Skip to main content
  • 220 Accesses

Abstract

A plastic package is comprised of at least four different materials, the silicon die, the metal die paddle and leadframe, the die attach material or adhesive used to mechanically attach the die to the die paddle, and the plastic encapsulant. Figure 1.1 illustrates the typical structure of a PQFP (Plastic Quad Flat Pack) package. The die paddle (alloy42 or copper) and leadframe (individual lead fingers) are stamped or etched out of metal strips designed to support multiple die. Figure 1.2 shows such a leadframe strip. The die paddle is essentially a flat metal plate with diagonal ties (known as tie bars) connected to the frame of the metal strip. The function of the tie bar is to support the die and hold it in place during transfer molding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bischof, B. S. (1995). Relationship of adhesion, delamination, preconditioniong and preplating effects at the plastic to leadframe interface. In Proc. 45 th IEEE Electronic Component & Technology Conference, pages 827–834.

    Google Scholar 

  • Bittle, D. A., Suhling, J. C, Beaty, R. E., Jaeger, R. C, and Johnson, R. W. (1991). Piezoresistive stress sensors for structural analysis of electronic packages. Trans. ASME Journal of Electronic Packaging, 113(1):203–215.

    Article  Google Scholar 

  • Blish, R. and Vaney, P. R. (1991). Failure rate model for thin film cracking in plastic ICs. In Proc. IEEE International Reliability Physics Symposium, pages 22–29.

    Google Scholar 

  • Chanchani, R. and Hall, P. M. (1990). Temperature dependence of thermal conductivity of ceramics and metals for electronic packages. IEEE Trans. Components Hybrids & Manufacturing Technology, 13(4):743–750.

    Article  Google Scholar 

  • Chiang, S. S. and Shukla, R. K. (1984). Failure mechanism of die cracking due to imperfect die attachment. In Proc 34 th IEEE Electronic Component & Technology Conference, pages 195–202.

    Google Scholar 

  • Chong, C. T., Leslie, A., Beng, L. T., and Lee, C. (1995). Investigation on the effect of copper leadframe oxidation on package delamination. In Proc. 45 th IEEE Electronic Component & Technology Conference, pages 463–469.

    Google Scholar 

  • Comizzoli, R. B., White, L. K., Kern, W., Schnable, G. L., Peters, D. A., Tracy, C. E., and Vibronek, R. D. (1980). Corrosion of aluminium IC metallization with defective surface passivation layer. In Proc. 18 th IEEE International Reliability Physics Symposium, pages 282–292.

    Google Scholar 

  • Daveraux, R., Norton, L., and Carney, F. (1995). Temperature dependent mechanical behavior of plastic packaging materials. In Proc. 45 th IEEE Electronic Component & Technology Conference, pages 1054–1058.

    Google Scholar 

  • Edwards, D. R., Heinen, K. G., Groothius, S. K., and Martinez, J. E. (1987). Shear stress evaluation of plastic packages. IEEE Trans. Components Hybrids & Manufacturing Technology, 12(4):618–627.

    Article  Google Scholar 

  • Foehringer, R., Golwalkar, S., Eskildsen, S., and Altimari, S. (1991). Thin film cracking in plastic packages-Analysis, model and improvements. In Proc. Electronic Components Conference, pages 759–765.

    Google Scholar 

  • Gallo, A. and Munamarty, R. (1995). Popcorning: A failure mechanism in plastic encapsulated microcircuits. IEEE Trans. Reliab., 44:362–367.

    Article  Google Scholar 

  • Gee, S. A., Akylas, V. R., and Bogert, W. F. V. D. (1988). The design and calibration of semiconductor strain gauge array. In Proc. IEEE International Conference on Microelectronic Test Structures, pages 185–191.

    Google Scholar 

  • Iannuzzi, M. (1983). Reliability and failure of non-hermetic aluminium SICs: literature review and bias humidity performance. IEEE Trans. Components Hybrids & Manufacturing Technology, 6(2):181–190.

    Article  Google Scholar 

  • Inayoshi, H., Nishi, K., Okikawa, S., and Wakashima, Y. (1979). Moisture induced aluminium corrosion and stress on the chip in plastic encapsulated LSIs. In Proc. 17 th IEEE International Reliability Physics Symposium, pages 113–117.

    Google Scholar 

  • Kessel, C. G. M., Gee, S. A., and Murphy, J. J. (1983). The quality of die-attachment and its relationship to stresses and vertical die cracking. IEEE Trans. Components Hybrids & Manufacturing Technology, 6(4):414–420.

    Article  Google Scholar 

  • Kinsman, K. R., Natarajan, B., and Gealer, C. A. (1988). Coatings for strain compliance in plastic packages: opportunities and realities. Thin Film Solids, 166:83–96.

    Article  Google Scholar 

  • Koch, T., Richling, W., Whitlock, J., and Hall, D. (1986). A bond failure mechanism. In Proc. IEEE International Reliability Physics Symposium, pages 55–60.

    Google Scholar 

  • Lau, J. H. (1990). Thermal stress analysis of plastic leaded chip carriers. In Proc. IEEE Intersociety Conference on Thermal Phenomena, pages 57–66.

    Google Scholar 

  • Lau, J. H. (1993). Thermal Stress and Strain in Microelectronics Packaging. Van Nostrand Reinhold, New York.

    Book  Google Scholar 

  • Lesk, I. A., Thomas, R. E., Hawkins, G., Remmel, T. P., and Rugg, J. (1990). Progression of damage caused by temperature cycling on a large die in a molded plastic package. In Proc. 40 th IEEE Electronic Component & Technology Conference, pages 807–812.

    Google Scholar 

  • Lim, T. (1989). The impact of wafer back surface finish on chip strength. In Proc. IEEE International Reliability Physics Symposium, pages 131–136.

    Google Scholar 

  • Lundstrom, P. and Gustafsson, K. (1988). Mechanical stress and life for plastic encapsulated large area chip. In Proc. 38th th IEEE Electronic Component & Technology Conference, pages 396–405.

    Google Scholar 

  • Manzione, L. T. (1990). Plastic Packaging of Microelectronic Devices. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Matsumoto, H., Yamada, M., Fukushima, J., Kondoh, T., Kotani, N., and Tosa, M. (1985). New-filler induced failure mechanism in plastic encapsulated VLSI dynamic MOS memories. In Proc. IEEE International Reliability Physics Symposium, pages 180–183.

    Google Scholar 

  • Mertol, A. (1992). Stress analysis and thermal characterisation of a high pin count PQFP. Trans. ASME Journal of Electronic Packaging, 114:211–220.

    Article  Google Scholar 

  • Miura, H., Nishimura, A., and Kawai, S. (1990). Structural effect of IC plastic package in residual stress in silicon chips. In Proc. 40 th IEEE Electronic Component & Technology Conference, pages 316–321.

    Google Scholar 

  • Miyamoto, K., Nakagawa, O., Mitsuhashi, J., and Matsumoto, H. (1986). The effect of long term stress on filler induced failure in high density RAMs. In Proc. IEEE International Reliability Physics Symposium, pages 51–54.

    Google Scholar 

  • Mogi, N. and Yasuda, Y. (1992). Development of high reliability epoxy molding compounds for surface mount devices. In Proc. 42 nd IEEE Electronic Component & Technology Conference, pages 1023–1029.

    Google Scholar 

  • Natarajan, B. and Bhattacharyya, B. (1986). Die surface stresses in a molded plastic package. In Proc. 36 th IEEE Electronic Component & Technology Conference, pages 544–551.

    Google Scholar 

  • Nguyen, L. T. and Lim, F. J. (1990). Wire sweep during molding of integrated circuits. In Proc. 40 th IEEE Electronic Component & Technology Conference, pages 777–785.

    Google Scholar 

  • Nishioka, T., Oizumi, S., and Ito, S. (1991). Development of encapsulating materials for surface mounted devices. Technical report, Nitto Denko Corp., 1-2, 1-chome, Shimohozumi, Ibaraki OSAKA 567 Japan.

    Google Scholar 

  • Okikawa, S., Sakimoto, M., Tanaka, M., Sato, T., Toya, T, and Hara, Y. (1983). Stress analysis of passivation film crack for plastic molded LSI caused by thermal stress. In Proc. International Symposium for Testing and Failure Analysis, pages 275–280.

    Google Scholar 

  • Oshuga, H., Suzuki, H., Aihara, T., and Hamano, T. (1994). Development of molding compounds suitable for copper leadframes. In Proc. 44 th IEEE Electronic Component & Technology Conference}, pages 141–146.

    Google Scholar 

  • Procter, P. and Sole, J. (1994). Improved thermal conductivity in microelectronic encapsulants. IEEE Trans. Components Packaging & Manufacturing Technology, 14(4):708–713.

    Google Scholar 

  • Shoraka, F., Gealer, C. A., and Bettez, E. (1988). Finite element analysis of compliant coatings. In Proc. 38 th IEEE Electronic Component & Technology Conference, pages 461–467.

    Google Scholar 

  • Smith, C. S. (1954). Piezoresistance effect in germanium and silicon. Physical Review, 94(1):42–49.

    Article  Google Scholar 

  • Striney, K. M. and Schelling, A. W. (1981). Reliability evaluation of aluminium metallised MOS DRAMs in plastic packages in high humidity and temperature environments. In Proc. 31 st IEEE Electronic Component Conference, pages 238–244.

    Google Scholar 

  • Thomas, R. E. (1985). Stress induced deformation of aluminium metallisation in plastic molded semiconductor devices. IEEE Trans. Components Hybrids & Manufacturing Technology, 8(4):427–434.

    Article  Google Scholar 

  • Tummala, R. R., Eugene, Rymaszewski, J., and Klopfenstein, A. G. (1997). Microelectronics Packaging Handbook. Chapman & Hall, New York.

    Book  Google Scholar 

  • Uhara, Y. and Miki, K. (1987). High thermal conductivity encapsulant. Technical report, Nitto Electrical Industrial Co. Ltd, 1-2, 1-chome, Shimohozumi, Ibaraki OSAKA 567 Japan.

    Google Scholar 

  • van Doorselaer, K. and de Zeeuw, K. (1990). Relation between delamination and temperature-cycling induced failures in plastic packaged devices. In Proc. 40 th IEEE Electronic Component & Technology Conference, pages 813–817.

    Google Scholar 

  • van Gestel, H. C. J. M., van Gmert, L., and Bagerman, E. (1993). On chip piezoresistive stress measurement and 3D finite element simulations of plastic DIL40 packages using different materials. In Proc. 43 rd IEEE Electronic Component & Technology Conference, pages 124–133.

    Google Scholar 

  • Wortman, J. J. and Evans, R. A. (1965). Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium. Journal of Applied Physics, 36(1):153–156.

    Article  Google Scholar 

  • Yamaguchi, M., Nakamura, Y., Okubo, M., and Matsumoto, T. (1991). Strength and fracture toughness of epoxy resin filled with silica particles. Technical report, Nitto Denko Corp., 1-2, 1-chome, Shimohozumi, Ibaraki OSAKA 567 Japan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kelly, G. (1999). An Introduction to Plastic Packaging. In: The Simulation of Thermomechanically Induced Stress in Plastic Encapsulated IC Packages. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5011-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5011-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7276-9

  • Online ISBN: 978-1-4615-5011-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics