Flash Memories: An Overview

  • Piero Olivo
  • Enrico Zanoni


Solid-state memory devices which retain information once the power supply is switched off are called “nonvolatile” memories. For instance, using standard digital technology, a nonvolatile memory can be implemented by writing permanently the data in the memory array during manufacturing (mask-programmed Read Only Memories, ROM). As an alternative, the user can program the information by blowing fusible links or antifuses, thus changing permanently the cell content (i.e. obtaining a Programmable ROM or PROM). In both cases, the memory array can not be erased, thus making these solutions viable only for a limited number of applications.


Flash Memory Charge Pump Nonvolatile Memory Control Gate Dynamic Random Access Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lai S. (1998) “Flash memories: where we were and where we are going”. IEEE IEDM Tech. Dig., p. 971.Google Scholar
  2. [2]
    IEEE Standards Department (1998) “IEEE P1005 draft standard for definitions, symbols, and characteristics of floating gate memory arrays” (approved 1998). IEEE, 445 Hoes Lane, Piscataway, NJ (USA).Google Scholar
  3. [3]
    Kahng D. and Sze S.M. (1967) “A floating gate and its application to memory devices”. Bell Syst. Tech. J., 46, p. 1288.CrossRefGoogle Scholar
  4. [4]
    Frohman-Bentchkowsky D. (1971) “A fully decoded 2048-bit electrically programmable MOS-ROM”. IEEE ISSCC Tech. Dig., p. 80.Google Scholar
  5. [5]
    Wegener H.A.R. et al. (1967) “The variable threshold transistor, a newly electrically alterable nondestructive read-only storage device”. IEDM Tech. Dig.. Google Scholar
  6. [6]
    Libsch F.R. and White M.H. (1998) “SONOS nonvolatile semiconductor memories”. J.E. Brewer and W.D. Brown (Eds.) Nonvolatile Semiconductor Memory Technology. A comprehensive guide to understanding and using NVSM devices, IEEE Press, Chapter 5, p. 309.Google Scholar
  7. [7]
    Harari E., Schmitz L., Troutman B. and Wang S. (1978) “A 256 bit nonvolatile static RAM”. IEEE ISSCC Tech. Dig., p. 108.Google Scholar
  8. [8]
    Johnson W.S., Perlegos G., Renninger A., Kuhn G. and Ranganath T. (1980) “A 16Kbit electrically erasable nonvolatile memory”. ISSCC Tech. Dig., p. 152.Google Scholar
  9. [9]
    Hirano H., Honda T., Moriwaki N., Nakakuma T., Inoue A., Nakane G., Chaya S. and Sumi T. (1997) “2 V/100ns 1T/1C nonvolatile ferroelectric memory architecture with bitline-driven read scheme and nonrelaxation reference cell”. IEEE Journal of Solid State Circuits, 32, p. 649.CrossRefGoogle Scholar
  10. [10]
    Kunishima I. and Takashima D. (1998) “High-density chain ferroelectric random access memory (chain FRAM)”. IEEE Journal of Solid State Circuits, 33, p. 787.CrossRefGoogle Scholar
  11. [11]
    Koike H. et al. (1996) “A 60 ns 1 Mb nonvolatile ferroelectric memory with a nondriven cell plate line write/read scheme”. IEEE Journal of Solid State Circuits, 31, p. 1625.CrossRefGoogle Scholar
  12. [12]
    Pavan P., Bez R., Olivo P., and Zanoni E. (1997) “Flash memory cells — An overview”. Proc. of the IEEE, 85, p. 1248.CrossRefGoogle Scholar
  13. [13]
    Guterman D.C., Rimawi I.H., Chiu T.L., Halvorson R.D. and McElroy D.J. (1979) “An electrically alterable nonvolatile memory cell using a floating-gate structure”. IEEE Trans. on Electron Devices, 26, p. 576.CrossRefGoogle Scholar
  14. [14]
    Masuoka F., Asano M., Iwahashi H., Komuro T. and Tanaka S. (1984) “A new Flash E2PROM cell using triple polysilicon technology”. IEDM Tech. Dig., p. 464.Google Scholar
  15. [15]
    Verma G. and Mielke N. (1988) “Reliability performance of ETOX based Flash memories”. Proc. IRPS, p. 158.Google Scholar
  16. [16]
    Kynett V.N., Baker A., Fandrich M., Hoekstra G., Jungroth O., Kreifels J. and Wells S. (1988) “An in-system reprogrammable 256 KCMOS Flash memory”, ISSCC Tech. Dig., p. 132.Google Scholar
  17. [17]
    Olivo P., Nguyen T. and Riccò B. (1988) “High-field-induced degradation in ultra thin SiO2 films”. IEEE Trans, on Electron Devices, 35, p. 2259.CrossRefGoogle Scholar
  18. [18]
    Camerlenghi E., Crisenza G., Annunziata R. and Cappelletti P. (1996) “Non volatile memories: issues, challenges and trends for the 2000’s scenario”. Proc. of ESSDERC, p. 121.Google Scholar
  19. [19]
    Rodjy N. (1992) “0.85μm double metal CMOS technology for 5 V Flash EPROM memories with sector erase”. Nonvolatile Semiconductor Memory Symposium.Google Scholar
  20. [20]
    Bergemont A., Haggag H., Anderson L., Shacham E. and Woltsenholme G. (1993) “NOR virtual ground (NVG) — A new scaling concept for very high density FLASH EEPROM and its implementation in a 0.5μm process”. IEDM Tech. Dig., p. 15.Google Scholar
  21. [21]
    Bergemont A., Chi M.H. and Haggag H. (1995) “Low voltage NVG: a new high performance 3V/5V Flash technology for portable computing and telecommunication applications”. Proc. ESSDERC, p. 543.Google Scholar
  22. [22]
    Bude J.D., Frommer A., Pinto M.R. and Weber G.R. (1995) “EEP-ROM/Flash sub 3.0 V drain-source bias hot-carrier writing”. IEDM Tech. Dig., p. 989.Google Scholar
  23. [23]
    Fischer B., Ghetti A., Selmi L., Bez R. and Sangiorgi E. (1997) “Bias and temperature dependence of homogeneous hot-electron injection from silicon into silicon dioxide at low voltages”. IEEE Trans, on Electron Devices, 44, p. 288.CrossRefGoogle Scholar
  24. [24]
    Rau W. (1998) “Quality & Testing: How Much Can We Afford? A Customer Perspective”. IEEE Non-Volatile Semiconductor Memory Workshop, p. 7.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Piero Olivo
    • 1
  • Enrico Zanoni
    • 2
  1. 1.Dipartimento di IngegneriaUniversità di FerraraFerraraItaly
  2. 2.Dipartimento di Elettronica e InformaticaUniversità di PadovaPadovaItaly

Personalised recommendations