Flash Memories: An Overview

  • Piero Olivo
  • Enrico Zanoni


Solid-state memory devices which retain information once the power supply is switched off are called “nonvolatile” memories. For instance, using standard digital technology, a nonvolatile memory can be implemented by writing permanently the data in the memory array during manufacturing (mask-programmed Read Only Memories, ROM). As an alternative, the user can program the information by blowing fusible links or antifuses, thus changing permanently the cell content (i.e. obtaining a Programmable ROM or PROM). In both cases, the memory array can not be erased, thus making these solutions viable only for a limited number of applications.


Quartz Dioxide Zirconate Titanate Nitride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lai S. (1998) “Flash memories: where we were and where we are going”. IEEE IEDM Tech. Dig., p. 971.Google Scholar
  2. [2]
    IEEE Standards Department (1998) “IEEE P1005 draft standard for definitions, symbols, and characteristics of floating gate memory arrays” (approved 1998). IEEE, 445 Hoes Lane, Piscataway, NJ (USA).Google Scholar
  3. [3]
    Kahng D. and Sze S.M. (1967) “A floating gate and its application to memory devices”. Bell Syst. Tech. J., 46, p. 1288.CrossRefGoogle Scholar
  4. [4]
    Frohman-Bentchkowsky D. (1971) “A fully decoded 2048-bit electrically programmable MOS-ROM”. IEEE ISSCC Tech. Dig., p. 80.Google Scholar
  5. [5]
    Wegener H.A.R. et al. (1967) “The variable threshold transistor, a newly electrically alterable nondestructive read-only storage device”. IEDM Tech. Dig.. Google Scholar
  6. [6]
    Libsch F.R. and White M.H. (1998) “SONOS nonvolatile semiconductor memories”. J.E. Brewer and W.D. Brown (Eds.) Nonvolatile Semiconductor Memory Technology. A comprehensive guide to understanding and using NVSM devices, IEEE Press, Chapter 5, p. 309.Google Scholar
  7. [7]
    Harari E., Schmitz L., Troutman B. and Wang S. (1978) “A 256 bit nonvolatile static RAM”. IEEE ISSCC Tech. Dig., p. 108.Google Scholar
  8. [8]
    Johnson W.S., Perlegos G., Renninger A., Kuhn G. and Ranganath T. (1980) “A 16Kbit electrically erasable nonvolatile memory”. ISSCC Tech. Dig., p. 152.Google Scholar
  9. [9]
    Hirano H., Honda T., Moriwaki N., Nakakuma T., Inoue A., Nakane G., Chaya S. and Sumi T. (1997) “2 V/100ns 1T/1C nonvolatile ferroelectric memory architecture with bitline-driven read scheme and nonrelaxation reference cell”. IEEE Journal of Solid State Circuits, 32, p. 649.CrossRefGoogle Scholar
  10. [10]
    Kunishima I. and Takashima D. (1998) “High-density chain ferroelectric random access memory (chain FRAM)”. IEEE Journal of Solid State Circuits, 33, p. 787.CrossRefGoogle Scholar
  11. [11]
    Koike H. et al. (1996) “A 60 ns 1 Mb nonvolatile ferroelectric memory with a nondriven cell plate line write/read scheme”. IEEE Journal of Solid State Circuits, 31, p. 1625.CrossRefGoogle Scholar
  12. [12]
    Pavan P., Bez R., Olivo P., and Zanoni E. (1997) “Flash memory cells — An overview”. Proc. of the IEEE, 85, p. 1248.CrossRefGoogle Scholar
  13. [13]
    Guterman D.C., Rimawi I.H., Chiu T.L., Halvorson R.D. and McElroy D.J. (1979) “An electrically alterable nonvolatile memory cell using a floating-gate structure”. IEEE Trans. on Electron Devices, 26, p. 576.CrossRefGoogle Scholar
  14. [14]
    Masuoka F., Asano M., Iwahashi H., Komuro T. and Tanaka S. (1984) “A new Flash E2PROM cell using triple polysilicon technology”. IEDM Tech. Dig., p. 464.Google Scholar
  15. [15]
    Verma G. and Mielke N. (1988) “Reliability performance of ETOX based Flash memories”. Proc. IRPS, p. 158.Google Scholar
  16. [16]
    Kynett V.N., Baker A., Fandrich M., Hoekstra G., Jungroth O., Kreifels J. and Wells S. (1988) “An in-system reprogrammable 256 KCMOS Flash memory”, ISSCC Tech. Dig., p. 132.Google Scholar
  17. [17]
    Olivo P., Nguyen T. and Riccò B. (1988) “High-field-induced degradation in ultra thin SiO2 films”. IEEE Trans, on Electron Devices, 35, p. 2259.CrossRefGoogle Scholar
  18. [18]
    Camerlenghi E., Crisenza G., Annunziata R. and Cappelletti P. (1996) “Non volatile memories: issues, challenges and trends for the 2000’s scenario”. Proc. of ESSDERC, p. 121.Google Scholar
  19. [19]
    Rodjy N. (1992) “0.85μm double metal CMOS technology for 5 V Flash EPROM memories with sector erase”. Nonvolatile Semiconductor Memory Symposium.Google Scholar
  20. [20]
    Bergemont A., Haggag H., Anderson L., Shacham E. and Woltsenholme G. (1993) “NOR virtual ground (NVG) — A new scaling concept for very high density FLASH EEPROM and its implementation in a 0.5μm process”. IEDM Tech. Dig., p. 15.Google Scholar
  21. [21]
    Bergemont A., Chi M.H. and Haggag H. (1995) “Low voltage NVG: a new high performance 3V/5V Flash technology for portable computing and telecommunication applications”. Proc. ESSDERC, p. 543.Google Scholar
  22. [22]
    Bude J.D., Frommer A., Pinto M.R. and Weber G.R. (1995) “EEP-ROM/Flash sub 3.0 V drain-source bias hot-carrier writing”. IEDM Tech. Dig., p. 989.Google Scholar
  23. [23]
    Fischer B., Ghetti A., Selmi L., Bez R. and Sangiorgi E. (1997) “Bias and temperature dependence of homogeneous hot-electron injection from silicon into silicon dioxide at low voltages”. IEEE Trans, on Electron Devices, 44, p. 288.CrossRefGoogle Scholar
  24. [24]
    Rau W. (1998) “Quality & Testing: How Much Can We Afford? A Customer Perspective”. IEEE Non-Volatile Semiconductor Memory Workshop, p. 7.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Piero Olivo
    • 1
  • Enrico Zanoni
    • 2
  1. 1.Dipartimento di IngegneriaUniversità di FerraraFerraraItaly
  2. 2.Dipartimento di Elettronica e InformaticaUniversità di PadovaPadovaItaly

Personalised recommendations