  • Ohmori T, Kikuchi A, Yamamoto K, Kim K, Taxai Y. Small molecular weight GTP binding proteins in human platelet membranes. Purification and characterization of a novel GTP-binding protein with a molecular weight of 22.000. J Biol Chem 264: 1877–1881, 1989.

    CAS  Google Scholar 

  • Ohmstede C-A, Farell FX, Reep BR, Clemenson KJ, Lapetina EG. Rap2B: a ras-related GTP-binding protein from platelets. Proc Natl Acad Sci USA 87: 6527–6531, 1990.

    Article  CAS  Google Scholar 

  • O’Rourke F, Matthews E, Feinstein MB. Purification and characterization of the human type 1 Ins(l,4,5)P3 receptor from platelets and comparison with receptor subtypes in other normal and transformed blood cells. Biochem J 312: 499–503, 1995.

    Google Scholar 

  • Packham MA, Nisheawa E, Mustard JF. Response of platelets to tissue injury. Biochem Pharmacol 17: 171–184, 1968.

    Article  Google Scholar 

  • Painter RG, Prodouz KN, Gaarde W. Isolation of a subpopulation of glycoprotein IIbIIIa from platelet membranes that is bound to membrane actin. J Cell Biol 100: 652–657, 1985.

    Article  CAS  Google Scholar 

  • Palmer RMJ, Ferrige AG, Mocada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526, 1987.

    Article  CAS  Google Scholar 

  • Papkoff J, Chen R-H, Blenis J, Forsman J. p42 mitogen-activated protein kinase and p90 ribosomal S6 kinase are selectively phosphorylated and activated during thrombin-induced platelet activation and aggregation. Mol Cell Biol 14: 463–472, 1994.

    CAS  Google Scholar 

  • Peerschke EIB, Ghebrehiwet B. Human blood platelets possess specific binding sites for C1q. J Immunol 138: 1537–1541, 1986.

    Google Scholar 

  • Peerschke EIB, Ghebrehiewet B. Identification and partial characterization of human platelet C1q binding sites. J Immunol 141: 3505–3511, 1988.

    CAS  Google Scholar 

  • Peerschke EIB, Reid KBM, Ghebrehiwet B. Identification of a novel 33-kDa C1q-binding site on human blood platelets. J Immunol 152: 5896–5901, 1994.

    CAS  Google Scholar 

  • Pelech SL, Sanghera JS. MAP kinases: Charting the regulatory pathways. Science 257: 1355–1356, 1992.

    Article  CAS  Google Scholar 

  • Pletscher A. The 5-hydroxytryptamine system of blood platelets: physiology and pathophysiology. Int J Cardiol 14: 177–188, 1987.

    Article  CAS  Google Scholar 

  • Polaris PG, Weber RF, Nevtns B, Didsbury JR, Evans T, Snyderman RJ. Identification of the ral and racl gene products, low molecular mass GTP-binding proteins from human platelets. J Biol Chem 264: 16383–16389, 1989.

    Google Scholar 

  • Pollock WK, MacIntyre DE. Desensitization and antagonism of vasopressin-induced phosphoinositide metabolism and elevation of cytosolic free calcium. Biochem J 234: 67–73, 1986.

    CAS  Google Scholar 

  • Prescott SM, Majerus PW. The fatty acid composition of phosphatidylinositol from thrombin-stimulated human platelets. J Biol Chem 256: 579–582, 1981.

    CAS  Google Scholar 

  • Pribluda V, Rotman A. Dynamics of membrane-cytoskeleton interactions in activated blood platelets. Biochem J 21: 2825–2832, 1982.

    Article  CAS  Google Scholar 

  • Pronin AN, Gautam N. Interaction between G-protein β and γ subunit types is selective. Proc Natl Acad Sci USA 89: 6220–6224, 1992.

    Article  CAS  Google Scholar 

  • Pumglia KM, Lau L-F, Huang C-K, Burroughs S, Feinstein MB. Activation of signal transduction in platelets by the tyrosine phosphatase inhibitor pervanadate (vanadyl hydroperoxide). Biochem J 286: 441–449, 1992.

    Google Scholar 

  • Quinton TM, Dean WL. Cyclic AMP-dependent phosphorylation of the inositol-1.4.5-trisphosphate receptor inhibits Ca2+ release from platelet membranes. Biochem Biophys Commun 184: 893–899; 1992.

    Article  CAS  Google Scholar 

  • Quinton TM, Brown KD, Dean WL. Inositol 1.4.5-trisphosphate-mediated Ca2+ release from platelet internal membranes is regulated by differential phosphorylation. Biochemistry 35: 6865–6871; 1996.

    Article  CAS  Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S. The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun 148: 1482–1489, 1987.

    Article  CAS  Google Scholar 

  • Raja S, Avraham S, Avraham H. Tyrosine phosphorylation of the novel protein-tyrosine kinase RAFTK during an early phase of platelet activation by an integrin glycoprotein IIb-IIIa-independent mechanism. J Biol Chem 272: 10941–10947, 1997.

    Article  CAS  Google Scholar 

  • Rasmussen H, Isales CM, Calle R, Throckmorton D, Anderson M, Gasalla-Herraiz J, Mccarthy R. Diacylglycerol production, Ca2+ influx, and protein kinase C activation in sustained cellular responses. Endocrine Rev 16, 649–681, 1995.

    CAS  Google Scholar 

  • Rasmussen UB, Vouret-Craviari V, Jallat S, Schlesinger Y, Pagès G, Pavirani A, Lecocq J-P, Pousségur J, van Obberghen-Schilling E. CDNA cloning and expression of a hamster α-thrombin receptor coupled to Ca2+ mobilization. FEBS Lett 288: 123–128, 1991.

    Article  CAS  Google Scholar 

  • Ray K, Kunsch C, Bonner LM, Robishaw JD. Isolation of cDNA clones encoding eight different human G protein γ subunits, including three novel forms designated the γ4, γ 10 and γ 11 subunits. J Biol Chem 270: 21765–21771, 1995.

    Article  CAS  Google Scholar 

  • Reinhard M, Halbrügge M, Scheer U, Wiegand C, Jockusch BM, Walter U. The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J 11: 2063–2070, 1992.

    CAS  Google Scholar 

  • Ridley A, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesion and actin stress fibres in response to growth factors. Cell 70: 389–399, 1992a.

    Article  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekman D, Hall A. The small GTP binding protein rac regulates growth-factor-induced membrane ruffling. Cell 70: 401–410, 1992b.

    Article  CAS  Google Scholar 

  • Rink TJ, Sage SO. Calcium signalling in human platelets. Annu Rev Physiol 52: 431–349, 1990.

    Article  CAS  Google Scholar 

  • Rittenhouse SE, Horne WC. Ionomycin can elevate intraplatelet Ca2+ and activate phospholipase A2 without activating phospholipase C. Biochem Biophys Res Commun 123: 393–397, 1984.

    Article  CAS  Google Scholar 

  • Ritenhouse-Simmons SE. Production of diglyceride from phosphatidylinositol in activated platelets. J Clin Invest 63. 580–587, 1979.

    Article  Google Scholar 

  • Rittenhouse-Simmons S. Differential activation of platelet phospholipases by thrombin and ionophore A23187. J Biol Chem 256: 4153–4155, 1981.

    CAS  Google Scholar 

  • Romano M, Serhan CN. Lipoxin generation by permeabilized human platelet. Biochemistry 31: 8269–8277, 1992.

    Article  CAS  Google Scholar 

  • Rosenberg S, Stracker A, Lucas RC. Isolation and characterization of actin and actin-binding protein from human platelets. J Cell Biol 91: 201–211, 1981.

    Article  CAS  Google Scholar 

  • Rosenfeld SI, Ryan DH, Looney RJ, Anderson CL, Abraham GN, Leddy JP. Human Fcγ receptors: stable inter-donor variation in quantitative expression on platelets correlates with functional responses. J Immunology 138: 2869–2873, 1987.

    CAS  Google Scholar 

  • Ross EM. Protein modification: Palmitoylation in G-protein signalling pathways. Curr Biol 5: 107–109, 1995.

    Article  CAS  Google Scholar 

  • Ruan C, Tobelem G, McMichael AJ, Drouet L, Legrand Y, Degos L, Kieffer N, Lee H, Caen JP. Monoclonal antibody to human glycoprotein I: II Effects on human platelet function. Br J Haematol 49: 511–519, 1981.

    Article  CAS  Google Scholar 

  • Ruggeri ZM, Zimmerman TS. von Willebrand factor and von Willebrand disease. Blood 70: 895–904, 1987.

    CAS  Google Scholar 

  • Ryningen A, Holmsen H. Thrombin per se does not induce tyrosine phosphorylation in human platelets as judged by Western blotting, while collagen does: the significance of synergistic, autocrine stimulation. Biochem Biophys Res Commun. In Press, 1998.

    Google Scholar 

  • Salama SE, Haslam RJ. Characterization of the protein kinase activities of human platelet supernatant and particulate fractions. Biochem J 218: 285–294, 1984.

    CAS  Google Scholar 

  • Saltzman AG, Morse B, Whitman MM, Ivanschenko Y, Jaje M, Felder S. Cloning of the human serotonin 5-HT2 and 5-HT1C receptor subtypes. Biochem Biophys Res Commun 181: 1469–1478, 1991.

    Article  CAS  Google Scholar 

  • Salzman EW. Interrelation of prostaglandin endoperoxide PGG2 and cyclic 3’, 5’ adenosine monophosphate in human blood platelets. Biochim Biophys Acta 499: 48–60, 1977.

    Article  CAS  Google Scholar 

  • Saussy DL Jr Mais DE, Burch RM, Halushka PV. Identification of a putative thromboxane A2/prostaglandin H2 receptor in human platelet membranes, J Biol Chem 261: 3025–3029, 1986.

    CAS  Google Scholar 

  • Schafer AI, Crawford DD, Gimbrone MA. Unidirectional transfer of prostaglandin endoperoxides between platelets and endothelial cells. J Clin Invest. 73: 1105–1112, 1984.

    Article  CAS  Google Scholar 

  • Schaller MD, Otey CA, Hildebrand JD, Parsons JT. Focal adhesion kinase and paxillin bind to peptides mimicking β integrin cytoplasmic domains. J Cell Biol 130: 1181–1187, 1995.

    Article  CAS  Google Scholar 

  • Schlaepfer DD, Hanks SK, Hunter T, van der Geer P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372: 786–791, 1994.

    CAS  Google Scholar 

  • Schmaier AH, Smith PM, Colman RW. Platelet C1 inhibitor. A secreted alpha-granule protein. J Clin Invest 75: 242–250, 1985.

    Article  CAS  Google Scholar 

  • Serafini T, Orci L, Amherdt M, Brunner M, Kahn R, Rothman JE. ADP-ribosylation factor is a subunit of the coat of golgi-derived COP-coated vesicles: a novel role for a GTP binding protein. Cell 67: 239–253, 1991.

    Article  CAS  Google Scholar 

  • Seth SB, Colman RW. Regulatory and catalytic domains of platelet cAMP phosphodiesterases: target for drug design. Semin Hematol 32: 110–119, 1995.

    Google Scholar 

  • Seya T, Turner J, Atxinson JP. Purification and characterization of a membrane protein (gp45-70) which is a cofactor for cleavage of C3b and C4b. J Exp Med 163: 837–855, 1986.

    Article  CAS  Google Scholar 

  • Shattil S J, Hoxie JA, Cunningham M, Brass LF. Changes in the platelet membrane glycoprotein IIb/IIIa complex during platelet activation. J Biol Chem 260: 11107–11114, 1985.

    CAS  Google Scholar 

  • Shattil SJ, Brass LF. Induction of the fibrinogen receptor on human platelets by intracellular mediators. J Biol Chem 262: 992–999, 1987.

    CAS  Google Scholar 

  • Shattil SJ, Haimovich B, Cunningham M, Lipfert L, Parsons JT, Ginsberg MH, Brugge JS. Tyrosine phosphorylation of pp125FAK in platelets requires coordinated signalling through integrin and agonist receptors. J Biol Chem 269: 14738–14745, 1994a.

    CAS  Google Scholar 

  • Shattil SJ, Ginsberg MH, Brugge JS. Adhesive signaling in platelets. Curr Opin Cell Biol 6: 695–704, 1994b.

    Article  CAS  Google Scholar 

  • Shaw G. Identification of novel pleckstrin homology (PH) domains provides a hypothesis for PH domain function. Biochem Biophys Res Commun 195: 1145–1151, 1993.

    Article  CAS  Google Scholar 

  • Shuman MA, Greenberg CS. “Platelet regulation of thrombus formation.” In: Biochemistry of Platelets. Eds. DR Phillips and MA Shuman. Academic (Orlando), pp 319, 1986.

    Google Scholar 

  • Siegl AM, Smith JB, Silver MJ. Specific binding sites for prostaglandin D2 on human platelets. Biochem Biophys Res Commun 90: 291–296, 1979.

    Article  CAS  Google Scholar 

  • Siess W. Molecular mechanisms of platelet activation. Physiol Rev 69: 58–178, 1989.

    CAS  Google Scholar 

  • Siess W, Lapetina EG. Functional relationship between cyclic AMP-dependent protein phosphorylation and platelet inhibition. Biochem J 271: 815–819; 1990.

    CAS  Google Scholar 

  • Siffert W, Fox G, Munckenhoff K, Scheid P. Thrombin stimulates Na+/H+ exchange across the human platelet plasma membrane. FEBS Lett 172: 272–274, 1984.

    Article  CAS  Google Scholar 

  • Siffert W, Siffert G, Scheid P. Activation of Na+/H+ exchange in human platelets stimulated by thrombin and aphorbol ester. Biochem J 241: 301–303, 1987.

    CAS  Google Scholar 

  • Siffert W. Regulation of platelet function by sodium-hydrogen exchange. Cardiovasc Res 29: 160–166, 1995.

    CAS  Google Scholar 

  • Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science 252: 802–808, 1991.

    Article  CAS  Google Scholar 

  • Sims PJ, Wiedmer T. Repolarization of the membrane potential of blood platelets after complement damage: evidence for a Ca2+-dependent exocytotic elimination of C5b-9 pores. Blood 68: 556–561, 1986.

    CAS  Google Scholar 

  • Sims PJ, Faioni EM, Wiedmer T, Shattil SJ. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 263: 18205–18212, 1988.

    CAS  Google Scholar 

  • Sims PJ, Rollins SA, Wiedmer T. Regulatory control of complement on blood platelets. Modulation of platelet procoagulant responses by a membrane inhibitor of the C5b-9 complex. J Biol Chem 264: 19228–19235, 1989.

    CAS  Google Scholar 

  • Smith JB, Mills DCB. Inhibition of adenosine 3’,5’ cyclic monophosphate phosphodiesterase. Biochem J 120: 20, 1970.

    Google Scholar 

  • Smrcka AV, Sternweis PC. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase Cβ by G protein α and βγ subunits. J Biol Chem 268: 9667–9674, 1993.

    CAS  Google Scholar 

  • Steen VM, Holmsen H. Current aspects on human platelet activation and responses. Eur J Haematol 38: 383–399, 1987.

    Article  CAS  Google Scholar 

  • Steen VM, Tysnes OB, Holmsen H. Evidence for tight metabolic control of the receptor-activated polyphosphoinositide cycle in human platelets. Biochem J 263: 621–624, 1989.

    CAS  Google Scholar 

  • Steen VM, Aarbakke G, Holmsen H. The platelet-stimulating effect of adrenaline through alpha 2-adrenergic receptors requires simultaneous activation by a true stimulatory platelet agonist Evidence that adrenaline per se does not induce human platelet activation in vitro. Thromb Haemost 70: 506–513, 1993.

    CAS  Google Scholar 

  • Stenberg PE, Shuman MA, Levine SP, Bainton DF. Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. J Cell Biol 98: 748–760, 1984

    Article  CAS  Google Scholar 

  • Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF. A platelet alpha-granule membrane protein (GMP140) is expressed on the plasma membrane after activation. J Cell Biol 101: 880–886, 1985.

    Article  CAS  Google Scholar 

  • Stokoe D, MacDonald SG, Cadwallader K, Symons M, Hancock JF. Activation of Raf as a result of recruitment to the plasma membrane. Science 264: 1463–1467, 1994.

    Article  CAS  Google Scholar 

  • Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebrobck B, Dhand R, Nurnberg B, Gershik P, Seedorf K, Hsuan JJ, Waterfield MD. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269: 690–693, 1995.

    Article  CAS  Google Scholar 

  • Suga K, Kambayashi J, Kawasaki T, Sakon M, Mori T. Phosphorylation of phosphoinositides in human platelets. Thromb Res 44: 155–163, 1986.

    Article  CAS  Google Scholar 

  • Suzuki S, Argraves WS, Arai H, Languino LF, Pierschbacher MD, Ruoslathi E. Aminoacid sequence of the vitronectin receptor alpha subunit and comparative expression of adhesion receptor mRNAs. J Biol Chem 262: 14050–14058, 1987.

    Google Scholar 

  • Suzuki T, Banno Y, Nozawa Y. Partial purification and characterization of two forms of phosphatidylinositol 4-phosphate 5-kinase from human platelet membrane. Thromb Res 64: 45–56, 1991.

    Article  CAS  Google Scholar 

  • Suzuki T, Nakashima S, Nozawa Y. Inhibition of phosphatidylinositol 4-phosphate 5-kinase by cyclic AMP in human platelets. Platelets 5: 258–265, 1994.

    Article  CAS  Google Scholar 

  • Takahara K, Murray R, Fitzgerald GA, Fitzgerald DJ. The response to thromboxane A2 analogues in human platelets. J Biol Chem 265: 6836–6844, 1990.

    CAS  Google Scholar 

  • Tarai Y, Sasaki T, Tanaka K, Nakanishi H. Rho as a regulator of the cytoskeleton. Trends In Biochem Sci 20: 227–230, 1995.

    Article  Google Scholar 

  • Tao J, Johansson JS, Haynes DH. Stimulation of dense tubular Ca2+ uptake in human platelets by cAMP. Biochim Biophys Acta 1105: 29–39, 1992.

    Article  CAS  Google Scholar 

  • Tans G, Rosing J, Thomassen MC, Heeb MJ, Zwaal RF, Griffin JH. Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood 77, 2641–2648, 1991.

    CAS  Google Scholar 

  • Tedder TF, Steeber DA, Chen A, Engel P. The selectins: vascular adhesion molecules. FASEB J 9: 866–873, 1995.

    CAS  Google Scholar 

  • Teo M, Manser E, Lim L. Identification and molecular cloning of a p21cdc42/tac1-activated serin/threonine kinase that is rapidly activated by thrombin in platelets. J Biol Chem 270: 26690–26697, 1995.

    Article  CAS  Google Scholar 

  • Thomason PA, James SR, Casey PJ, Downes CP. A G-protein βγ-subunit-responsive phosphoinositide 3-kinase activity in human platelet cytosol. J Biol Chem 269: 16525–16528, 1994.

    CAS  Google Scholar 

  • Tolias KF, Cantley LC, Carpenter CL. Rho family GTPases bind to phosphoinositide kinases. J Biol Chem 270: 17656–17659, 1995.

    Article  CAS  Google Scholar 

  • Torti M, Singaglia F, Ramascei G, Balduini C. Platelet glycoprotein IIb-IIIa is associated with 21-kDa GTP-binding protein. Biochim Biophys Acta 1070: 20–26, 1991.

    Article  CAS  Google Scholar 

  • Torti M, Lapetina EG. Role of rap1B and p21ras GTPase activating protein in the regulation of phospholipase C-g1 in human platelets. Proc Natl Acad Sci USA 89: 7796–77800, 1992.

    Article  CAS  Google Scholar 

  • Torti M, Lapetina EG. Structure and function of rap proteins in human platelets. Thromb Haemost 71: 533–543, 1994.

    CAS  Google Scholar 

  • Touhara K, Inglese J, Pitcher JA, Shaw G, Lefkowitz RJ. Binding of G protein βγ-subunits to pleckstrin homology domains. J Biol Chem 269: 10217–10220, 1994.

    CAS  Google Scholar 

  • Touhara K, Hawes BE, van Biesen T, Lefkowitz RJ. G protein βγ subunits stimulate phosphorylation of the She adapter protein. Proc Natl Acad Sci USA 92: 9284–9287, 1995.

    Article  CAS  Google Scholar 

  • Tracy PB, Mann KG. #x201C;A model for assembly of coagulation factor complexes on cell surfaces: Prothrombin activation on platelets.” In Biochemistry of Platelets. Eds: DR Phillips and MA Shuman, Academic (Orlando), pp 296, 1986.

    Google Scholar 

  • Tschopp J, Jenne DE, Herto S, Preissner KT, Morgenstern H, Sapino A-E, French L. Human megakaryocytes express clusterin and package it without apolipoprotein A-1 into α-granules. Blood 82: 118–125, 1993.

    CAS  Google Scholar 

  • Tsukuda M, Asaoka Y, Sekiguchi K, Kikkawa U, Nisheuka Y. Properties of protein kinase C subspecies in human platelets. Biochem Biophys Res Commun 155: 1387–1395, 1988.

    Article  CAS  Google Scholar 

  • Turitto VT, Weiss HJ, Baumbartner HS. Decreased platelet adhesion on vessel segments in von Willebrand’s disease: A defect in initial platelet attachment. J Lab Clin Med 102: 551–564, 1983.

    CAS  Google Scholar 

  • Turitto VT, Weiss HJ, Zimmerman TS, Sussman II. Factor VIII/von Willebrand factor in subendothelium mediates platelet adhesion. Blood 65: 823–831, 1985.

    CAS  Google Scholar 

  • Tyers M, Rachubinski RA, Stewart MI, Varrichio AM, Shorr RG, Haslam RJ, Harley CB. Molecular cloning and expression of the major protein kinase C substrate of platelets. Nature 333: 470–473, 1988.

    Article  CAS  Google Scholar 

  • Tysnes OB, Verhoeven AJM, Aarbakke GM, Holmsen H. Phosphoinositide metabolism in resting and thrombin-stimulated human platelets. FEBS Lett 218: 68–72, 1987.

    Article  CAS  Google Scholar 

  • Tysnes OB, Verhoeven AJM, Holmsen H. Rates of production and consumption of phosphatidic acid upon thrombin stimulation of human platelets. Eur J Biochem 174: 75–79, 1988.

    Article  CAS  Google Scholar 

  • Tysnes OB, Steen VM, Frølich KW, Holmsen H. Evidence that chlorpromazine and prostaglandin E1 but not neomycin interfere with the inositol phospholipid metabolism intact human platelets. FEBS Lett 264: 33–36, 1990.

    Article  CAS  Google Scholar 

  • Ueda N, Iniguez-Lluhi JA, Lee E, Smrcka AV, Robishaw JD, Gilman AG. G protein βγ subunits. J Biol Chem 269: 4388–4395, 1994.

    CAS  Google Scholar 

  • van Biesen T, Hawes BE, Luttrell DK, Krueger KM, Touhara K, Porfiri E, Sakaue M, Luttrell LM, Lefkowitz RJ. Receptor-tyrosine-kinase-and Gβγ-mediated MAP kinase activation by a common signalling pathway. Nature 376: 781–784, 1995.

    Article  Google Scholar 

  • van Corven EJ, Hordijk PL, Medema RH, Bos JL, Moolenaar WH. Pertussis toxin-sensitive activation of p21src by G protein-coupled receptor agonists in fibroblasts. Proc Natl Acad Sci USA 90: 1257–1261, 1993.

    Article  Google Scholar 

  • Vanderwei M, Lum DS, Haslam RJ. Vasopressin inhibits the adenylate cyclase activity of human platelet particulate fraction through V1-receptors. FEBS Lett 164: 340–344, 1983.

    Article  Google Scholar 

  • Vane JR, Moncada S. Prostacyclin. Ciba Found Symp 71: 79–97, 1980.

    CAS  Google Scholar 

  • van Willigen G, Akkerman JWN. Protein kinase C and cyclic AMP regulate reversible exposure of binding sites for fibrinogen on the glycoprotein IIb/IIIa complex of human platelets. Biochem J 273: 115–121, 1991.

    Google Scholar 

  • van Willigen G, Donath J, Lapetina EG, Akkerman JWN. Identification of α-subunits of trimeric GTP-binding proteins in human platelets by RT-PCR. Biochem Biophys Res Commun 214: 254–262, 1995.

    Article  Google Scholar 

  • Vassbotn FS, Havnen OK, Heldin C-H, Holmsen H. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor α-receptor. J Biol Chem 269: 13874–13879, 1994.

    CAS  Google Scholar 

  • Verhoeven AJM, Mommersteg ME, Akkerman JWN. Quantification of energy consumption in platelets during thrombin-induced aggregation and secretion: tight coupling between platelet responses and the increment in energy consumption. Biochem J 221: 777–787, 1984.

    CAS  Google Scholar 

  • Verhoeven AJM, Tysnes OB, Aarbakke GM, Cook CA, Holmsen H. Turnover of the phosphomonoester groups of polyphosphoinositol lipids in unstimulated human platelets. Eur J Biochem 166: 3–9, 1987.

    Article  CAS  Google Scholar 

  • Vicers JD, Mustard JF. The phosphoinositides exist in multiple pools in rabbit platelets. Biochem J 238: 411–417, 1986.

    Google Scholar 

  • Vir DP, Fearon DT. Cellular distribution of complement receptor type 4 (CR4): expression on human platelets. J Immunol 138: 254–258, 1987.

    Google Scholar 

  • Voyno-Yasenetskaya T, Conklin BR, Gilbert RL, Hooley R, Bourne HR, Barber DL. Gα13 stimulates Na-H exchange. J Biol Chem 269: 4721–4724, 1994.

    CAS  Google Scholar 

  • Vut KH, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64: 1057–1068, 1991.

    Article  Google Scholar 

  • Wagner DD, Marder VJ. Biosynthesis of von Willebrand protein by human endothelial cells: Processing steps and their intracellular localization. J Cell Biol 99: 2123–2130, 1984.

    Article  CAS  Google Scholar 

  • Waldmann R, Bauer S, Göbel C, Hofmann F, Jacobs KH, Walter U. Demonstration of cGMP-dependent protein kinase and cGMP-dependent phosphorylation in cell-free extracts of platelets. Eur J Biochem 158: 203–210, 1986.

    Article  CAS  Google Scholar 

  • Waldmann R, Nieberding M, Walter U. Vasodilator-stimulated protein phosphorylation in platelet is mediated by cAMP-and cGMP-dependent protein kinases. EurJ Biochem 167: 441–448, 1987.

    Article  CAS  Google Scholar 

  • Wang F, Nak UP, Ehrlich YH, Freyberg Z, Osada S, Ohno S, Kuroki T, Suzuki K, Kornecki E. A new protein kinase C, nPKCη‘, and nPKCθ are expressed in human platelets: Involvement of nPKCη ‘and nPKCθ in signal transduction stimulated by PAF Biochem Biophys Res Commun 191: 240–246, 1993.

    Article  CAS  Google Scholar 

  • Wang J, Auger KR, Jarvis L, Shi Y, Roberts TM. Direct association of Grb2 with the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem 270: 12774–12780, 1995.

    Article  CAS  Google Scholar 

  • Ware JA, Heistad DD. Platelet-endothelium interactions. N Engl J Med 328: 628–635, 1993.

    Article  CAS  Google Scholar 

  • Wedegaertner PB, Chu DH, Wilson PT, Levis MJ, Bourne HR. Palmitoylation is required for signalling functions and membrane attachment of G and G. J Biol Chem 268: 25001–25008, 1993.

    CAS  Google Scholar 

  • Wedegaertner PB, Bourne HR. Activation and depalmitoylation of G. Cell 70: 1063–1070, 1995.

    Google Scholar 

  • Weiss HJ, Tschopp TB, Baumgariner HR, Sussman II, Johnson MM, Egan JJ. Decreased adhesion of giant (Bernard-Soulier) platelets to subendothelium. Am J Med 57: 920–925, 1974.

    Article  CAS  Google Scholar 

  • Welch GN, Upchurch GR, Loscalzo J. Nitric oxide as a vascular modulator. Blood Rev 9: 262–269, 1995.

    Article  Google Scholar 

  • White JG. A search for the platelet secretory pathway using electron-dense tracers. Am J Pathol 58: 31–49, 1970.

    CAS  Google Scholar 

  • White JG. Electron microscopic studies of platelet secretion. Prog Hemost Thromb 2: 49, 1974.

    CAS  Google Scholar 

  • White JG, Krumwiede M. Further studies of the secretory pathway in thrombin-stimulated human platelets. Blood 69: 1196–1203, 1987a.

    CAS  Google Scholar 

  • White JG. Views at the platelet cytoskeleton at rest and at work. Ann NY Acad Sci 509: 156–176, 1987b.

    Article  CAS  Google Scholar 

  • White JG. “Platelet Ultrastructure.” In. Haemostasis and Thrombosis, 2nd. ed. Eds: AL Bloom & DP Thomas. Churhill Livingstone (UK) pp 20–46, 1987c.

    Google Scholar 

  • Wiedmer T, Sims PJ. Effect of complement proteins C5b-9 on blood platelets. Evidence for reversible depolarization of membrane potential. J Biol Chem 260: 8014–8019, 1985.

    CAS  Google Scholar 

  • Wiedmer T, Esmon CT, Sims PJ. Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase. Blood 68: 875–880, 1986a.

    CAS  Google Scholar 

  • Wiedmer T, Esmon CT, Sims PJ. On the mechanism by which complement proteins C5b-9 increase platelet prothrombinase activity. J Biol Chem 261: 14587–14592, 1986b.

    CAS  Google Scholar 

  • Wiedmer T, Ando B, Sims PJ. Complement C5b-9-stimulated platelet secretion is associated with a Ca2+-initiated activation of cellular protein kinases. J Biol Chem 262: 13674–13681, 1987.

    CAS  Google Scholar 

  • Witte LD, Kaplan KL, Nossel HL, Lages BA, Weiss HJ, Goodman DS. studies of the release from human platelets of the growth factor for cultured human smooth muscle cells. Circ Res 42: 402–409, 1978.

    Article  CAS  Google Scholar 

  • Wong PY, Westlund P, Hamberg M. 15-lipoxygenase in human platelets. J Biol Chem 260: 9162–9171, 1985.

    CAS  Google Scholar 

  • Wright JH. The origin and nature of blood platelets. Boston Med surg J 154: 643, 1906.

    Article  Google Scholar 

  • Wright JH. The histogenesis of the blood platelets. J Morphol 21: 203, 1910.

    Article  Google Scholar 

  • Wu XW, Lian EC. Binding properties and inhibition of platelet aggregation by a monoclonal antibody to CD31 (PECAM-1). Arterioscler Thromb Vasc Biol 17: 3154–3158, 1997.

    Article  CAS  Google Scholar 

  • Yada Y, Nagao S, Okano Y, Nozawa Y. Inhibition by cyclic AMP of guanine nucleotide-induced activation of phosphoinositide-specific phospholipase C in human platelets. FEBS-Lett 242: 368–372, 1989.

    Article  CAS  Google Scholar 

  • Yamanishi J, Kawahara Y, Fukuzakih L. Effect of cyclic AMP on cytoplasmic free calcium in human platelets stimulated by thrombin: direct measurement with quin2. Thromb Res 32: 183–188, 1983.

    Article  CAS  Google Scholar 

  • Yano Y, Kambayashi J, Shiba E, Sakon M, Oiki E, Fukuda K, Kawasaki T, Mori T. The role of protein phosphorylation and cytoskeletal reorganization in microparticle formation from the platelet plasma membrane. Biochem J 299: 303–308, 1994.

    CAS  Google Scholar 

  • Yezs, Baltimore D. Binding of Vav to Grb2 through dimerization of Src homology 3 domains. Proc Natl Acad Sci USA 91: 12629–12633, 1994.

    Article  Google Scholar 

  • Yoon HS, Hajduk PJ, Petrus AM, Olejniczak ET, Meadows RP, Fesik SW. Solution structure of a pleckstrin-homology domain. Nature 369: 672–675, 1994.

    Article  CAS  Google Scholar 

  • Yosmda K, Dubyak K, Nachmas VT. Rapid effects on phorbol ester on platelet shape change, cytoskeleton and calcium transient. FEBS Lett 206: 273–278, 1986.

    Article  Google Scholar 

  • Zavoico GB, Feinstein MB. Cytoplasmic Ca2+ in platelets is controlled by cyclic AMP: Antagonism between stimulators and inhibitors of adenylate cyclase. Biochem Biophys Res Commun 120: 579–585, 1984.

    Article  CAS  Google Scholar 

  • Zhang J, King WG, Dillon S, Hall A, Feig L, Rittenhouse SE. Activation of platelet phosphatidylinositide 3-kinase requires the small GTP-binding protein Rho. J Biol Chem 268: 22251–22254, 1993.

    CAS  Google Scholar 

  • Zhang J, Benovic JL, Sugai M, Wetzker R, Gout I, Rittenhouse SE. Sequestration of a G-protein βγ subunit or ADP-ribosylation of rho can inhibit thrombin-induced activation of platelet phosphoinositide 3-kinases. J Biol Chem 270: 6589–6594, 1995.

    Article  CAS  Google Scholar 

  • Zhang J, Shattil SJ, Cunningham MC, Rittenhouse SE. Phosphoinositide 3-kinase γ and p85/phosphoinositide 3-kinase in platelets. J Biol Chem 271: 6265–5272, 1996.

    Article  CAS  Google Scholar 

  • Zigmond SH. Signal transduction and actin organization. Curr Opin Cell Biol 8: 66–73, 1996.

    Article  CAS  Google Scholar 

  • Zhu Y, O’Neill S, Saklatvala J, Tassi L, Mendelsohn ME. Phosphorylated HSP27 associates with the activation-dependent cytoskeleton in human platelets. Blood 84: 3715–3723, 1994.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ryningen, A., Holmsen, H. (1999). Biochemistry of Platelet Activation. In: Rao, G.H.R. (eds) Handbook of Platelet Physiology and Pharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5049-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5049-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7295-0

  • Online ISBN: 978-1-4615-5049-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics