Skip to main content

The Molecular Pathology of Glanzmann’s Thrombasthenia

  • Chapter
Handbook of Platelet Physiology and Pharmacology

Abstract

The glycoprotein (GP) IIb-IIIa receptor (integrin aIIbb3) is expressed at high concentrations on the platelet surface, representing approximately 15% of the total surface protein. Glanzmann thrombasthenia is a well-characterized inherited disorder of platelet GPIIb-IIIa receptors and the hallmark of this disease is severely reduced or absent platelet aggregation in response to multiple physiologic agonists. Underlying this disorder are mutations in the GPIIb or GPIIIa genes resulting in qualitative or quantitative abnormalities of the platelet membrane GPIIb (aIIb: CD41) and/or GPIIIa (b3: CD61) subunits. The identification and characterization of naturally occuring DNA mutations causing Glanzmann thrombasthenia has provided a wealth of information on the biosynthesis and structure-function relationships of the platelet GPIIb/IIIa receptor. In addition, the molecular characterization of patients with this disorder has enabled DNA-based carrier detection and prenatal diagnoses to be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. French DL, Coller BS: Hematologically important mutations: Glanzmann thrombasthenia. Blood Cells, Molecules, and Diseases 23:39–51, 1996.

    Google Scholar 

  2. French DL: The molecular genetics of Glanzmann’s thrombasthenia. Platelets 9:5–20, 1998.

    CAS  Google Scholar 

  3. George JN, Caen JP, Nurden AT: Glanzmann’s thrombasthenia: The spectrum of clinical disease. Blood 75:1383–1395, 1990.

    CAS  Google Scholar 

  4. Coller BS, Seligsohn U, Peretz H, Newman PJ: Glanzmann thrombasthenia: New insights from an historical perspective. Seminars in Hematol 31:301–311, 1994.

    CAS  Google Scholar 

  5. Phillips DR, Charo IF, Parise LV, Fitzgerald LA: The platelet membrane glycoprotein IIb-IIIa complex. Blood 71:831–843, 1988.

    CAS  Google Scholar 

  6. Carvete JJ: Clues for understanding the structure and function of a prototypic human integrin: The platelet glycoprotein IIb/IIIa complex. Thromb Haemost 72:1–15, 1994.

    Google Scholar 

  7. Carvete JJ: On the structure and function of platelet integrin aIIbb3, the fibrinogen receptor. Proc Soc Exp Biol Med 208:346–360, 1995.

    Google Scholar 

  8. Bray PF: Inherited diseases of platelet glycoproteins: Considerations for rapid molecular characterization. Thromb Haemost 72:492–502, 1994.

    CAS  Google Scholar 

  9. Glanzmann E: Hereditare hamorrhagische thrombasthenie: ein beitrag zur pathologie der blut plattchen. J Kinderke 88:113–141, 1918.

    Google Scholar 

  10. Braunsteiner H, Pakesch F: Thrombocytoasthenia and thrombocytopathia. Old name and new diseases. Blood 11:965–976, 1956.

    CAS  Google Scholar 

  11. Hardisty RM, Dormandy KM, Hutton RA: Thrombasthenia: Studies on three cases. Br J Haematol 10:371–387, 1964.

    CAS  Google Scholar 

  12. Zucker MB, Pert JH, Hilgartner MW: Platelet function in a patient with thrombasthenia. Blood 28:524–534, 1966.

    CAS  Google Scholar 

  13. Nurden AT, Caen JP: An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol 28:253–260, 1974.

    CAS  Google Scholar 

  14. Phillips DR, Jenkins CSP, Luscher EF, Larrieu M-J: Molecular differences of exposed surface proteins on thrombasthenia platelet plasma membranes. Nature 257:599–600, 1975.

    CAS  Google Scholar 

  15. Duperray A, Troesch A, Berthier R, Chagnon E, Frachet P, Uzan G, Marguerie G: Biosynthesis and assembly of platelet GPIIb-IIIa in human megakaryocytes: Evidence that assembly between pro-GPIIb and GPIIIa is a prerequisite for expression of the complex on the cell surface. Blood 74:1603–1611, 1989.

    CAS  Google Scholar 

  16. O’Toole TE, Loftus JC, Plow EF, Glass AA, Harper JR, Ginsberg MH: Efficient surface expression of platelet GPIIb-IIIa requires both subunits. Blood 74:14–18, 1989.

    Google Scholar 

  17. Rosa J-P, McEver RP: Processing and assembly of the integrili, glycoprotein IIb-IIIa, in HEL cells. J Biol Chem 264:12596–12603, 1989.

    CAS  Google Scholar 

  18. Reichert N, Seligsohn U, Ramot B: Clinical and genetic aspects of Glanzmann’s thrombasthenia in Israel. Thromb Diathesis Haemor 34:9806–9820, 1975.

    Google Scholar 

  19. Awidi AS: Increased incidence of Glanzmann’s thrombasthenia in Jordan compared with Scandinavia Scand. J Haematol 30:218–222, 1983.

    CAS  Google Scholar 

  20. Seligsohn U, Rososhansky S: A Glanzmann’s thrombasthenia cluster among Iraqi Jews in Israel. Thromb Hacmost 52:230–231, 1984.

    CAS  Google Scholar 

  21. Khanduri U, Pulimood R, Sudarsanam A, Carman RH, Jadhav M, Pereira S: Glanzmann’s thrombasthenia. A review and report of 42 cases from South India. Thromb Haemost 46:717–721, 1981.

    CAS  Google Scholar 

  22. Schlegel N, Gayet O, Mord-Kopp MC, Wyler B, Hurtaud-Roux MF, Kaplan C, McGregor J: Themolecular genetic basis of Glanzmann’s thrombasthenia in a Gypsy population in France: Identification of a new mutation on the aIIb gene. Blood 86:977–982, 1995.

    CAS  Google Scholar 

  23. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King M-C: Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684–1689, 1990.

    CAS  Google Scholar 

  24. Bray PF, Shuman MA: Identification of an abnormal gene for the GPIIIa subunit of the platelet fibrinogen receptor resulting in Glanzmann thrombasthenia. Blood 75:881–888, 1990.

    CAS  Google Scholar 

  25. Li L, Bray PG: Homologous recombination among three intragene Alu sequences causes an inversiondeletion resulting in the hereditary bleeding disorder Glanzmann thrombasthenia. Am J Hum Genet 53:140–149, 1993.

    CAS  Google Scholar 

  26. Jin Y, Dietz HC, Nurden A, Bray PF: Single-strand conformation polymorphism analysis is a rapid and effective method for the identification of mutations and polymorphisms in the gene for glycoprotein IIIa. Blood 82:2281–2288, 1993.

    CAS  Google Scholar 

  27. Chen Y-P, Djaffar I, Pidard D, Steiner B, Cieutat A-M, Caen JP, Rosa J-P: Ser-752‡Pro mutation in the cytoplasmic domain of integrili b3 subunit and defective activation of platelet integrin aIIbb3 (glycoprotein Iib-IIIa) in avariant of Glanzmann thrombasthenia. Proc Natl Acad Sci USA 89:10169–10173, 1992.

    CAS  Google Scholar 

  28. Ward CM, Newman PJ: A Leu262Pro mutation in the integrin b3 subunit results in an aIIbb3 complex which binds fibrin but not fibrinogen. Blood 90:25a 1997 (Abstract).

    Google Scholar 

  29. Ward CM, Scott JPI, Scott JPI, Newman PJ: A frameshift mutation at Gly975 in the transmembrane domain of aIIb prevents aIIbb3 expression. Blood 90:25a, 1997 (Abstract).

    Google Scholar 

  30. Rosenberg N, Yatuv R, Orion Y, Zivelin A, Dardik R, Peretz H, Seligsohn U: Glanzmann thrombasthenia caused by an 11.2-kb deletion in the glycoprotein IIIa (b3) is a second mutation in Iraqi Jews that stemmed from a distinct founder. Blood 89:3654–3662, 1997.

    CAS  Google Scholar 

  31. Caen JP: Glanzmann’s thrombasthenia. Clin Haematol 1:383–392, 1972.

    Google Scholar 

  32. Phillips DR, Agin PP: Platelet membrane defects in Glanzmann’s thrombasthenia Evidence for decreased amounts of two major glycoproteins. J Clin Invest 60:535–545, 1977.

    CAS  Google Scholar 

  33. Hagen I, Nurden A, Bjerrum OJ, Solum NO, Caen J: Immunochemical evidence for protein abnormalities in platelets from patients with Glanzmann’s thrombasthenia and Bernard Soulier syndrome. J Clin Invest 65:722–731, 1980.

    CAS  Google Scholar 

  34. Kunicki TJ, Nurden AT, Pidard D, Russell NR, Caen JP: Characterization of human platelet glycoprotein antigens giving rise to individual immunoprecipitates in crossed-immunoelectrophoresis. Blood 58:1190–1197, 1981.

    CAS  Google Scholar 

  35. Holahan JR, White GCI: Heterogeneity of membrane surface proteins in Glanzmann’s thrombasthenia. Blood 57:174–181, 1981.

    CAS  Google Scholar 

  36. Ginsberg MH, Lightsey A, Kunicki TJ, Kaufmann A, Marguerie G, Plow EF: Divalent cation regulation of the surface orientation of platelet membrane glycoprotein IIb. Correlation with fibrinogen binding function and definition of a novel variant of Glanzmann’s thrombasthenia. J Clin Invest 78:1103–1111, 1986.

    CAS  Google Scholar 

  37. Nurden AT, Rosa J-P, Fournier D, Legrand C, Didry D, Parquet A, Pidard D: A variant of Glanzmann’s thrombasthenia with abnormal glycoprotein IIb-IIIa complexes in the platelet membrane. J Clin Invest 79:962–969, 1987.

    CAS  Google Scholar 

  38. Fournier DJ, Kabral A, Castaldi PA, Berndt MC: A variant of Glanzmann’s thrombasthenia characterized by abnormal glycoprotein IIb/IIIa complex formation. Thromb Haemost 62:977–983, 1989.

    CAS  Google Scholar 

  39. Kato A: The biologic and clinical spectrum of Glanzmann’s thrombasthenia: implications of integrili aIIbb3 for its pathogenesis. Crit Rev Oncol/Hematol 26:1–23, 1997.

    CAS  Google Scholar 

  40. Bray PF, Rosa JP, Lingappa VR, Kan YW, McEver RP, Shuman MA: Biogenesis of the platelet receptor for fibrinogen: Evidence for separate precursors for glycoproteins IIb and IIIa. Proc Natl Acad Sci USA 83:1480–1484, 1986.

    CAS  Google Scholar 

  41. Silver SM, McDonough MM, Vilaire G, Bennett JS: The in vitro synthesis of polypeptides for the platelet membrane glycoproteins IIb and IIIa. Blood 69:1031–1037, 1987.

    CAS  Google Scholar 

  42. Bray PF, Barsh G, Rosa J-P, Juo XY, Magenis E, Shuman MA: Physical linkage of the genes for platelet membrane glycoproteins IIb and IIIa. Proc Natl Acad Sci USA 85:8683–8687, 1988.

    CAS  Google Scholar 

  43. Sosnoski DM, Emanuel BS, Hawkins AL, van Tuilen P, Ledbetter DH, Nussbaum RL, Kaos F-T, Schwartz E, Phillips DR, Bennett JS, Fitzgerald LA, Poncz M: Chromosomal localization of the genes for the vitronectin and the fibronectin receptors a subunits and for platelet glycoprotein IIb and IIIa. J Clin Invest 81:1993–1998, 1988.

    CAS  Google Scholar 

  44. Peretz H, Yakobson E, Korostishevsky M, Usher S, Seligsohn U: Recombination distance between platelet glycoprotein IIB and glycoprotein III A genes. Thromb Haemost 73:1195, 1995 (Abstract).

    Google Scholar 

  45. Heidenreich R, Eisman R, Surrey S, Delgrosso K, Bennett JS, Schwartz E, Poncz M: Organization of the gene for platelet glycoprotein IIb. Biochemistry 29:1232–1244, 1990.

    CAS  Google Scholar 

  46. Zimrin AB, Gidwitz S, Lord S, Schwartz E, Bennett JS, White GCI, Poncz M: The genomic organization of platelet glycoprotein IIIa. J Biol Chem 265:8590–8595, 1990.

    CAS  Google Scholar 

  47. Villa-Garcia M, Li L, Riely G, Bray PF: Isolation and characterization of a TATA-less promoter for the human b3 integrin gene. Blood 83:668–676, 1994.

    CAS  Google Scholar 

  48. Poncz M, Risman R, Heidenreich R, Silver SM, Vilaire G, Surrey S, Schwartz E, Bennett JS: Structure of the platelet membrane glycoprotein IIb. J Biol Chem 262:8476–8482, 1987.

    CAS  Google Scholar 

  49. Fitzgerald LA, Steiner B, Rall RCJ, Lo S-S, Phillips DR: Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone. J Biol Chem 262:3936–3939, 1987.

    CAS  Google Scholar 

  50. Hynes RO: Integrins: a family of cell surface receptors. Cell 48:549–554, 1987.

    CAS  Google Scholar 

  51. Ginsberg MH, Loftus JC, Plow EF: Cytoadhesins, integrins, and platelets. Thromb Haemost 59:1–6, 1988.

    CAS  Google Scholar 

  52. Hynes RO: Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25, 1992.

    CAS  Google Scholar 

  53. Calvete JJ, Henschen A, Gonzalez-Rodriguez J: Complete localization of the intrachain disulfide bonds and the N-glycosylation points in the a-subunit of human platelet glycoprotein IIb. Biochem J 261:561–568, 1989.

    CAS  Google Scholar 

  54. Poncz M, Newman PJ: Analysis of rodent platelet glycoprotein IIb: Evidence for evolutionarily conserved domains and alternative proteolytic processing. Blood 75:1281–1289, 1990.

    Google Scholar 

  55. Tuckwell DS, Brass A, Humphries MJ: Homology modelling of integrin EF-hands. Evidence for widespread use of a conserved cation-binding site. Biochem J 285:325–331, 1992.

    CAS  Google Scholar 

  56. Gulino D, Boudignon C, Zhang L, Concord E, Rabiet M-J, Marguerie G: Ca2+-binding properties of the platelet glycoprotein IIb ligand-interacting domain. J Biol Chem 267:1001–1007, 1992.

    CAS  Google Scholar 

  57. Springer TA: Folding of the N-terminal, ligand-binding region of integrin a-subunits into a b-propeller domain. Proc Natl Acad Sci USA 94:65–72, 1997.

    CAS  Google Scholar 

  58. Bogaert T, Brown N, Wilcox M: The Drosophila PS2 antigen is an invertebrate integrin that, like the fibronectin receptor, becomes localized to muscle attachments. Cell 51:929–940, 1987.

    CAS  Google Scholar 

  59. DeSimone DW, Hynes RO: Xenopus laevis integrins. Structural conservation and evolutionary divergence of integrin b subunits. J Biol Chem 263:5333–5340, 1988.

    CAS  Google Scholar 

  60. Calvete JJ, Henschen A, Gonzalez-Rodriguez J: Assignment of disulfide bonds in human platelet GPIIIa. A disulfide pattern for the b-subunits of the integrin family. Biochem J 274:63–71, 1991.

    CAS  Google Scholar 

  61. Wang R, Peterson J, Aster RH, Newman PJ: Disruption of a long-range disulfide bond between Cys406 and Cys655 in glycoprotein IIIa does not affect the function of platelet glycoprotein IIb-IIIa. Blood 90:1718–1719, 1997.

    CAS  Google Scholar 

  62. Santoso S, Kalb R, Kroll H, Walka M, Kiefel V, Mueller-Eckhardt C, Newman PJ: A point mutation leads to an unpaired cysteine residue and a molecular weight polymorphism of a functional platelet b3 integrin subunit. J Biol Chem 269:8439–8444, 1994.

    CAS  Google Scholar 

  63. Grimaldi CM, Chen FP, Scudder LE, Coller BS, French DL: A Cys374Tyr homozygous mutation of platelet glycoprotein IIIa(b3) in a Chinese patient with Glanzmann’s thrombasthenia. Blood 88:1666–1675, 1996.

    CAS  Google Scholar 

  64. Loftus JC, O’Toole TE, Plow EF, Glass A, Frelinger AL, III, Ginsberg MH: A b3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science 249:915–918, 1990.

    CAS  Google Scholar 

  65. Michishita M, Videm V, Arnaout M: A novel divalent cation-binding site in the A domain of the b2 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell 72:857–867, 1993.

    CAS  Google Scholar 

  66. Lee J-O, Rieu P, Arnaout MA, Liddington R: Crystal structure of the A domain from the a subunit of integrin CR3 (CD11b/CD18). Cell 80:631–638, 1995.

    CAS  Google Scholar 

  67. Tozer EC, Liddington RC, Sutcliffe MJ, Smeeton AH, Loftus JC: Ligand binding to integrin aIIbb3 is dependent on a MIDAS-like domain in the b3 subunit. J Biol Chem 271:21978–21984, 1996.

    CAS  Google Scholar 

  68. Uzan G, Prenant M, Prandini M-H, Martin F, Marguerie G: Tissue-specific expression of the platelet GPIIb gene. J Biol Chem 266:8932–8939, 1991.

    CAS  Google Scholar 

  69. Block KL, Poncz M: Platelet glycoprotein IIb gene expression as a model of megakaryocyte-specific expression. Stem Cells 13:135–145, 1995.

    CAS  Google Scholar 

  70. Prandini M-H, Uzan G, Martin F, Thevenon D, Marguerie G: Characterization of a specific erythromegakaryocytic enhancer within the glycoprotein IIb promoter. J Biol Chem 267:10370–10374, 1992.

    CAS  Google Scholar 

  71. Denarier E, Martin F, Martineau S, Marguerie G: PCR cloning and sequence of the murine GPIIb promoter. Biochem Biophys Res Commun 195:1360–1364, 1993.

    CAS  Google Scholar 

  72. Block KL, Shou Y, Poncz m: An Ets/Sp1 interaction in the 5′-flanking region of the megakaryocytespecific alpha Iib gene appears to stabilize Spl binding and is essential for expression of this TATA-less gene. Blood 88:2071–2080, 1996.

    CAS  Google Scholar 

  73. Cheresh DA, Berliner SA, Vincente V, Ruggeri ZM: Recognition of distinct adhesive sites on fibrinogen by related integrins on platelets and endothelial cells. Cell 58:945–953, 1989.

    CAS  Google Scholar 

  74. Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE: Analysis of GPIIb/IIIa receptor number by quantitation of 7E3 binding to human platelets. Blood 88:907–914, 1996.

    CAS  Google Scholar 

  75. Coller BS, Cheresh DA, Asch E, Seligsohn U: Platelet vitronectin receptor expression differentiates Iraqi-Jewish from Arab patients with Glanzmann thrombasthenia in Israel. Blood 77:75–83, 1991.

    CAS  Google Scholar 

  76. Reverter JC, Béguin S, Kessels H, Kumar R, Hemker HC, Coller BS: Inhibition of platelet-mediated, tissue factor-induced thrombin generation by the mouse/human chimeric 7E3 antibody. J Clin Invest 98:863–874, 1996.

    CAS  Google Scholar 

  77. Jennings LK, Ashmun RA, Wang WC, Dockter ME: Analysis of human platelet glycoproteins IIb-IIIa and Glanzmann’s thrombasthenia in whole blood by flow cytometry. Blood 68:173–179, 1986.

    CAS  Google Scholar 

  78. Nurden AT, Didry D, Kieffer N, McEver RP: Residual amounts of glycoproteins IIb and IIIa may be present in the platelets of most patients with Glanzmann’s thrombasthenia. Blood 65:1021–1024, 1985.

    CAS  Google Scholar 

  79. Coller BS, Seligsohn U, Little PA: Type I Glanzmann thrombasthenia patients from the Iraqi-Jewish and Arab populations in Israel can be differentiated by platelet glycoprotein IIIa immunoblot analysis. Blood 69:1969–1703, 1987.

    Google Scholar 

  80. Rosenberg N, Dardik R, Rosenthal E, Zivelin A, Seligsohn U: Mutations in the alphaIIb and beta3 genes that cause Glanzmann thrombasthenia can be distinguished by a simple procedure using transformed Blymphocytes. Thromb Haemost 79:244–248, 1998.

    CAS  Google Scholar 

  81. Newman PJ, Seligsohn U, Lyman S, Coller BS: The molecular genetic basis of Glanzmann thrombasthenia in the Iraqi-Jewish and Arab populations in Israel. Proc Natl Acad Sci USA 88:3160–3164, 1991.

    CAS  Google Scholar 

  82. Burk CD, Newman PJ, Lyman S, Gill J, Coller BS, Poncz M: A deletion in the gene for glycoprotein IIb associated with Glanzmann’s thrombasthenia. J Clin Invest 87:270–276, 1991.

    CAS  Google Scholar 

  83. Poncz M, Rifat S, Coller BS, Newman PJ, Shattil SJ, Parrella T, Fortina P, Bennett JS: Glanzmann thrombasthenia secondary to a Gly273 Asp mutation adjacent to the first calcium-binding domain of platelet glycoprotein IIb. J Clin Invest 93:172–179, 1994.

    CAS  Google Scholar 

  84. French DL, Chen F, Xu L, Coller BS: A common Arg584Stop mutation in glycoprotein (GP) IIb in 2 additional patients with Glanzmann thrombasthenia. Blood 88:30a, 1996 (Abstract).

    Google Scholar 

  85. French DL, Chen FP, Xu L, Weiss HJ, Coller BS: Two unrelated doubly heterozygous patients with Glanzmann thrombasthenia have the same GPIIb mutation resulting in loss of the transmembrane domain. Thromb Haemost 77:360, 1997 (Abstract).

    Google Scholar 

  86. Grimaldi CM, Chen FP, Wu CH, Weiss HJ, Coller BS, French DL: Glycoprotein IIb Leu214Pro mutation produces Glanzmann thrombasthenia with both quantitative and qualitative abnormalities in GPIIb/IIIa. Blood 91:1562–1571, 1998.

    CAS  Google Scholar 

  87. Phillips DR, Agin PP: Platelet plasma membrane glycoproteins. Evidence for the presence of nonequivalent disulfide bonds using nonreduced-reduced two-dimensional gel electrophoresis. J Biol Chem 252:2121–2126, 1977.

    CAS  Google Scholar 

  88. Seligsohn U, Coller BS, Zivelin A, Plow EF, Ginsberg MH: Immunoblot analysis of platelet glycoprotein Iib in patients with Glanzmann thrombasthenia in Israel. Br J Haematol 72:415–423, 1989.

    CAS  Google Scholar 

  89. Kotodziej MA, Vilaire G, Rifat S, Poncz M, Bennett JS: Effect of deletion of glycoprotein IIb exon 28 on the expression of the platelet GPIIb/IIIa complex. Blood 74:14–18, 1991.

    Google Scholar 

  90. Coller BS, Seligsohn U, West SM, Scudder LE, Norton KJ: Platelet fibrinogen and vitronectin in Glanzmann thrombasthenia: Evidence consistent with specific roles for glycoprotein IIb/IIIa and avb3 integrins in platelet protein trafficking. Blood 78:2603–2610, 1991.

    CAS  Google Scholar 

  91. Handagama P, Rappolee DA, Werb Z, Levin J, Bainton DF: Platelet a-granule fibrinogen, albumin, and immunoglobulin G are not synthesized by rat and mouse megakaryocytes. J Clin Invest 86:1364–1368, 1990.

    CAS  Google Scholar 

  92. Harrison P: Platelet a-granular fibrinogen. Platelets 3:1–11, 1992.

    CAS  Google Scholar 

  93. Harrison P, Wilbourn B, Debili N, Vainchenker W, Breton-Gorius J, Lawrie AS, Masse J-M, Savidge GF, Cramer EM: Uptake of plasma fibrinogen into the alpha granules of human megakaryocytes and platelets. J Clin Invest 84:1320–1324, 1989.

    CAS  Google Scholar 

  94. Handagama P, Scarborough RM, Shuman MA, Bainton DF: Endocytosis of fibrinogen into megakaryocytes and platelet a-granules is mediated by aIIbb3 (glycoprotein IIb-IIIa). Blood 82:135–138, 1993.

    CAS  Google Scholar 

  95. Hardisty R, Pidard D, Cox A, Nokes T, Legrand C, Bouillot C, Pannocchia A, Heilmann E, Hourdille P, Bellucci S, Nurden A: A defect of platelet aggregation with an abnormal distribution of glycoprotein IIb-IIIa complexes within the platelet. Blood 80:696–708, 1992.

    CAS  Google Scholar 

  96. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi RG, Horn GT, Mullis KB, Erlich HA: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487, 1988.

    CAS  Google Scholar 

  97. Newman PJ, Gorski J, White GCI, Gidwitz S, Cretney CJ, Aster RH: Enzymatic amplification of platelet-specific messenger RNA using the polymerase chain reaction. J Clin Invest 82:739–743, 1988.

    CAS  Google Scholar 

  98. Jin Y, Dietz HC, Montgomery RA, Bell WR, Mcintosh I, Coller BS, Bray PF: Glanzmann thrombasthenia Cooperation between sequence variants in cis during splice site selection. J Clin Invest 98:1745–1754, 1996.

    CAS  Google Scholar 

  99. Phillips DR, Charo IF, Scarborough RM: GPIIb-IIIa: The responsive integrin. Cell 65:359–362, 1991.

    CAS  Google Scholar 

  100. Shattil SJ, Ginsberg MH, Brugge JS: Adhesive signaling in platelets. Curr Opin Cell Biol 6:695–704, 1994.

    CAS  Google Scholar 

  101. Savage B, Shattil SJ, Ruggeri ZM: Modulation of platelet function through adhesion receptors. J Biol Chem 267:11300–11308, 1992.

    CAS  Google Scholar 

  102. Weiss HJ: Flow-related platelet deposition on subendothelium. Throm Haemost 74:117–122, 1995.

    CAS  Google Scholar 

  103. Schwartz MA, Schaller MD, Ginsberg MH: Integrals — emerging paradigms of signal-transduction. Annu Rev Cell Biol 11:549–599, 1995.

    CAS  Google Scholar 

  104. Yamada KM, Geiger B: Molecular interactions in cell adhesion complexes. Current Biol 9:76–85, 1997.

    CAS  Google Scholar 

  105. Haas TA, Plow EF: Integrin-ligand interactions: a year in review. Curr Opin Cell Biol 6:656–662, 1994.

    CAS  Google Scholar 

  106. Ginsberg MH, Du X, O’Toole TE, Loftus JC: Platelet integrins. Thromb Haemost 74:352–359, 1995.

    CAS  Google Scholar 

  107. Loftus JC, Halloran CE, Ginsberg MH, Feigen LP, Zablocki JA, Smith JW: The amino-terminal one-third of aIIb defines the ligand recognition specificity of integrin aIIb, b3. J Biol Chem 271:2033–2039, 1996.

    CAS  Google Scholar 

  108. Wippler J, Kouns WC, Schlaeger E-J, Kuhn H, Hadvary P, Steiner B: The integrin aIIb-b3, platelet glycoprotein IIb-IIIa, can form a functionally active heterodimer complex without the cysteine-rich repeats of the b3 subunit. J Biol Chem 269:8754–8761, 1994.

    CAS  Google Scholar 

  109. D’Souza SE, Haas TA, Piotrowicz RS, Byers-Ward V, McGrath DE, Soule HR, Cierniewski C, Plow EF, Smith JW: Ligand and cation binding are dual functions of a discrete segment of the integrili b3 subunit: Cation displacement is involved in ligand bindin. Cell 79:659–667, 1994.

    Google Scholar 

  110. D’Souza S, Ginsberg MH, Burke T, Lam S, Plow E: Localization of an Arg-Gly-Asp recognition site within an integrin adhesion receptor. Science 242:91–93, 1988.

    Google Scholar 

  111. Andrieux A, Rabiet MJ, Chapel A, Concord E, Marguerie G: Highly conserved sequence of the Arg-Gly-Asp-binding domain of the integrin b3 subunit is sensitive to stimulation. J Biol Chem 266:14202–14207, 1991.

    CAS  Google Scholar 

  112. Calvete JJ, Arias J, Alvarez MV, Lopez MM, Henshen A, Gonzalez-Rodriguez J: Further studies on the topography of the N-terminal region of human platelet glycoprotein IIIa. Localization of monoclonal epitopes and the putative fibrinogen-binding sites. Biochem J 274:457–463, 1991.

    CAS  Google Scholar 

  113. Charo IF, Nannizzi L, Phillips DR, Hsu MA, Scarborough RM: Inhibition of fibrinogen binding to GP IIb-IIIa by a GP IIIa peptide. J Biol Chem 266:1415–1421, 1991.

    CAS  Google Scholar 

  114. Lanza F, Stierle A, Fournier D, Morales M, Andre G, Nurden AT, Cazenave J-P: A new variant of Glanzmann’s thrombasthenia (Strasbourg I). Platelets with functionally defective glycoprotein IIb-IIIa complexes and a glycoprotein IIIa 214Arg‡214Trp mutation. J Clin Invest 89:1995–2004, 1992.

    CAS  Google Scholar 

  115. Bajt ML, Loftus JC: Mutation of a ligand binding domain of b3 integrin. Integral role of oxygenated residues in aIIbb3 (GPIIb/IIIa) receptor function. J Biol Chem 269:20913–20919, 1994.

    CAS  Google Scholar 

  116. Lee J-O, Bankston LA, Amaout MA, Liddington RC: Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure 3:1333–1340, 1995.

    CAS  Google Scholar 

  117. Ward CM, Chao YL, Kato GJ, Casella J, Bray PF, Newman PJ: Substitution of Asn, but not Tyr, for Aspl 19 of the b3 integrin subunit preserves fibrin binding and clot retraction. Blood 90:26a, 1997 (Abstract).

    Google Scholar 

  118. Djaffer I, Rosa J-P: A second case of variant of Glanzmann’s thrombasthenia due to substitution of platelet GPIIIa (integrin b3) Arg214 by Trp. Hum Mol Genet 2:2179–2180, 1993.

    Google Scholar 

  119. Bajt ML, Ginsberg MH, Frelinger AL, HI, Bemdt MC, Loftus JC: A spontaneous mutation of integrin aIIbb3 (platelet glycoprotein IIb-IIIa) helps define a ligand binding site. J Biol Chem 267:3789–3794, 1992.

    CAS  Google Scholar 

  120. Newman PJ, Weyerbusch-Bottum S, Visentin GP, Gidwitz S, White GCI: Type II Glanzmann thrombasthenia due to a destabilizing amino acid substitution in platelet membrane glycoprotein IIIa. Thromb Haemost 69:1017, 1993 (Abstract).

    Google Scholar 

  121. Jackson DE, Jennings LK, Newman PJ: A mutation within the ligand binding domain of glycoprotein (GP) IIIa (integrin b3) results in an unstable GPIIb-IIIa complex that retains partial function in a novel form of Glanzmann thrombasthenia. Blood 88:280a, 1996 (Abstract).

    Google Scholar 

  122. Westmp D, Santoso S, Becker-Hagendorff K, Just M, Jablonka B, Siefried E, Kirchmaier CM: Transfection of GPIIbIIb176/IIIa (Frankfurt I) in mammalian cells. Thromb Haemost 77:671, 1997 (Abstract).

    Google Scholar 

  123. Basani R, Bennett JS, Poncz M: A Glanzmann thrombasthenia variant due to an aIIb mutation suggests that an additional N-terminal loop is involved in ligand-binding. Blood 90:26a, 1997 (Abstract).

    Google Scholar 

  124. Kirchmaier CM, Westrup D, Becker-Hagendorff K, Just M, Jablonka B, Seifried E: A new variant of Glanzmann thrombasthenia (Frankfurt I). Thromb Haemost 73:1058, 1995 (Abstract).

    Google Scholar 

  125. Tuckwell DS, Humphries MJ, Brass A: A secondary structure model of the integrin a subunit N-terminal domain based on analysis of multiple alignments. Cell Adhesion Commun 2:385–402, 1994.

    CAS  Google Scholar 

  126. Kamata T, Irie A, Tokuhira M, Takada Y: Critical residues of integrin aIIb subunit for binding of aIIbb3 (glycoprotein IIb-IIIa) to fibrinogen and ligand-mimetic antibodies (PAC-1, OP-G2, and LJ-CP3). J Biol Chem 271:18610–18615, 1996.

    CAS  Google Scholar 

  127. Ine A, Kamata T, Puzon-McLaughlin W, Takada Y: Critical amino acid residues for ligand binding are clustered in a predicted b-tum of the third N-terminal repeat in the integrili a4 and a5 subunits. EMBO J 14:5550–5556, 1995.

    Google Scholar 

  128. Chen Y-P, O—Toole TE, Ylanne J, Rosa J-P, Ginsberg MH: A point mutation in the integrin b3 cytoplasmic domain (S752‡P) impairs bidirectional signaling through aIIbb3 (platelet glycoprotein IIb-IIIa). Blood 84:1857–1865, 1994.

    CAS  Google Scholar 

  129. Ylanne J, Huuskonen J, O’Toole TE, Ginsberg MH, Virtanen I, Gahmberg CG: Mutation of the cytoplasmic domain of the integrin b3 subunit. J Biol Chem 270:9550–9557, 1995.

    CAS  Google Scholar 

  130. Wang R, Shattil SJ, Ambruso DR, Newman PJ: Truncation of the cytoplasmic domain of b3 in a variant form of Glanzmann thrombasthenia abrogates signaling through the integrin aIIbb3 complex. J Clin Invest 100:2393–2403, 1997.

    CAS  Google Scholar 

  131. Kato A, Yamamoto K, Miyazaki S, Jung SM, Moroi M, Aoki N: Molecular basis for Glanzmann’s thrombasthenia (GT) in a compound heterozygote with glycoprotein IIb gene: A proposal for the classification of GT based on the biosynthetic pathway of glycoprotein IIb-IIIa complex. Blood 79:3212–3218, 1992.

    CAS  Google Scholar 

  132. Gu JM, Xu WF, Wang XD, Wu QY, Chi CW, Ruan CG: Identification of a nonsense mutation at amino acid 584-arginine of platelet glycoprotein IIb in patients with type I Glanzmann thrombasthenia. Br J Haematol 83:442–449, 1993.

    CAS  Google Scholar 

  133. Vinciguerra C, Trzeciak MC, Philippe N, Frappaz D, Reynaud J, Dechavanne M, Negrier C: Molecular study of Glanzmann thrombastheni in 3 patients issued from 2 different families. Thromb Haemost 74:822–827, 1994.

    Google Scholar 

  134. Tomiyama Y, Kashiwagi H, Kosugi S, Shiraga M, Kanayama Y, Kurata Y, Matsuzawa Y: Abnormal processing of the glycoprotein IIb transcript due to a nonsense mutation in exon 17 associated with Glanzmann’s thrombasthenia. Thromb Haemost 73:756–762, 1995.

    CAS  Google Scholar 

  135. Morse DE, Yanofsky C: Polarity and the degradation of mRNA. Nature 224:329–331, 1969.

    CAS  Google Scholar 

  136. Peltz SW, Brown AH, Jacobson A: Regulation of mRNA turnover in eukaryotic cells. Crit Rev Eukaryot Gene Expression 1:99–126, 1993.

    Google Scholar 

  137. Peltz SW, Feng H, Welch E, Jacobson A: Nonsense-mediated mRNA decay in yeast. Prog Nucleic Acid Res Mol Biol 47:271–298, 1994.

    CAS  Google Scholar 

  138. Hagan KW, Ruiz-Echevarria MJ, Quan Y, Peltz SW: Characterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover. Mol Cell Biol 15:809–823, 1995.

    CAS  Google Scholar 

  139. Baserga SJ, Benz EJJ: Nonsense mutations in the human b-globin gene affect mRNA metabolism. Proc Natl Acad Sci USA 85:2056–2060, 1988.

    CAS  Google Scholar 

  140. Djaffar I, Caen JP, Rosa J-P: A large alteration in the human platelet glycoprotein IIIa (integrin b3) gene associated with Glanzmann’s thrombasthenia. Hum Mol Genet 2:2183–2185, 1993.

    CAS  Google Scholar 

  141. Atweh GF, Brickner HE, Zhu X-X, Kazazian HHJ, Forget BG: New amber mutation in a b-thalassemic gene with nonmeasurable levels of mutant messenger RNA in vivo. J Clin Invest 82:557–561, 1988.

    CAS  Google Scholar 

  142. Vinciguerra C, Khelif A, Alemany M, Morie F, Grenier C, Uzan G, Gulino D, Dechavanne M, Negrier C: A nonsense mutation in the GPIIb heavy chain (Ser 870Æstop) impairs platelet GPIIb-IIIa expression. Br J Haematol 95:399–407, 1996.

    CAS  Google Scholar 

  143. Iwamoto S, Nishiumi E, Kajii E, Dcemoto S: An exon 28 mutation resulting in alternative splicing of the glycoprotein IIb transcript and Glanzmann’s thrombasthenia. Blood 83:1017–1023, 1994.

    CAS  Google Scholar 

  144. Peretz H, Rosenberg N, Usher S, Graff E, Newman PJ, Coller BS, Seligsohn U: Glanzmann’s thrombasthenia associated with deletion-insertion and alternative splicing in the glycoprotein IIb gene. Blood 85:414–420, 1995.

    CAS  Google Scholar 

  145. Calvete JJ, Mam K, Alvarez MV, Lopez MM, Gonzalez-Rodriguez J: Proteolytic dissection of the isolated platelet fibrinogen integrili GPIIb/IIIa. Localization of GPIIb and GPIIIa sequences putatively involved in the subunit interface and in intrasubunit and intrachain contacts. Biochem J 282:523–532, 1992.

    CAS  Google Scholar 

  146. Kolodziej MA, Vilaire G, Gonder D, Poncz M, Bennett JS: Study of the endoproteolytic cleavage of platelet glycoprotein IIb using oligonucleotide-mediated mutagenesis. J Biol Chem 266:23499–23504, 1991.

    CAS  Google Scholar 

  147. Mord-Kopp M-C, Kaplan C, Proulle V, Jallu V, Melchior C, Peyruchaud O, Aurousseau M-H, Kieffer N: A three amino acid deletion in glycoprotein IIIa is responsible for type I Glanzmann’s thromasthenia: Importance of residues Ile325Pro326Gly327 for b3 integrin subunit association. Blood 90:669–677, 1997.

    Google Scholar 

  148. Simsek S, Heyboer H, de Biuijne-Admiraal LG, Goldschmeding R, Cuijpers HTM, von dem Borne AEGK: Glanzmann’s thrombasthenia caused by homozygosity for a splice defect that leads to deletion of the first coding exon of the glycoprotein IIIa mRNA. Blood 81:2044–2049, 1993.

    CAS  Google Scholar 

  149. Peerschke EJ, Grant RA, Zucker MB: Decreased association of 45calcium with platelets unable to aggregate due to thrombasthenia or prolonged calcium deprivation. Br J Haematol 46:247–256, 1980.

    CAS  Google Scholar 

  150. Brass LF, Shattil SJ: Identification and function of the high affinity binding sites for Ca2+ on the surface of platelets. J Clin Invest 73:626–632, 1984.

    CAS  Google Scholar 

  151. Wilcox DA, Wautier JL, Pidard D, Newman PJ: A single amino acid substitution flanking the fourth calcium binding domain of aIIb prevents maturation of the integrin aIIbb3 complex. J Biol Chem 269:4450–4457, 1994.

    CAS  Google Scholar 

  152. Bourre R, Peyruchaud O, Bray P, Combrie R, Nurden P, Nurden AT: A point mutation in the gene for platelet GPIIb leads to a substitution in a highly conserved amino acid located between the second and the third Ca++-binding domain. Blood 86:452a, 1995 (Abstract).

    Google Scholar 

  153. Basani RB, Vilaire G, Shattil SJ, Kolodziej MA, Bennett JS, Poncz M: Glanzmann thrombasthenia due to a two amino acid deletion in the fourth calcium-binding domain of aIIB: Demonstration of the importance of calcium-binding domains in the conformation of aIIbb3. Blood 88:167–173, 1996.

    CAS  Google Scholar 

  154. Wilcox DA, Paddock CM, Lyman S, Gill JC, Newman PJ: Glanzmann thrombasthenia resulting from a single amino acid substitution between the second and third calcium-binding domains of GPIIb. J Clin Invest 95:1553–1560, 1995.

    CAS  Google Scholar 

  155. Ferrer M, Fernandez-Pinel M, Gonzalez-Manchon C, Gonzalez J, Ayuso MS, Parrilla R: A mutant (Arg327–His) GPIIb associated to thrombasthenia exerts a dominant negative effect in stably transfected CHO cells. Thromb and Haemost 76:292–301, 1996.

    CAS  Google Scholar 

  156. Jackson DE, Poncz M, Holyst MT, Newman PJ: Inherited mutations within the calcium-binding sites of the integrin aIIb subunit (platelet glycoprotein IIb). Effects of the amino acid side chain and the amino acid position on cation binding. Eur J Biochem 240:280–287, 1996.

    CAS  Google Scholar 

  157. Kahn MJ, Kieber-Emmons T, Vilarie G, Murali R, Poncz M, Bennett JS: Effect of mutagenesis of GPIIb amino acid 273 on the expression and conformation of the platelet integrin GPIIb-IIIa. Biochemistry 35:14304–14311, 1996.

    CAS  Google Scholar 

  158. Basani RB, Brown DL, Vilaire G, Bennett JS, Poncz M: A Leu117ÆTrp mutation within the RGD-peptide cross-linking region of b3 results in Glanzmann thrombasthenia by preventing aIIbb3 export to the platelet surface. Blood 90:3082–3088, 1997.

    CAS  Google Scholar 

  159. Peyruchaud O, Nurden AT, Bourre F: Use of PCR-SSCP to screen the exons of the GP IIb and GP IIIa genes of a variant with Glanzmann thrombasthenia: A mutation in the nucleotide sequence for the GFFKR cytoplasmic domain of the integrin subunit aIIb (GPIIb). Thromb Haemost 73:1189, 1995 (Abstract).

    Google Scholar 

  160. Hughes PE, Diaz-Gonzalez F, Leong L, Wu C, McDonald JA, Shattil SJ, Ginsberg MH: Breaking the integrili hinge. A defined structural constraint regulates integrili signaling. J Biol Chem 271:6571–6574, 1996.

    CAS  Google Scholar 

  161. Cooper DN, Youssoufian H: The CpG dinucleotide and human genetic disease. Hum Genet 78:151–155, 1988.

    CAS  Google Scholar 

  162. Ramsahoye BH, Davies CS, Mills KI: DNA methylation: biology and significance. Blood Rev 10:249–261, 1996.

    CAS  Google Scholar 

  163. Coller BS, Seligsohn U, Zivelin A, Zwang E, Lusky A, Modan M: Immunologic and biochemical characterization of homozygous and heterozygous Glanzmann thrombasthenia in the Iraqi-Jewish and Arab populations in Israel: comparison of techniques for carrier detection. Br J Haematol 62:723–735, 1986.

    CAS  Google Scholar 

  164. Peretz H, Seligsohn U, Zwang E, Coller BS, Newman PJ: Detection of the Glanzmann’s thrombasthenia mutations in Arab and Iraqi-Jewish patients by polymerase chain reaction and restriction analysis of blood or urine samples. Thromb Haemost 66:500–504, 1991.

    CAS  Google Scholar 

  165. Seligsohn U, Mibashan RS, Rodeck CH, Nicolaides KH, Millar DS, Coller BS: Prenatal diagnosis of Glanzmann’s thrombasthenia. Lancet II:1419, 1985 (Letter).

    Google Scholar 

  166. French DL, Coller BS, Usher S, Berkowitz R, Eng C, Seligsohn U, Peretz H: Prenatal diagnosis of Glanzmann thrombasthenia using the polymorphic markers BRCA1 and THRA1 on chromosome 17. submitted, 1998.

    Google Scholar 

  167. Wilcox DA, Olsen JC, Ishizawa L, Bray PF, French DL, Bell WR, Griffith M, White GC: Phenotypic correction of Glanzmann’s thrombasthenia following megakaryocyte-targeted synthesis of the integrin b3-subunit. Blood 90:281a, 1997 (Abstract).

    Google Scholar 

  168. Newman PJ: Platelet GPIIb-IIIa: molecular variations and alloantigens. Thromb Haemostat 66:111–118, 1991.

    CAS  Google Scholar 

  169. Kunicki TJ, Newman PJ: The molecular immunology of human platelet proteins. Blood 80:1386–1404, 1992.

    CAS  Google Scholar 

  170. Nurden AT: Polymorphisms of human platelet membrane glycoproteins: Structure and clinical significance. Thromb Haemostat 74:345–351, 1995.

    CAS  Google Scholar 

  171. Hodivala-Dilke KM, McHugh K, Tsakiris DA, Rayburn H, Ross FP, Coller BS, Teitelbaum S, Hynes RO: Beta 3 integrin knockout mice display a Glanzmann thrombasthenia phenotype. Blood 90:2550a, 1997 (Abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

French, D. (1999). The Molecular Pathology of Glanzmann’s Thrombasthenia. In: Rao, G.H.R. (eds) Handbook of Platelet Physiology and Pharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5049-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5049-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7295-0

  • Online ISBN: 978-1-4615-5049-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics