Skip to main content

Stem Cell Collection for Hematopoietic Transplantation: Stem Cell Sources, Mobilization Strategies, and Factors that Influence Yield

  • Chapter
Book cover Clinical Applications of Cytokines and Growth Factors

Part of the book series: Developments in Oncology ((DION,volume 80))

  • 112 Accesses

Abstract

Over the past decade, it has become clear that the make-up of the stem cell product used in hematopoietic transplantation is one of the most important determinants of transplant outcome. The number of hematopoietic progenitor cells (HPC) is the major determinant of the speed of hematopoietic reconstitution and thereby a strong influence on the length of transplant hospitalization, the amount of resources needed to provide supportive care for the period of iatrogenic marrow failure, and the risk of treatment-related mortality. Both numbers and types of immune cells in the stem cell product also influence the speed and potency of immune reconstitution and the ability of the patient to withstand assault from opportunistic pathogens. In the case of an autologous hematopoietic transplant, contamination by tumor cells admixed with hematopoietic progenitors is strongly associated with the risk for recurrence of the disease for which the transplant is used. In the case of allogeneic hematopoietic transplantation, the presence of large numbers of T lymphocytes influences the risk for graft-versus-host disease (GVHD). With these observations in mind, a number of investigators have evaluated methods to enumerate HPCs, quantify and characterize immune cells, identify presence and number of contaminating tumor cells, and characterize what factors influence the yield of hematopoietic progenitors in the stem cell product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Bekkum DW, De Vries MJ: Radiation Chimaeras. Logos Press Ltd London 1967.

    Google Scholar 

  2. Sharp JG, Armitage J, Crouse D, et al: Are occult tumor cells present in peripheral stem cell harvests of candidates for autologous transplantation? In: Autologous bone marrow transplantation: Proceedings of the Fourth International Symposium. Dicke KA, Spitzer G, Jagannath S, Evinger-Hodges MJ, eds. 693, 1989

    Google Scholar 

  3. To LB, Shepperd M, Haylock DN, et al: Single high doses of cyclophosphamide enable the collection of high numbers of hematopoietic stem cells from the peripheral blood. Exp Hematol 18:442, 1990.

    PubMed  CAS  Google Scholar 

  4. Kotasek D, Shepherd KM, Sage RE, et al: Factors affecting blood stem cell collections following high-dose cyclophosphamide mobilization in lymphoma, myeloma and solid tumors. Bone Marrow Transplant 9: 11, 1992.

    PubMed  CAS  Google Scholar 

  5. Dreger P, Kloss M, Petersen B, et al: Autologous pregenitor cell transplantation: Prior exposure to stem cell toxic drugs determines yield and engraftment of peripheral blood progenitor cell but not of bone marrow grafts. Blood 86: 3970, 1995.

    PubMed  CAS  Google Scholar 

  6. Reiffers J, Faberes C, Boiron JM, et al: Peripheral blood progenitor cell transplantation in 118 patients with hematological malignancies: Analysis of factors affecting the rate of engraftment. J Hematother 3: 185, 1994.

    Article  PubMed  CAS  Google Scholar 

  7. Rowley S, Zuehldsorf M, Braine HG, et al: CFU-GM content of bone marrow graft correlates with time to hematologic reconstitution following autologous bone marrow transplantation with 4-Hydroperoxycyclophosphamide-purged bone marrow. Blood 70: 271, 1987.

    PubMed  CAS  Google Scholar 

  8. Douay L, Gorin NC, Mary JY, et al: Recovery of CFU-GM from cryopreserved marrow and in vivo evaluation after autologous bone marrow transplantation are predictive of engraftment. Exp Hematol 14: 358, 1986.

    PubMed  CAS  Google Scholar 

  9. Shea TC, Mason JR, Breslin M, et al: Reinfusion and serial measurements of carboplatin-mobilized peripheral blood progenitor cells in patients receiving multiple cycles of high-dose chemotherapy. J Clin Oncol 12: 1012, 1994.

    PubMed  CAS  Google Scholar 

  10. Nademanee A, Sniecinski I, Schmidt GM, et al: High-dose therapy followed by autologous peripheral blood stem cell transplantation for patients with Hodgkin’s disease and non-Hodgkin’s lymphoma using unprimed and granulocyte colony-stimulating factor mobilized peripheral blood stem cells. J Clin Oncol 12: 2176, 1994.

    PubMed  CAS  Google Scholar 

  11. Bensinger W, Appelbaum FR, Rowley S, et al: Factors that influence collection and engraftment of autologous peripheral blood stem cells. J Clin Oncol 13: 2547, 1995.

    PubMed  CAS  Google Scholar 

  12. Haas R, Mohle R, Fruhauf S, et al: Patient characteristics associated with successful mobilizing and autografting of peripheral blood progenitor cells in malignant lymphoma. Blood 83: 3787, 1994.

    PubMed  CAS  Google Scholar 

  13. Tricot G, Jagannath S, Vesole D, et al: Peripheral blood stem cell transplants for multiple myeloma: Indentification of Favorable variables for rapid engraftment in 225 patients. Blood 85: 588, 1995.

    PubMed  CAS  Google Scholar 

  14. Watts MJ, Sullivan AM, Jamieson E, et al: Progenitor cell mobilization after low dose cyclophosphamide and granulocyte colony-stimulatieng factor: An analysis of progenitor cell quantity and quality and factors predicting for these parameters in 101 pretreated patients with malignant lymphoma. J Clin Oncol 15: 535, 1997.

    PubMed  CAS  Google Scholar 

  15. Bolwell BJ, Fishleder A, Andresen SW, et al: G-CSF primed peripheral blood progenitor cells in autologous bone marrow transplantation: parameters affecting bone marrow engraftment. Bone Marrow Transplant 12: 609, 1993.

    PubMed  CAS  Google Scholar 

  16. Pettengell R, Morgenstern GR, Woll PJ, et al: Peripheral blood progenitor cell transplantation in lymphoma and leukemia using a single apheresis. Blood 82: 3771, 1993.

    Google Scholar 

  17. Zimmerman TM, Lee WJ, Bender JG, et al: Quantitative CD34 analysis may be used to guide peripheral blood stem cell harvests. Bone Marrow Transplant 9: 439, 1995.

    Google Scholar 

  18. Remes K, Matinlauri I, Grenman S, et al: Daily measurements of blood CD34+ cells after stem cell mobilization predict stem cell yield and post-transplant hematopoietic recovery. J Hematother 6: 13, 1997.

    Article  PubMed  CAS  Google Scholar 

  19. Siena S, Bregni M, Brando B, et al: Flow cytometry for clinical estimation of circulating hematopoietic progenitors for autologous transplantation in cancer patients. Blood 77: 400, 1991.

    PubMed  CAS  Google Scholar 

  20. Passos-Coelho JL, Braine HG, Davis JM, et al: Predictive factors for peripheral blood progenitor cell collections using a single large-volume leukapheresis after cyclophosphamide and granulocyte-macrophage colony-stimulating factor mobilization. J Clin Oncol 13: 705, 1995.

    PubMed  CAS  Google Scholar 

  21. Bensinger WI, Longin K, Appelbaum FR, et al: Peripheral blood stem cells (PBSCs) collected after recombinant granulocyte colony stimulating factor (rhG-CSF): An analysis of factors correlating with the tempo of engraftment after transplantation. Br J Haematol 87: 825, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Bensinger WI, Appelbaum FR, Rowley S, et al: Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 13: 2547, 1995.

    PubMed  CAS  Google Scholar 

  23. Weaver CH, Hazelton B, Birch R, et al: An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 86: 3961, 1996.

    Google Scholar 

  24. Haas R, Mohle R, Murea S, et al: Characterization of peripheral blood progenitor cells mobilized by cytotoxic chemotherapy and recombinant human granulocyte colony-stimulating factor. J Hematother 3: 323, 1994.

    Article  PubMed  CAS  Google Scholar 

  25. Lumley MS, McDonald DF, Czarnecka HM, et al: Quality assurance of CD34+ cell estimation in leucapheresis products. Bone Marrow Transplant 18: 791, 1996.

    PubMed  CAS  Google Scholar 

  26. Holm M, Hokland P: A convergence fo methods for a worldwide standard for CD34+ cell enumeration. J Hematother 7: 105, 1998.

    Article  Google Scholar 

  27. Sutherland D: Assessment of pripheral blood stem cell grafts by CD34+ cell enumeration: Toward a standardized flow cytometric approach. J Hematother 5: 209, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Knape CC: Standardization of absolute CD34 cell enumeration. J Hematother 5: 211, 1996.

    Article  PubMed  CAS  Google Scholar 

  29. Brecher ME, Sims L, Schmitz J, et al: North American multicenter study on flow cytometric enumeration of CD34+ hematopietic stem cells. J Hematother 5: 227, 1996.

    Article  PubMed  CAS  Google Scholar 

  30. Rich IN: Standardization of the CFU-GM assay using hematopoietic growth factors. J Hematother 6: 191, 1997.

    Article  PubMed  CAS  Google Scholar 

  31. Lewis ID, Rawling T, Dyson PG, et al: Standardization of the CFU-GM assay using hematopoietic growth factors. J Hematother 6: 625, 1996.

    Article  Google Scholar 

  32. Osma MM, Ortuna F, de Arriba F, et al: Bone marrow steady-state CD34+/CD71- cell content is a predictive value of rG-CSF-mobilized CD34+ cells. Bone Marrow Transplant 21: 983, 1998.

    Article  PubMed  CAS  Google Scholar 

  33. Sutherland HJ, Eaves CJ, Lansdorp PM, et al: Kinetics of committed and primitive blood progenitor mobilization after chemotherapy and growth factor treatment and their use in autotransplants. Blood 83: 3808, 1994.

    PubMed  CAS  Google Scholar 

  34. Suzuki T, Muroi K, Amemiya Y, et al: Analysis of peripheral blood CD34+ cells mobilized with granulocyte colony-stimulating factor (G-CSF) using a long-term culture system. Bone Marrow Transplant 21: 751, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Murray L, Chen B, Galy A, et al: Enrichment of human hematopoietic stem cell activity in the CD34+ and CD34 Thy 1+ Lin-subpopulation from mobilized peripheral blood. Blood 85: 368, 1995.

    PubMed  CAS  Google Scholar 

  36. McKredie KB, Hersh EM, Freireich EJ: Cells capable of colony formation in the peripheral blood of man. Science 171: 293,1971.

    Article  Google Scholar 

  37. Epstein RB, Sarpel SC: Processing of peripheral blood cells of canines and man. Exp Hematol 3: 109, 1975.

    PubMed  Google Scholar 

  38. Ogawa M, Brush OC, O’dell RF, et al: Circulating erythropoietic precursors assessed in culture: Characterization in normal men and patients with hemaglobinopathies. Blood 50: 1081, 1977.

    PubMed  CAS  Google Scholar 

  39. Goodman JW, Hodgson GS: Evidence for stem cells in the peripheral blood of mice. Blood 19: 702, 1962.

    PubMed  CAS  Google Scholar 

  40. Schmitz N, Bacigalupo A, Hasenclever D, et al: Allogeneic bone marrow transplantation vs filgrastim-mobilized peripheral blood progenitor cell transplantation in patients with early leukaemia: first results of a randomized multicentre trial on the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 21: 995, 1998.

    Article  PubMed  CAS  Google Scholar 

  41. Korbling M, Przepiorka D, Huh YO, et al: Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: Potential advantage of blood over marrow allografts. Blood 85: 1659, 1995.

    PubMed  CAS  Google Scholar 

  42. LoVelle B: Fungicidal activation of murine macrophages by recombinant gamma interferon. Infect Immun 55:2951, 1987.

    Google Scholar 

  43. Zeng D, Dejbakhsh-Jones S, Strober S: Granulocyte colony-stimulating factor reduces the capacity of blood mononuclear cells to induce graft-versus-host disease: Impact on blood progenitor cell transplantation. Blood 90: 453, 1997.

    PubMed  CAS  Google Scholar 

  44. Chao NJ: Graft-versus-host disease: The viewpoint from the donor T cell. Biol Blood Marrow Transplant 3: 1, 1997.

    PubMed  CAS  Google Scholar 

  45. Kusnierz-Glaz CR, Still BJ, Amano M, et al: Granulocyte colony-stimulating factor-induced comobilization of CD4CD8T cells and hematopoietic progenitor cells (CD34+) in the blood of normal donors. Blood 89: 2586, 1997.

    PubMed  CAS  Google Scholar 

  46. Schmitz N, Linch DC, Dreger P, et al: Randomized trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone marrow transplantation in lymphoma patients. The Lancet 347: 353, 1996.

    Article  CAS  Google Scholar 

  47. Beyer J, Schwella N, Zingsem J, et al: Hematopoietic rescue after high-dose chemotherapy using autologous peripheral blood progenitor cells on bone marrow: A randomized comparison. J Clin Oncol 13: 1328, 1995.

    PubMed  CAS  Google Scholar 

  48. Damiani D, Fanin R, Silvestri F, et al: Randomized trial of autologous filgrastim-primed bone marrow transplantation versus filgrastim-mobilized peripheral blood stem cell transplantation with lymphoma patients. Blood 90: 36, 1997.

    PubMed  CAS  Google Scholar 

  49. Janssen WE, Smilee RC, Elfenbein GJ: A prospective randomized trial comparing blood- and marrow-derived stem cells for hematopoietic replacement following high-dose chemotherapy. J Hematotherapy 4: 139, 1995.

    Article  CAS  Google Scholar 

  50. Knudtzon S: In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood 43: 357, 1974.

    PubMed  CAS  Google Scholar 

  51. Mohle R, Haas R, Hunstein W: Expression of adhesion molecules and c-kit on CD34+ hematopoitic progenitor cells: Comparison of cytokine mobilized blood stem cells with normal bone marrow and peripheral blood. J Hematother 2: 483, 1993.

    Article  PubMed  CAS  Google Scholar 

  52. Uchida N, He D, Friera AM, et al: The unexpected G0/G1 cell cycle status of mobilized hematopoietic stem cells from peripheral blood. Blood 89: 465, 1997.

    PubMed  CAS  Google Scholar 

  53. Breems DA, van Hennik PB, Kusadasi N, et al: Individual stem cell quality in leukapheresis products is related to the number of mobilized stem cells. Blood 87: 5370, 1996.

    PubMed  CAS  Google Scholar 

  54. Scott MA, Apperley JF, Bloxham DM, et al: Biological properties of peripheral blood progenitor cells mobilized by cyclophosphamide and granulocyte colony-stimulating factor. Br J Haematol 97: 474, 1997.

    Article  PubMed  CAS  Google Scholar 

  55. Ueno Y, Koizumi S, Yamagami M, et al: Characterization of hematopietic stem cells (CFU-C) in cord blood. Exp Hematol 9: 716, 1981.

    PubMed  CAS  Google Scholar 

  56. Broxmeyer HE, Hangoc G, Cooper S, et al: Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci USA 89:4109, 1992.

    Article  PubMed  CAS  Google Scholar 

  57. Wang JCY, Doedens M, Dick JE: Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 89: 3919, 1997.

    PubMed  CAS  Google Scholar 

  58. Piacibello W, Sanavio F, Garetto L, et al: Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood 89: 2644, 1997.

    PubMed  CAS  Google Scholar 

  59. Steen R, Tjonnfjord GE, Egeland T: Comparison of the phenotype and clonogenicity of normal CD34+ cells from umbilical cord blood, granulocyte colony-stimulating factor-mobilized peripheral blood and adult human bone marrow. J Hematother 3: 253, 1994.

    Article  PubMed  CAS  Google Scholar 

  60. Wagner JE, Rosenthal J, Sweetman R, et al: Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: Analysis of engraftment and acute graft-versus-host disease. Blood 88: 795, 1996.

    PubMed  CAS  Google Scholar 

  61. Cairo MS, Wagner JE: Placental and /or umbilical cord blood: An alternative source of hematopoietic stem cells for transplantation. Blood 90: 4665, 1997.

    PubMed  CAS  Google Scholar 

  62. Gluckman E, Rocha V, Boyer-Chammard A, et al: Outcome of cord-blood transplantation from related and unrelated donors. N Eng J Med 337: 373, 1997.

    Article  CAS  Google Scholar 

  63. McCarthy DM, Goldman JM: Transfusion of circulating stem cells. CRC Crit Rec Clin Lab Scvi 20: 1, 1984.

    Article  CAS  Google Scholar 

  64. Kessinger A, Armitage JO, Smith DM, et al: High-dose therapy and autologous peripheral blood stem cell transplantation for patients with lymphoma. Blood 74: 1260, 1989.

    PubMed  CAS  Google Scholar 

  65. Kessinger A, Armitage J, Landmark J, et al: Autologous peripheral hematopoietic stem cell transplantation restores hematopoietic function following marrow ablative therapy. Blood 71: 723, 1988.

    PubMed  CAS  Google Scholar 

  66. Richman CM, Weiner RS, Yankee RA: Increase in circulating stem cells following chemotherapy in man. Blood 47: 1031, 1976.

    PubMed  CAS  Google Scholar 

  67. Siena S, Bregni M, Brando M, et al: Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide-treated patients: Enhancement by intravenous recombinant human granulocyte macrophage colony-stimulating factor. Blood 74: 1905, 1989.

    PubMed  CAS  Google Scholar 

  68. Gianni AM, Siena S, Bregni M, et al: Granulocyte-macrophage colony-stimulating factor to harvest circulating hematopoietic stem cells for autotransplantation. Lancet 2: 580, 1989

    Article  PubMed  CAS  Google Scholar 

  69. Gianni AM, Tarella C, Siena S, et al: Durable and complete engraftment of rhGM-CSF exposed peripheral blood progenitor cells. Bone Marrow Transplant 6: 143, 1990

    PubMed  CAS  Google Scholar 

  70. Socinski MA, Elias A, Schnipper L, et al: Granulocyte-macrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 1: 1194, 1988.

    Article  PubMed  CAS  Google Scholar 

  71. Rowlings PA, Rawling CM, To LB, et al: A comparison of peripheral blood stem cell mobilisation after chemotherapy with cyclophosphamide as a single agent in doses of 4 g/m2 or 7 g/m2 in patients with advanced cancer. AustNZ J Med 22: 660, 1992.

    Article  CAS  Google Scholar 

  72. Jones HM, Jones SA, Watts MJ, et al: Development of a simplified single-apheresis approach for peripheral blood progenitor cell transplantation in previously treated patients with lymphoma. J Clin Oncol 12: 1693, 1994.

    PubMed  CAS  Google Scholar 

  73. Scwartzberg L, Heffernan M, Birch R, et al: Comparison of different G-CSF schedules in conjunction with cyclophosphamide, etoposide, and cisplatin for peripheral blood stem cell (PBSC) mobilization. Blood 82: 641-Abstract #2548, 1993.

    Google Scholar 

  74. Hillyer CD, Tiegerman KO, Berkman EM: Increase in circulating colony-forming units granulocyte-macrophage during large-volume leukapheresis: Evaluation of a new cell separator. Transfusion 31:327, 1997.

    Article  Google Scholar 

  75. Comenco RL, Malachowski ME, Miller KB, et al: Engraftment with peripheral blood stem cells collected by large-volume leukapheresis for patients with lymphoma. Transfusion 32: 729, 1992.

    Article  Google Scholar 

  76. Malachowski ME, Comenzo RL, Hillyer CD, et al: Large-volume leukapheresis for peripheral blood stem cell collection in patients with hematologic malignancies. Transfusion 32: 732, 1992.

    Article  PubMed  CAS  Google Scholar 

  77. Passos-Coelho JL, Machado MA, Lucio P, et al: Large-volume leukaphereses may be more efficient than standard-volume leukaphereses for collection of peripheral blood progenitor cells. J Hematother 6: 465, 1997.

    PubMed  CAS  Google Scholar 

  78. Grigg A, Roberts A, Raunow H, et al: Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating factor) for mobiliation and collection of peripheral blood progenitor cells in normal volunteers. Blood 1995 85: 4437

    Google Scholar 

  79. Tabilio A, Falzetti F, Giannoni C, et al: Stem cell mobilization in normal donors. J Hematother 6: 227, 1997

    Article  PubMed  CAS  Google Scholar 

  80. Hoglund M, Smedmyr B, Simonsson B, et al: Dose-dependent mobilization of hematopoietic progenitor cells in healthy volunteers receiving glycosylated rHuG-CSF. Bone Marrow Transplant 18: 19, 1996

    PubMed  CAS  Google Scholar 

  81. Stroncek D, Clay M, Smith J, et al: Composition of peripheral blood progenitor cell components collected from healthy donors. Transfusion 37: 411, 1997

    Article  PubMed  CAS  Google Scholar 

  82. Holm M, Hokland P: Not all healthy donors mobilize hametopoietic progenitor cells sufficiently after G-CSF administration to allow for subsequent CD34 purification of the leukapheresis product. J Hematother 7: 111, 1998.

    Article  PubMed  CAS  Google Scholar 

  83. Anderlini P, Korbling M: The use of mobilized peripheral blood stem cells from normal donors for allografting. Stem Cells 15: 9, 1997

    Article  PubMed  CAS  Google Scholar 

  84. Dreger P, Haferlach T, Eckstein V, et al: G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: Safety, kinetics of mobilization, and composition of the graft. Br J Haematol 87: 609, 1994.

    Article  PubMed  CAS  Google Scholar 

  85. Charta S, Price T, Allan R, et al: Effects of in vivo recombinant methionyl human granulocyte colony-stimulating factor on the neutrophil response and peripheral blood colony-forming cells in healthy young and elderly adult volunteers. Blood 84: 2923, 1994.

    Google Scholar 

  86. Welte K, Gabrilove J, Bronchud M, et al: Filgrastim (r-metHuG-CSF): The first 10 years. Blood 88:1907, 1996

    PubMed  CAS  Google Scholar 

  87. Rowley SD, Piantadosi S, Marcellus DC, et al: Analysis of factors predicting speed of hematologic recovery after transplantation with 4-hydroperoxycyclophosphamide-purged autologous bone marrow grafts. Bone Marrow Transplant 7: 183, 1991.

    PubMed  CAS  Google Scholar 

  88. Miflin G, Charley C, Stainer C, et al: Stem cell mobilization in normal donors for allogeneic transplantation: Analysis of safety and factors affecting efficacy. Br J Haematol 95: 345, 1996.

    Article  PubMed  CAS  Google Scholar 

  89. Sugrue MW, Williams KD, Hutcheson CE, et al: Characterization of a patient population in whom an optimal autologous peripheral blood stem cell dose cannot be achieved. J Hematothera 7: 267-(Abstract P10), 1998.

    Google Scholar 

  90. Demirer T, Buckner CD, Storer B, et al: Effect of Different chemotherapy regimens on peripheral blood stem cell collections in patients with breast cancer receiving granulocyte colony-stimulating factor. J Clin Oncol 15: 684, 1997.

    PubMed  CAS  Google Scholar 

  91. Jagannath S, Vesole DH, Glenn L, et al: Low-risk intensive therapy for multiple myeloma with combined autologous bone marrow and blood stem cell support. Blood 80: 1666, 1992.

    PubMed  CAS  Google Scholar 

  92. Martinez C, Sureda A, Martino R, et al: Efficient peripheral blood stem cell mobilization with low-dose G-CSF (50 ug/m2) after salvage chemotherapy for lymphoma. Bone Marrow Transplant 20: 855, 1997.

    Article  PubMed  CAS  Google Scholar 

  93. Aurlien E, Holte H, Pharo A, et al: Combination chemotherapy with mitoguazon, ifosfamide, MTX, etoposide (MIME) and G-CSF can efficiently mobilize PBPC in patients with Hodgkin’s and non-Hodgkin’s lymphoma. Bone Marrow Transplant 21: 873, 1998.

    Article  PubMed  CAS  Google Scholar 

  94. Olivieri A, Offidani M, Ciniero L, et al: Optimization of the yield of PBSC for autotransplantation mobilized by high-dose chemotherapy and G-CSF: proposal for a mathematical model. Bone Marrow Transplant 14: 273, 1994.

    PubMed  CAS  Google Scholar 

  95. Papadopoulos KP, Ayello J, Tugulea S: Harvest quality and factors affecting collection and engraftment of CD34+ cells in patients with breast cancer scheduled for high-dose chemotherapy and peripheral blood progenitor cell support. J Hematother 6: 61, 1997.

    Article  PubMed  CAS  Google Scholar 

  96. Freedman A, Neuberg D, Mauch P, et al: Cyclophosphamide, doxorubicin, vincristine, prednisone dose intensification with granulocyte colony-stimulating factor markedly depletes stem cell reserve for autologous bone marrow transplantation. Blood 90: 4996, 1997.

    PubMed  CAS  Google Scholar 

  97. Elias AD, Ayash L, Anderson KC, et al: Mobilization of peripheral blood progenitor cells by chemotherapy and granulocyte macrophage colony-stimulating factor for hematologic support after high-dose intensification for breast cancer. Blood 79: 3036, 1992

    PubMed  CAS  Google Scholar 

  98. Spitzer G, Verma DS, Fisher R, et al: The myeloid progenitor cell — its value in predicting hematopoietic recivery after autologous bone marrow transplantation. Blood 55: 317, 1980

    PubMed  CAS  Google Scholar 

  99. Ritz J, Bast RC, Clavell LA, et al: Autologous bone marrow transplantation in CALLA-positive acute lymphoblastic leukemia after in vitro treatment with J-r monoclonal antibody and complement. Lancet 2: 60, 1982

    Article  PubMed  CAS  Google Scholar 

  100. Kaizer H, Levy R, Cote JP, et al: Autologous bone marrow transplantation in lymphoblastic lymphoma and T-cell lymphoma. Blood 60: 169a, 1982

    Google Scholar 

  101. Seager RC, Siegal SE, Sidell H, et al: Neuroblastoma: Clinical respectives, monoclonal antibodies and retinoic acid. Ann Intern Med 97: 873, 1982

    Google Scholar 

  102. Schiller G, Stewart AK, Ballester O, et al: A Phase III study evaluating CD34+ selected versus unselected autologous peripheral blood progenitor cell transplantation for patients with advanced multiple myeloma: Engraftment results. Blood 90: 218a-Abstract #960, 1997.

    Google Scholar 

  103. Shpall EJ, Lemlstre CF, Holland K, et al: A prospective randomized trial of buffy coat versus CD34-selected autologous bone marrow support in high-risk breast cancer patients receiving high-dose chemotherapy. Blood 90: 4313–4320, 1997.

    PubMed  CAS  Google Scholar 

  104. Fruhauf S, Haas R, Conradt C, et al: Peripheral blood progenitor cell (PBPC) counts during steady-state hematopoiesis allow to extimate the yield of mobilized PBPC after filgrastim (R-metHuG-CSF)-supported cytotoxic chemotherapy. Blood 85: 2619, 1995.

    Google Scholar 

  105. Webb IJ, Eickhoff CE, Elias AD, et al: Kinetics of peripheral blood mononuclear cell mobilization with chemotherapy and/or granulocyte-colony-stimulating factor: Implications for timing and yield of hematopoietic progenitor cell collections. Transfusion 36: 160, 1996.

    Article  PubMed  CAS  Google Scholar 

  106. Teshima T, Sunami K, Bessho A, et al: Circulating immature cell counts on the harvest predict the yields of CD34+ cells collected after granulocyte colony-stimulating factor plus chemotherapy-induced mobilization of peripheral blood stem cell. Blood 89: 4660, 1997.

    PubMed  CAS  Google Scholar 

  107. Mijovic A, Fishlock K, Pagliuca A, et al: Blast counts in blood progenitor cell (BPC) correlate with CD34+ cells and CFU-GM and are a useful predictor of haemopoietic recovery after autologous BPC transplantation collections. Bone Marrow Transplant 21: 869, 1998.

    Article  PubMed  CAS  Google Scholar 

  108. Weaver CH, Tauer K, Zhen B, et al: Second attempts at mobilization of peripheral blood stem cells in patients with initial low CD34+ cell yields. J Hematother 7: 241, 1998.

    Article  PubMed  CAS  Google Scholar 

  109. Stiff P, LeMaistre CF, Luger S, et al: Resource utilization following PBPC mobilization failure. Proc ASCO 17: 83a-Abstract #319, 1998.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wingard, J.R., Weeks, F.M. (1999). Stem Cell Collection for Hematopoietic Transplantation: Stem Cell Sources, Mobilization Strategies, and Factors that Influence Yield. In: Wingard, J.R., Demetri, G.D. (eds) Clinical Applications of Cytokines and Growth Factors. Developments in Oncology, vol 80. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5013-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5013-6_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7277-6

  • Online ISBN: 978-1-4615-5013-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics