Recent insights into the molecular basis of intrinsic resistance of colorectal cancer: new challenges for systemic therapeutic approaches

  • Jean L. Grem
Part of the Cancer Treatment and Research book series (CTAR, volume 98)


The incidence of colorectal carcinoma is about 150,000 per year in the United States. Combined modality therapy with radiation and fluorouracil (FU)-based chemotherapy has improved disease-free survival and overall survival after surgical resection of stages II and II rectal cancer, and adjuvant chemotherapy with both FU plus levamisole and FU plus leucovorin has improved disease-free survival and survival in surgically resected stage III colon cancer. Analysis of the combined results of four previous NSABP trials also suggest the same relative benefit of adjuvant FU-based therapy for patients with node-negative colon cancer [1].


Clin Oncol Adenomatous Polyposis Coli Advanced Colorectal Cancer Reduce Folate Carrier Camptothecin Analogue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mamounas EP, Rockette H, Jones J, Wieand S, Wickerham DL, Fisher B, Wolmark N. 1996. Comparative efficacy of adjuvant chemotherapy in patients with Duke’s B versus Duke’s C colon cancer: results from four National Surgical Adjuvant Breast and Bowel Project adjuvant studies (C-01, C-02, C-03, C-04) (abstract 461). Proc Am Soc Clin Oncol 15:205.Google Scholar
  2. 2.
    Grem JL. 1996. 5-Fluorinated pyrimidines. In Chabner BA, Longo DL (eds), Cancer Chemotherapy and Biotherapy. Principles and Practice. Lippincott-Raven: Philadelphia, pp 149–210.Google Scholar
  3. 3.
    Leichman CG, Fleming TR, Muggia FM, Tangen CM, Ardalan B, Doroshow JH, Meyers FJ, Holcombe RF, Weiss GR, Mangalik A, Macdonald JS. 1995. Phase II study of fluorouracil and its modulation in advanced colorectal cancer: a Southwest Oncology Group Study. J Clin Oncol 131:1303–1311.Google Scholar
  4. 4.
    Hill M, Norman A, Cunningham D, Findlay M, Nicolson V, Hill A, Iveson A, Evans C, Jaffe J, Nicolson M, Hickish T. 1995. Royal Marsden Phase III trial of fluorouracil with or without interferon alfa-2b in advanced colorectal cancer. J Clin Oncol 13:1297.Google Scholar
  5. 5.
    Corfu-A Study Group. 1995. Phase III randomized study of two fluorouracil combinations with either interferon alfa-2a or leucovorin for advanced colorectal cancer. J Clin Oncol 13:92.Google Scholar
  6. 6.
    O’Dwyer PJ, Ryan LM, Valone FH, Hines JD, Arbuck SG, Wadler S, Haller DG, Mayer RJ, Benson AB III. 1996. Phase III trial of biochemical modulation of 5-fluorouracil by IV or oral leucovorin or by interferon in advanced colorectal cancer: an ECOG/CALGB Phase III trial (abstract 469). Proc Am Soc Clin Oncol 15:207.Google Scholar
  7. 7.
    Aschele C, Sobrero A, Faderan MA, Bertino JR. 1992. Novel mechanisms of resistance to 5-fluorouracil in human colon cancer (HCT-8) sublines following exposure to two different clinically relevant dose schedules. Cancer Res 52:1855–1864.PubMedGoogle Scholar
  8. 8.
    Sobrero AF, Aschele C, Guglielmi AP, Mori AM, Melioli GG, Rosso R, Bertino JB. 1993. Synergism and lack of cross-resistance between short-term and continuous exposure to fluorouracil in human colon adenocarcinoma cells. J Natl Cancer Inst 85:1937–1944.PubMedGoogle Scholar
  9. 9.
    Grem JL, Voeller DM, Geoffroy F, Horak E, Johnston PG, Allegra CJ. 1994. Determinants of trimetrexate lethality in human colon cancer cells. Br J Cancer 70:1075–1084.PubMedGoogle Scholar
  10. 10.
    Grem JL, Geoffroy F, Politi PM, Cuddy DP, Ross DD, Nguyen D, Steinberg SM, Allegra CJ. 1995. Determinants of sensitivity to l-β-D-arabinofuranosylcytosine in HCT 116 and NC1-H630 human colon carcinoma cells. Mol Pharmacol 48:305–315.PubMedGoogle Scholar
  11. 11.
    Chu E, Voeller DM, Johnston PG, Zinn S, Allegra CJ. 1993. Regulation of thymidylate synthase in human colon cancer cells treated with 5-fluorouracil and interferon-gamma. Mol Pharmacol 43:527–533.PubMedGoogle Scholar
  12. 12.
    Chu E, Koeller DM, Casey JL, Drake JC, Chabner BA, Elwood PC, Zinn S, Allegra CJ. 1991. Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase. Proc Natl Acad Sci USA 88:8977–8981.PubMedGoogle Scholar
  13. 13.
    Johnston PG, Fisher ER, Rockette HE, Fisher B, Wolmark N, Drake JC, Chabner BA, Allegra CJ. 1994. The role of thymidylate synthase expression in prognosis and outcome of adjuvant chemotherapy in patients with rectal cancer. J Clin Oncol 12:2640–2647.PubMedGoogle Scholar
  14. 14.
    Johnston PG, Lenz H-J, Leichman CG, Danenberg KD, Allegra CJ, Danenberg PV, Leichman L. 1995. Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res 55:1407–1412.PubMedGoogle Scholar
  15. 15.
    Alexander HR, Grem JL, Hamilton JM, Pass HI, Hong M, Fraker DL, Steinberg SM, McAtee N, Allegra CJ, Johnston PJ. 1995. Thymidylate synthase protein expression is associated with response following neoadjuvant chemotherapy and resection for locally advanced gastric and gastroesophageal adenocarcinoma. Cancer J Sci Am 1:49–54.PubMedGoogle Scholar
  16. 16.
    Leichman L, Lenz H-J, Leichman CG, Groshen S, Danenberg K, Baranda J, Spears CP, Boswell W, Silberman H, Ortega A, Stain S, Beart R, Danenberg PV. 1995. Quantitation of intratumoral thymidylate synthase expression predicts for response to protracted infusion of 5-fluorouracil and weekly leucovorin in disseminated colorectal cancers: preliminary report from an ongoing trial. Eur J Cancer 31A(7/8):1306–1311.PubMedGoogle Scholar
  17. 17.
    Lenz H-J, Leichman CG, Danenberg KD, Danenberg PV, Groshen S, Cohen H, Laine L, Crookes P, Silberman H, Baranda J, Garcia Y, Li J, Leichman L. 1995. Thymidylate synthase mRNA level in adenocarcinoma of the stomach: a predictor for primary tumor response and overall survival. J Clin Oncol 14:176–182.Google Scholar
  18. 18.
    Peters GJ, van der Wilt CL, van Groeningen CJ, Smid K, Meijer S, Pinedo HM. 1994. Thymidylate synthase inhibition after administration of fluorouracil with or without leucovorin in colon cancer patients: implications for treatment with fluorouracil. J Clin Oncol 12:2035–2042.PubMedGoogle Scholar
  19. 19.
    Ayusawa D, Arai H, Wataya Y, Sento T. 1988. A specialized form of chromosomal DNA degradation induced by thymidylate stress in mouse FM3A cells. Mutat Res 200:221–230.PubMedGoogle Scholar
  20. 20.
    Canman CE, Tang H-Y, Normolle DP, Lawrence TS, Maybaum J. 1992. Variations in patterns of DNA damage induced in human colorectal tumor cells by 5-fluorodeoxyuridine: implications for mechanisms of resistance and cytotoxicity. Proc Natl Acad Sci USA 89:10474–10478.PubMedGoogle Scholar
  21. 21.
    Canman CE, Lawrence TS, Shewach DS, Tang H-Y, Maybaum J. 1993. Resistance to fluorodeoxyuridine-induced DNA damage and cytotoxicity correlates with an elevation of deoxyuridine triphosphatase activity and failure to accumulate deoxyuridine triphosphate. Cancer Res 53:5219–5224.PubMedGoogle Scholar
  22. 22.
    Fisher TC, Milner AE, Gregory CD, Jackman AL, Aherne GW, Hartley JA, Dive C, Hickman JA. 1993. Bcl-2 modulation of apoptosis induced by anticancer drugs: resistance to thymidylate stress is independent of classical resistance pathways. Cancer Res 53:3321–3326.PubMedGoogle Scholar
  23. 23.
    Pickard M, Dive C, Kinsella AR. 1995. Differences in resistance to 5-fluorouracil as a function of cell cycle delay and not apoptosis. Br J Cancer 72:1389–1396.PubMedGoogle Scholar
  24. 24.
    Hartwell L. 1992. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71:543–546.PubMedGoogle Scholar
  25. 25.
    Hartwell LH, Kastan MB. 1994. Cell cycle control and cancer. Science 266:1821–1828.PubMedGoogle Scholar
  26. 26.
    Hirama T, Koeffler HP. 1995. Role of the cyclin-dependent kinase inhibitors in the development of cancer. Blood 86:841–854.PubMedGoogle Scholar
  27. 27.
    Clurman BE, Roberts JM. 1995. Cell cycle and cancer. J Natl Cancer Inst 87:1499–1501.PubMedGoogle Scholar
  28. 28.
    Sherr CJ, Roberts JM. 1995. Inhibitors of mammalian Gl cyclin-dependent kinases. Genes Dev 9:1149–1163.PubMedGoogle Scholar
  29. 29.
    El-Deiry WS, Tokino T, Veculescu VE, Leby DB, Parson R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. 1993. WAFl, a potential mediator of p53 tumor suppression. Cell 75:817–825.PubMedGoogle Scholar
  30. 30.
    Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. 1993. The p21 CDK-interacting protein Cip1 is a potent inhibitor of Gl cyclin-dependent kinases. Cell 75:805–816.PubMedGoogle Scholar
  31. 31.
    Kamb A, Gruis N, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day RS III, Johnson BE, Skolnick MH. 1994. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264:436–440.PubMedGoogle Scholar
  32. 32.
    Okamato A, Demetrick DJ, Spillare EA, Hagiwara K, Hussain SP, Bennett WP, Forrester K, Gerwin B, Serrano M, Beach DH, Harris CC. 1994. Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci USA 91:11045–11049.Google Scholar
  33. 35.
    Leach FS, Elledge SJ, Sherr CJ, Willson JKV, Markowitz S, Kinzler KW, Vogelstein B. 1993. Amplification of cyclin genes in colorectal carcinomas. Cancer Res 53:1986–1989.PubMedGoogle Scholar
  34. 36.
    Hatakeyama M, Herrera RA, Makela T, Dowdy SF, Jacks T, Weinberg RA. 1994. The cancer cell and the cell cycle clock. Cold Spring Harbor Symp Quant Biol 59:1–10.PubMedGoogle Scholar
  35. 37.
    Weinberg RA. 1995. The retinoblastoma protein and cell cycle control. Cell 81:323–330.PubMedGoogle Scholar
  36. 38.
    Kaye F, Kim YW, Otterson GA. 1995. Molecular biology of lung cancer. In: Cowell JK (ed), Molecular Genetics of Cancer. Bios Scientific: Oxford, pp 179–204.Google Scholar
  37. 39.
    Xiang LI, DeVijg J, Sugarbaker DJ, Corson J, Fletcher JA. 1995. Codeletion of p15 and p16 in primary malignant mesothelioma. Oncogene 11:511–515.Google Scholar
  38. 40.
    Otterson GA, Kratzke RA, Coxon A, Kim UW, Kaye FJ. 1994. Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wild type RB. Oncogene 9:3375–3378.PubMedGoogle Scholar
  39. 41.
    Kratzke RA, Otterson GA, Lincoln CE, Ewing S, Oie H, Geradts J, Kaye FJ. 1995. Immunohistochemical analysis of the p16INK4 cyclin-dependent kinase inhibitor in malignant mesothelioma. J Natl Cancer Inst 87:1870–1875.PubMedGoogle Scholar
  40. 42.
    King RW, Jackson PK, Kirschner MW. 1994. Mitosis in transition. Cell 79:563–571.PubMedGoogle Scholar
  41. 43.
    Levine AJ, Momand J, Finlay CA. 1991. The p53 tumor suppressor gene. Nature 351:453–456.PubMedGoogle Scholar
  42. 44.
    Zambetti GP, Levine AJ. 1993. A comparison of the biological activities of wild-type and mutant p53. FASEB J 7:855–865.PubMedGoogle Scholar
  43. 45.
    Shimamura A, Fisher DE. 1996. p53 in life and death. Clin Cancer Res 2:435–440.PubMedGoogle Scholar
  44. 46.
    Lu H, Levine AJ. 1995. Human TAF 1131 protein is a transcriptional coactivator of p53 protein. Proc Natl Acad Sci USA 92:5154–5158.PubMedGoogle Scholar
  45. 47.
    Dobner T, Horikoshi N Rubenwolf, Shenk T. 1966. Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 272:1470–1475.Google Scholar
  46. 48.
    Seto E, Usheva A, Zambetti GP, Al E. 1992. Wild-type p53 binds to the TATA-binding protein and repressed transcription. Proc Natl Acad Sci USA 89:12028–12032.PubMedGoogle Scholar
  47. 49.
    Mack DH, Vartikar J, Pipas JM, Laimins LA. 1993. Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature 363:281–283.PubMedGoogle Scholar
  48. 50.
    Finlay CA, Hinds PW, Tan TH, Eliyahu D, Oren M, Levine AJI. 1988. Activating mutations for transformation by p53 produces a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol 8:531–539.PubMedGoogle Scholar
  49. 51.
    El-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman JA, Pietenpol JA, Vurrell M, Hill DE, Wang Y, Wiman KG, Mercer WE, Kastan MB, Kohn KW, Elledge SJ, Kinzler KW, Vogelstein B. 1994. WAF1/Cip1 is induced in p53-mediated Gl arrest and apoptosis. Cancer Res 54:1169–1177.PubMedGoogle Scholar
  50. 52.
    Waldman T, Kinzler KW, Vogelstein B. 1995. p21 is necessary for the p53-mediated Gl arrest in human cancer cells. Cancer Res 44:5187–5190.Google Scholar
  51. 53.
    Cross SM, Sanchez CA, Morgan CA, Schimke MK, Ramel S, Idzerda RL, Raskind WH, Reid BJ. 1995. A p53-dependent mouse spindle checkpoint. Science 267:1353–1356.PubMedGoogle Scholar
  52. 54.
    Lowe SW, Ruley HE, Jacks T, Housman DE. 1993. p53-Dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967.PubMedGoogle Scholar
  53. 55.
    Miura M, Zhu R, Rotello R, Hartwieg EA, Yuan J. 1993. Induction of apoptosis in fibroblasts by IL-1-beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653.PubMedGoogle Scholar
  54. 56.
    Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. 1994. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347.PubMedGoogle Scholar
  55. 57.
    Hockenberry D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. 1992. BCL-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336.Google Scholar
  56. 58.
    Oltvai Z, Milliman C, Korsmeyer S. 1993. BCL-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619.PubMedGoogle Scholar
  57. 59.
    Oltvai ZN, Korsmeyer SJ. 1994. Checkpoints of dueling dimers foil death wishes. Cell 79:189–192.PubMedGoogle Scholar
  58. 60.
    Miyashita R, Reed JC. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299.PubMedGoogle Scholar
  59. 61.
    Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB. 1993. BCL-X, a BCL-2 related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597–608.PubMedGoogle Scholar
  60. 62.
    Chao DT, Linette GP, Boise LH, While LS, Thompson CB, Korsmeyer SJ. 1995. BCL-XL and BCL-2 repress a common pathway of cell death. J Exp Med 182:821–828.PubMedGoogle Scholar
  61. 63.
    Ealovega MW, McGinnis PK, Sumantran VN, Clarke MF, Wicha MS. 1996. BCL-Xs gene therapy induces apoptosis of human mammary tumors in nude mice. Cancer Res 56:1965–1969.PubMedGoogle Scholar
  62. 64.
    Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AMM, Bos JL. 1988. Genetic alterations during colorectal tumor development. N Engl J Med 319:25–532.Google Scholar
  63. 65.
    Fearon ER, Vogelstein B. 1990. A genetic model for colorectal tumorigenesis. Cell 61:759–767.PubMedGoogle Scholar
  64. 66.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC. 1991. p53 mutations in human cancers. Science 253:49–53.PubMedGoogle Scholar
  65. 67.
    Malkin D, Li FP, Strong LC, Fraumeni JF, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, Friend SH. 1990. Germline p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238.PubMedGoogle Scholar
  66. 68.
    Kern SE, Pietenpol JA, Thiagalngam S, Seymour A, Kinzler KW, Vogelstein B. 1992. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256:827–830.PubMedGoogle Scholar
  67. 69.
    Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A. 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356:215–221.PubMedGoogle Scholar
  68. 70.
    Lee JM, Bernstein A. 1993. p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci USA 90:5742–5746.PubMedGoogle Scholar
  69. 71.
    Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Houseman DE, Jacks T. 1994. p53 Status and the efficacy of cancer therapy in vivo. Science 266:807–810.PubMedGoogle Scholar
  70. 72.
    Fan S, El-Deiry WS, Bae I, Freeman J, Jondle D, Bhatia K, Fornace AJ Jr, Magrath I, Kohn KW, O’Conner PM. 1994. p53 Gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res 54:5824–5830.PubMedGoogle Scholar
  71. 73.
    Goh H-S, Yao J, Smith DR. 1995. p53 point mutation and survival in colorectal cancer patients. Cancer Res 55:5217–5221.PubMedGoogle Scholar
  72. 74.
    Lenz HJ, Danenberg K, Danenberg P, Johnston P, Florentine B, Leichman CG, Hayashi K, Metzger R, Leichman L. 1996. p53 status and thymidylate synthase expression are associated and predict for recurrence in patients with stage II colon cancer (abstract 501). Proc Am Soc Clin Oncol 15:215.Google Scholar
  73. 75.
    Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. 1990. The E oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136.PubMedGoogle Scholar
  74. 76.
    Oliner J, Kinzler KW, Meltzer PS, George DL, Vogelstein B. 1992. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83.PubMedGoogle Scholar
  75. 77.
    Momand J, Zambetti GP, Olson DC, George D, Levine AJ. 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245.PubMedGoogle Scholar
  76. 78.
    Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. 1993. Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53. Nature 362:857–860.PubMedGoogle Scholar
  77. 79.
    Meltzer PS. 1994. MDM2 and p53: a question of balance. J Natl Cancer Inst 86:1265–1267.PubMedGoogle Scholar
  78. 80.
    Martin K, Trouche D, Hagemeier C, Sorensen TS, La Thangue NB, Kouzarides T. 1995. Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 375:691–694.PubMedGoogle Scholar
  79. 81.
    Xiao Z-H, Chen J, Levine AJ, Modjtahedt N, Xing J, Sellers WR, Livingston DM. 1995. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375:694–698.PubMedGoogle Scholar
  80. 82.
    Montes de Oca Luna R, Wagner DS, Lozano G. 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206.PubMedGoogle Scholar
  81. 83.
    Jones SN, Roe AE, Donehower LA, Bradley A. 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208.PubMedGoogle Scholar
  82. 84.
    Stewart BW. 1994. Mechanisms of apoptosis: integration of genetic, biochemical and cellular indicators. J Natl Cancer Inst 86:1286–1295.PubMedGoogle Scholar
  83. 85.
    Green DR, Bissonnette RP, Cotter TG. 1994. Apoptosis and cancer. In: de Vita VT Jr, Hellman S, Rosenberg SA (eds), Important Advances in Oncology. JB Lippincott: Philadelphia, pp 37–52.Google Scholar
  84. 86.
    Jackman AL, Calvert AH. 1995. Folate-based thymidylate synthase inhibitors as anticancer drugs. Ann Oncol 6:871–881.PubMedGoogle Scholar
  85. 87.
    Jackman AL, Taylor GA, Gibson W, Kimbell R, Brown M, Calvert AH, Judson IR, Hughes LR. 1991. ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of synthase inhibitor and of L1210 tumor cell growth in vitro and in vivo. Cancer Res 51:5579–5586.PubMedGoogle Scholar
  86. 88.
    Jackman AL, Kelland LR, Kimbell R, Brown M, Givson W, Aherne GW, Hardcastle A, Boyle FT. 1995. Mechanisms of acquired resistance to the quinazoline thymidylate synthase inhibitor ZD1694 (Tomudex) in one mouse and three human cell lines. Br J Cancer 71:914–924.PubMedGoogle Scholar
  87. 89.
    Freemantle SJ, Jackman AL, Kelland LR, Calvert AH, Lunec J. 1995. Molecular characterisation of two cell lines selected for resistance to the folate-based thymidylate synthase inhibitor, ZD1694. Br J Cancer 71:925–930.PubMedGoogle Scholar
  88. 90.
    Lu K, Yin M-B, McGuire JJ, Bonmassar E, Rustum YM. 1995. Mechanisms of resistance to N-[5-[N-(3,4-dihydro-w-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino]-2-thenoyl]-L-glutamic acid (ZD1694), a folate-based thymidylate synthase inhibitor, in the HCT-8 human ileocecal adenocarcinoma cell line. Biochem Pharmacol 50:391–398.PubMedGoogle Scholar
  89. 91.
    Clarke SJ, Hanwell J, de Boer M, Planting A, Verweij J, Walker M, Smith R, Jackman AL, Hughes LR, Harrap KR, Kennealey GT, Judson IR. 1996. Phase I study of ZD1694, a new folate-based thymidylate synthase inhibitor, in patients with solid tumors. J Clin Oncol 14:1495–1503.PubMedGoogle Scholar
  90. 92.
    Zalcberg J, Cunningham D, Van Cutsem E, Francois E, Schornagel J, Adenis A, Green M, Iveson A, Azab M, Seymour I, for the Tomudex Colorectal Study Group. 1996. ZD1694: a novel thymidylate synthase inhibitor with substantial activity in the treatment of patients with advanced colorectal cancer. J Clin Oncol 14:716–721.PubMedGoogle Scholar
  91. 93.
    Cunningham D, Zalcberg J, Smith I, Gore M, Pazdur R, Burris H III, Meropol NJ, Kennealey G, Seymour L, and the ‘Tomudex International Study Group.’ 1996. ‘Tomudex’ (ZD1694): a novel thymidylate synthase inhibitor with clinical antitumor activity in a range of solid tumors. Ann Oncol 7:179–182.PubMedGoogle Scholar
  92. 94.
    Cunningham D, Zalcberg J, Rath U, Olver I, Van Cutsem E, Svensson C, Seitz JF, Harper P, Kerr D, Perez-Manga G, Azab M, Seymour L, Lowery K, and the ‘Tomudex’ Colorectal Cancer Study Group. 1995. ‘Tomudex’ (ZD1694): results of a randomised trial in advanced colorectal cancer demonstrate efficacy and reduced mucositis and leucopenia. Eur J Cancer 31A:1945–1954.PubMedGoogle Scholar
  93. 95.
    Cunningham D. 1998. Mature results from three large controlled studies with raltitrexed (‘Tomudex’). Br J Cancer 77 (Suppl 2):15–21.PubMedGoogle Scholar
  94. 96.
    Taylor EC, Kuhnt D. 1992. A dideazatetrahydrofolate analogue lacking a chiral center at C-6,N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. J Med Chem 35:4450–4454.PubMedGoogle Scholar
  95. 97.
    Shih C, Chen VJ, Gossett LS, Gates SB, MacKellar WC, Habeck LL, Shackelford KA, Mendelsohn LG, Soose DJ, Patel VF, Andis SL, Bewley JR, Rayl EA, Moroson BA, Beardsley GP, Köhler W, Ratnam M, Schultz RM. 1997. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res 57:1116–1123.PubMedGoogle Scholar
  96. 98.
    Rinaldi DA, Burris HA, Dorr FA, Woodworth JR, Kuhn JG, Eckardt JR, Rodriguez G, Corso SW, Fields SM, Langley C, Clark G, Faries D, Lu P, Von Hoff DD. 1995. Initial Phase I evaluation of the novel thymidylate synthase inhibitor, LY231514, using the modified continual reassessment method for dose escalation. J Clin Oncol 13:2842–2850.PubMedGoogle Scholar
  97. 99.
    Rinaldi DA, Burris HA, Dorr FA, Rodriguez G, Eckhardt SG, Fields SM, Woodworth JR, Kuhn JG, Langley C, Clark G, Lu P, Von Hoff DD. 1996. A phase I evaluation of LY231514, a novel multi-targeted antifolate, administered every 21 days (abstract 1559). Proc Am Soc Clin Oncol 15:489.Google Scholar
  98. 100.
    Duch DS, Banks S, Inderjit KD, Dickerson SH, Ferone R, Heath LS, Humphreys J, Knick V, Pendergast W, Singer S, Smith GK, Waters K, Wilson HR. 1993. Biochemical and cellular pharmacology of 1843U89, a novel benzoquinazoline inhibitor of thymidylate synthase. Cancer Res 53:810–818.PubMedGoogle Scholar
  99. 101.
    Hanlon MH, Ferone R. 1996. In vitro uptake, anabolism, and cellular retention of 1843U89 and other benzoquinazoline inhibitors of thymidylate synthase. Cancer Res 56:3301–3306.PubMedGoogle Scholar
  100. 102.
    McGuire JJ, Heitzman KJ, Haile WH, Russell CA, McCloskey DE, Piper JR. 1993. Studies on the cross-resistance of folylpolyglutamate synthetase-deficient, methotrexate-resistant CCRF-CEM human leukemia sublines. In: Ayling JE, Nair MG, Baugh MC (eds), Chemistry and Biology of Pteridines. Advances in Experimental Medicine and Biology, vol 338. Plenum Press: New York, pp 667–670.Google Scholar
  101. 103.
    Humphreys J, Smith G, Waters K, Duch D. 1993. Antitumor activity of the novel thymidylate synthase inhibitor 1843U89 in cells resistant to antifolates by multiple mechanisms (abstract). Proc Am Assoc Cancer Res 34:273.Google Scholar
  102. 104.
    Smith GK, Amyx H, Boytos CM, Duch DS, Ferone R, Wilson HR. 1995. Enhanced antitumor activity for the thymidylate synthase inhibitor 1843U89 through decreased host toxicity with oral folic acid. Cancer Res 55:6117–6125.PubMedGoogle Scholar
  103. 105.
    Burris HA, Kisor DF, Smetzer LA, Eckhardt JR, Rodriguez GI, Rinaldi DA, Lamplin RA, Bigley JW, Von Hoff DD. 1996. A phase I pharmacokinetic study of the thymidylate synthase inhibitor 1843U89 during a daily x 5 bolus adminstration schedule (abstract 1512). Proc Am Soc Clin Oncol 15:477.Google Scholar
  104. 106.
    Webber SE, Bleckman TM, Attard J, Deal JG, Kathardekar V, Welsh KM, Webber S, Hanson CA, Matthews DA, Smith WW, Freer ST, Jordan SR, Bacquet RJ, Howland EF, Booth CLJ, Ward RW, Hermann SM, White J, Morse CA, Hilliard HA, Bartlett CA. 1993. Design of thymidylate synthase inhibitors using protein crystal structures: the synthesis and biological evaluation of a novel class of 5-substituted quinazolinones. J Med Chem 36:733–746.PubMedGoogle Scholar
  105. 107.
    Varney MD, Marxoni GP, Palmer CL, Deal JG, Webber S, Welsh KM, Bacquet RJ, Bartlett CA, Morse CA, Booth CLJ, Herrmann SM, Howland EF, Ward RW, White J. 1992. Crystal-structure-based design and synthesis of benzjcdjindole-containing inhibitors of thymidylate synthase. J Med Chem 35:663–676.PubMedGoogle Scholar
  106. 108a.
    O’Connor BM, Webber S, Jackson RC, Galivan J, Rhee MS. 1994. Biological activity of a novel rationally designed lipophilic thymidylate synthase inhibitor (AG331). Cancer Chemother Pharmacol 34:226–229.Google Scholar
  107. 108b.
    Webber S, Bartlett CA, Bortizki TJ, Hillard JA, Howland EF, Johnston AL, Kosa M, Margosiak SA, Morse CA, Shetty BV. 1996. AG337, a novel lipophilic thymidylate synthase inhibitor: in vitro and in vivo preclinical studies. Cancer Chemother Pharmacol 37:509–517.PubMedGoogle Scholar
  108. 109a.
    Rafi I, Taylor GA, Calvete JA, Boddy AV, Balmanno K, Bailey N, Lind M, Calvert AH, Webber S, Jackson RC, Johnston A, Clendeninn N, Newell DR. 1995. Clinical pharmacokinetic and pharmacodynamic studies with the Nonclassical antifolate thymidylate synthase inhibitor 3,4-Dmydro-2-amino-6-methyl-4-oxo-5-(4-pyridylthio)-quinazolone dihydrochloride (AG337) given by 24-hr continuous intravenous infusion. Clin Cancer Res 1:1275–1280.PubMedGoogle Scholar
  109. 109b.
    Rafi I, Boddy AV, Taylor GA, Calvete JA, Griffin M, Calert AH, Lind M, Bailey N, Johnston A, Clendeninn N, Newell DR. 1966. Pharmacokinetic and pharmacodynamic studies of the non-classical thymidylate synthase inhibitor AG337 given as a 5 day infusion (abstract 294). Ann Oncol 7 (Suppl 1):86.Google Scholar
  110. 110.
    Rafi I, Boddy AV, Taylor GA, Calvete JA, Lind MJ, Newell DR, Calvery AH. 1996. A phase I clinical study of the novel antifolate AG337 given by 5 day oral administration (abstract 293). Ann Oncol 7 (Suppl 1):86.Google Scholar
  111. 111.
    Loh KK, Cohn A, Kelly K, Glode LM, Stuart KE, Belani CP, Johnston A, Clendeninn NJ. 1996. Phase II trials of Thymitaq™ (AG337) in six solid tumor diseases (abstract 385). Proc Am Soc Clin Oncol 15:183.Google Scholar
  112. 112.
    Giantonio B, Qian M, Gallo J, DiMaria D, Legerton K, Johnston AL, Clendeninn NJ, O’Dwyer PJ. 1995. Phase I trial of AG-331 as a 5-day continuous infusion (abstract 1562). Proc Am Soc Clin Oncol 14:480.Google Scholar
  113. 113.
    Takimoto CH, Lu ZH, Zhang R, Liang MD, Larson LV, Cantilena LR Jr, Grem JL, Allegra CJ, Diasio RB, Chu E. 1996. Severe neurotoxicity following 5-fluorouracil-based chemotherapy in a patient with dihydropyrimidine dehydrogenase activity. Clin Cancer Res 2:477–482.PubMedGoogle Scholar
  114. 114.
    Pommier Y, Leteurtre F, Fesen MR, Fujimori A, Bertrand R, Solary E, Kohlhagen G, Kohn KK. 1994. Cellular determinants of sensitivity and resistance to DNA topoisomerase inhibitors. Cancer Invest 12:530–542.PubMedGoogle Scholar
  115. 115.
    Potmesil M. 1994. Camptothecins: from bench research to hospital wards. Cancer Res 54:1431–1439.PubMedGoogle Scholar
  116. 116.
    Takimoto CH, Arbuck SG. 1996. The camptothecins. In: Chabner BA, Longo DL (eds), Cancer Chemotherapy and Biotherapy. Principles and Practice. Lippincott-Raven: Philadelphia, pp 463–484.Google Scholar
  117. 117.
    Giovanella BC, Stehlin JS, Wall ME, Wani MC, Nicholas AW, Liu LF, Silber R, Potmesil M. 1989. DNA topoisomerase I-targeted chemotherapy of human colon cancer in xenografts. Science 246:1046–1048.PubMedGoogle Scholar
  118. 118.
    Burris HA, Fields SM. 1994. Topoisomerase I inhibitors: an overview of the camptothecin analogs. Hematol Clin North Am 8:333–355.Google Scholar
  119. 119.
    Gupta E, Lestingi TM, Mick R, Ramirez J, Vokes EE, Ratain MJ. 1994. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res 54:3723–3725.PubMedGoogle Scholar
  120. 120.
    Gupta E, Mick R, Ramirez J, Wang X, Lestingi TM, Vokes EE, Ratain MJ. 1997. Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients. J Clin Oncol 15:1502–1510.PubMedGoogle Scholar
  121. 121.
    Shimada Y, Yoshino M, Wakui A, Nakao I, Futasuki K, Sakata Y, Kombe M, Taguchi T, Ogawa N, and the CPT-11 Gastrointestinal Cancer Study Group. 1993. Phase II study of CPT-11, a new camptothecin derivative in metastatic colorectal cancer. J Clin Oncol 11:909–913.PubMedGoogle Scholar
  122. 122.
    Pitot HC, Wender DB, O’Connell MJ, Schroeder G, Goldberg RM, Rubin J, Mailliard JA, Knost JA, Ghosh C, Kirschling RJ, Levitt R, Windschitl HE. 1997. Phase II trial of irinotecan in patients with metastatic colorectal carcinoma. J Clin Oncol 15:2910–2919.PubMedGoogle Scholar
  123. 123.
    Rothenberg ML, Eckardt JR, Kuhn JG, Burris HA III, Nelson J, Hilsenbeck SG, Rodriguez GI, Thurman AM, Smith LS, Eckhardt SG, Weiss GR, Elfring GL, Rinaldi DA, Schaaf LJ, Von Hoff DD. 1996. Phase II trial of irinotecan in patients with progressive or rapidly recurrent colorectal cancer. J Clin Oncol 14:1128–1135.PubMedGoogle Scholar
  124. 124.
    Rougier P, Bugat R, Douillard JY, Culine S, Suc E, Brunet P, Becouarn Y, Ychou M, Marty M, Extra JM, Bonneterre J, Adenis A, Seitz JF, Ganem G, Namer M, Conroy T, Negrier S, Merrouche Y, Burki F, Mousseau M, Herait P, Mahjoubi M. 1997. Phase II study of irinotecan in the treatment of advanced colorectal cancer in chemotherapy-naive patients and patients pretreated with fluorouracil-based chemotherapy. J Clin Oncol 15:251–260.PubMedGoogle Scholar
  125. 125.
    Conti JA, Kemeny N, Saltz L, Huang Y, Tong WP, Chou T-C, Sun M, Pulliam S, Gonzalez C. 1996. Irinotecan is an active agent in untreated patients with metastastic colorectal cancer. J Clin Oncol 14:709–715.PubMedGoogle Scholar
  126. 126.
    Von Hoff DD, Rothenberg ML, Pitot HC, Elfring GL, Mohrland JS, Schaaf LJ, Neff LL, Locker PK, Gibson RE, Miller LL. 1997. Irinotecan (CPT-11) therapy for patients with previously treated metastatic colorectal cancer: overall results of FDA-reviewed pivotal US clinical trials (abstract). Proc Am Soc Clin Oncol 16:A803.Google Scholar
  127. 127.
    Dahut W, Harold N, Takimoto C, Allegra C, Chen A, Hamilton JM, Arbuck S, Sorensen JM, Grollman F, Nakashima H, Lieberman R, Liang M, Corse W, Grem J. 1996. A Phase I and pharmacologic study of 9-aminocamptothecin given by seventy-two hour infusion in adult cancer patients. J Clin Oncol 14:1236–1244.PubMedGoogle Scholar
  128. 128.
    Saltz LB, Kemeny NE, Tong W, Harrison J, Berkery R, Kelsen DP. 1997. 9-Aminocamptothecin by 72-hour continuous intravenous infusion is inactive in the treatment of patients with 5-fluorouracil-refractory colorectal carcinoma. Cancer 80:1727–1732.PubMedGoogle Scholar
  129. 129.
    Kunka R, Verweij J, Eckardt J, O’Dwyer P, Paz-Ares L, Shen Y, Littlefield D, Beranek P, Selinger K, Wissel P. 1996. Pharmacodynamic comparison of two dosage regimens for GG211, a novel topoisomerase I inhibitor (abstract 1499). Proc Am Soc Clin Oncol 15:474.Google Scholar
  130. 130.
    Khater C, Twelves C, Grochow L, DeMaria D, Paz-Ares L, Littlefield D, Pritchard JF, Wissel P, Kaye S, O’Dwyer PJ. 1996. Phase I trial of the topoisomerase I inhibitor GG211 as a 21 day continuous infusion (abstract 1536). Proc Am Soc Clin Oncol 15:483.Google Scholar
  131. 131.
    Pantazis P, Hinz HR, Mendoza JT, Kozielski AJ, Williams LJ, Stehelin JS Jr, Giovanella BC. 1992. Complete inhibition of growth followed by death of human malignant melanoma cells in vitro and regression of human melanoma xenografts in immunodeficient mice induced by camptothecins. Cancer Res 52:3980–3987.PubMedGoogle Scholar
  132. 132.
    Pantazis P, Kozielski AJ, Vardeman DM, Petry ER, Giovanella BC. 1993. Efficacy of camptothecin congeners in the treatment of human breast carcinoma xenografts. Oncol Res 5:273–281.PubMedGoogle Scholar
  133. 133.
    Houghton PJ, Cheshire PJ, Hallman JD II, Lutz L, Friedman HS, Danks MK, Houghton JA. 1995. Efficacy of topoisomerase inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother Pharmacol 36:393–403.PubMedGoogle Scholar
  134. 134.
    Emerson DL, Besterman JM, Brown HR, Evans MG, Leitner PP, Luzzio MJ, Shaffer JE, Sternbach DD, Uehling D, Vuong A. 1995. In vivo antitumor activity of two new seven-substituted water-soluble camptothecin analogues. Cancer Res 55:603–609.PubMedGoogle Scholar
  135. 135.
    Fuji S, Ikenaka K, Fukushima M, Shirasaka T. 1979. Effect of uracil and its derivatives on antitumor activity of 5-fluorouracil and 1-(2-tetrahydrofuryl)-5-fluorouracil. Jpn J Cancer Res 69:763–772.Google Scholar
  136. 136.
    Ota K, Taguchi T, Kimura K. 1988. Report on nationwide pooled data and cohort investigation in UFT phase II study. Cancer Chemother Pharmacol 22:333–338.PubMedGoogle Scholar
  137. 137.
    Pazdur R, Lassere Y, Rhodes V, Ajani JA, Sugarman SM, Patt YZ, Jones DV Jr, Markowitz AB, Abbruzzese JL, Bready B, Levin B. 1994. Phase II trial of uracil and tegafur plus oral leucovorin: an effective oral regimen in the treatment of colorectal carcinoma. J Clin Oncol 12:2296–2300.PubMedGoogle Scholar
  138. 138.
    Spector T, Harrington JA, Porter DJT. 1993. 5-Ethynyluracil (776C85): inactivation of dihydropryimidine dehydrogenase in vivo. Biochem Pharmacol 46:2243–2248.PubMedGoogle Scholar
  139. 139.
    Baccanari DP, Davis ST, Knick VC, Spector T. 1993. 5-Ethynyluracil (776C85): a potent modulator of the pharmacokinetics and antitumor efficacy of 5-fluorouracil. Proc Natl Acad Sci USA 90:11064–11068.PubMedGoogle Scholar
  140. 140.
    Cao S, Rustum YM, Spector T. 1994. 5-Ethynyluracil (776C85): modulation of 5-fluorouracil efficacy and therapeutic index in rats bearing advanced colorectal carcinoma. Cancer Res 54:1507–1510.PubMedGoogle Scholar
  141. 141.
    Spector T, Cao S, Rustum YM, Harrington JA, Porter DJT. 1995. Attenuation of the antitumor activity of 5-fluorouracil by (R)-5-fluoro-5,6-dihydrouracil. Cancer Res 55:1239–1241.PubMedGoogle Scholar
  142. 142a.
    Baker SD, Khor SP, Adjei AA, Doucette M, Spector T, Donehower RC, Grochow LB, Sartorius SE, Noe DA, Hohneker JA, Rowinsky EK. 1996. Pharmacokinetic, oral bioavailability, and safety study of fluorouracil in patients treated with 776C85, an inactivator of dihydropyrimidine dehydrogenase. J Clin Oncol 14:3085–3096.PubMedGoogle Scholar
  143. 142b.
    Schilsky RL, Hohneker J, Ratain MJ, Janisch L, Smetzer L, Lucas VS, Khor SP, Diasio R, Von Hoff DD, Burris HA 3rd. 1998. Phase I clinical and pharmacologic study of eniluracil plus fluorouracil in patients with advanced cancer. J Clin Oncol 16:1450–1457.PubMedGoogle Scholar
  144. 143.
    Shiraska T, Shimamoto Y, Fukushima M. 1993. Inhibition of oxonic acid on gastrointestinal toxicity of 5-fluorouracil without loss of its antitumor activity in rats. Cancer Res 53:4004–4009.Google Scholar
  145. 144.
    Shiraska T, Nakano K, Takechi T, Satake H, Uchida J, Fujioka A, Saito H, Okable H, Oyama K, Takeda S, Unemi N, Fukushima M. 1996. Antitimor activity of 1M tegafur-0.4M 5-chloro-2,4-dihydroxypyridine-1M potassium oxonate (S-1) against human colon carcinoma orthotopically implanted into nude rats. Cancer Res 56:2602–2606.Google Scholar
  146. 145.
    Taguchi T, Shirasaka T. 1996. New oral antitumor agent: S-l (abstract 223). Ann Oncol 7 (Suppl 1):66.Google Scholar
  147. 146.
    Budman DR, Meropol NJ, Reigner B, Creaven PJ, Lichtman SM, Berghorn E, Behr J, Gordon RJ, Osterwalder B, Griffin T. 1998. Preliminary studies of a novel oral fluoropyrimidine carbamate: capecitabine. J Clin Oncol 16:1795–1802.PubMedGoogle Scholar
  148. 147.
    Frei JV. 1992. Hereditary nonpolyposis colorectal cancer (Lynch syndrome II). Diploid malignancies with prolonged survival. Cancer 69:1108–1111.PubMedGoogle Scholar
  149. 148.
    Lynch HT, Smyrk TC, Watson P, Lanspa SJ, Lynch JF, Lynch PM, Cavalieri RJ, Boland CR. 1993. Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology 104:1535–1549.PubMedGoogle Scholar
  150. 149.
    Marra G, Boland CR. 1995. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes and historical perspectives. J Natl Cancer Inst 87:1114–1125.PubMedGoogle Scholar
  151. 150.
    Peinado MA, Malkhosyan S, Velazquez, Perucho M. 1992. Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction. Proc Natl Acad Sci USA 89:10065–10069.PubMedGoogle Scholar
  152. 151.
    Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. 1993. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 353:558–561.Google Scholar
  153. 152.
    Aaltonen LA, Peltomäki P, Leach FS, Sistonen P, Pylkkanen L, Mecklin J-P, Jarvinen H, Powell SM, Jen J, Hamilton SR, Petersen G, Kinzler KW, Vogelstein B, de La Chapelle A. 1993. Clues to the pathogenesis of familial colorectal cancer. Science 260:812–816.PubMedGoogle Scholar
  154. 153.
    Thibodeau SN, Bren G, Schaid D. 1993. Microsatellite instability in cancer of the proximal colon. Science 260:816–819.PubMedGoogle Scholar
  155. 154.
    Peltomäki P, Aaltonen LA, Sistonen P, Pylkkänen L, Mecklin J-P, Järvinen H, Green JS, de la Chapelle A, Vogelstein B. 1993. Genetic mapping of a locus predisposing to human colorectal cancer. Science 260:810–812.PubMedGoogle Scholar
  156. 155.
    Fishel R, Lescoe MK, Rao MRS, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R. 1993. The human mutator gene homology MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038 (published erratum appears in Cell 77:167, 1994).PubMedGoogle Scholar
  157. 156.
    Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parson R, Peltomäki P, Sistonen P, Aaltonen LA, Nyström-Lahti M, Guan XY, Zhang J, Meltzer PS, Yu J-W, Kao F-T, Chen DJ, Cerosaletti KM, Fournier REK, Todd S, Lewis T, Leach RJ, Naylor SL, Weissenbach J, Mecklin J-P, Järvinen H, Petersen GM, Hamilton SR, Green J, Jass J, Watson P, Lynch HT, Trent JM, de la Chapelle A, Kinzler KW, Vogelstein B. 1993. Mutations of a mutS homolog in hereditary colon cancer. Cell 75:1215–1225.PubMedGoogle Scholar
  158. 157.
    Papadopoulos N, Nicolaides NC, Wei YF, Ruben SM, Carter KC, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM, Adams MD, Venter JC, Hamilton SR, Petersen GM, Watson P, Lynch HT, Peltomäki P, Mecklin J-P, de La Chapelle A, Kinzler KW, Vogelstein B. 1994. Mutation of a mutL homolog in hereditary colon cancer. Science 263:1625–1629.PubMedGoogle Scholar
  159. 158.
    Bronner CE, Baker SM, Morrison PT, et al. 1994. Mutation in the DNA mismatch repair gene homologue hMLHl is associated with hereditary nonpolyposis colon cancer. Nature 368:258–261.PubMedGoogle Scholar
  160. 159.
    Nicolaides NC, Papadopoulos N, Liu B, Wei Y-F, Carter KC, Ruben SM, Rosen CA, Haseltine WA, Flesichmann RD, Fraser CM, Adams MD, Venter JC, Dunlop MG, Hamilton SR, Petersen BM, de la Chapelle A, Vogelstein B, Kinzler KW. 1994. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371:75–80.PubMedGoogle Scholar
  161. 160.
    Fishel R, Ewel A, Leskoe MK. 1994. Purified human MSH2 protein bind to DNA containing mismatched nucleotides. Cancer Res 54:5539–5542.PubMedGoogle Scholar
  162. 161.
    Fishel R, Ewel A, Lee S, Lescoe MK, Griffith J. 1994. Binding of mismatched microsatellite DNA sequences by the human MSH2 protein. Science 266:1403–1405.PubMedGoogle Scholar
  163. 162.
    Loeb LA. 1994. Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res 54:5059–5063.PubMedGoogle Scholar
  164. 163.
    Parsons R, Li GM, Longley MJ, Fang W-H, Papadopoulos N, Jen J, de la Chapelle A, Kinzler KW, Vogelstein B, Modrich P. 1993. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75:1227–1236.PubMedGoogle Scholar
  165. 164.
    Bhattacharyya NP, Skandalis A, Ganesh A, Groden J, Meuth M. 1994. Mutator phenotypes in human colorectal carcinoma cell lines. Proc Natl Acad Sci USA 91:6319–6323.PubMedGoogle Scholar
  166. 165.
    Branch P, Aquilina G, Bignami M, et al. 1993. Defective mismatch binding and a mutator phenotype in cells tolerant to DNA damage. Nature 362:652–654.PubMedGoogle Scholar
  167. 166.
    Kat A, Thilly WG, Fang WH, Longley MJ, Li G-M, Modrich P. 1993. An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc Natl Acad Sci USA 90:6424–6428.PubMedGoogle Scholar
  168. 167.
    Koi M, Umar A, Chauhan DP, Cherian SP, Carethers JM, Kunkel TA, Boland CR. 1994. Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N’-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLHl mutation. Cancer Res 54:4308–4312 (published erratum appears in Cancer Res 55:201).PubMedGoogle Scholar
  169. 168.
    Branch P, Hampson R, Karran P. 1995. DNA mismatch binding defects, DNA damage tolerance, and mutator phenotypes in human colorectal carcinoma cell lines. Cancer Res 55:2304–2309.PubMedGoogle Scholar
  170. 169.
    Boyer JC, Umar A, Risinger JI, Lipford JR, Kane M, Yin S, Barett C, Kolodner RD, Kunkel TA. 1995. Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. Cancer Res 55:6063–6070.PubMedGoogle Scholar
  171. 170.
    Peltomäki P, Lothe RA, Aaltonen LA, Pylkkänen L, Nyström-Lahti M, Seruca R, David L, Hold R, Ryberg D, Haugen A, Brøgger A, Børresen A-L, de la Chapelle A. 1993. Microsatellite instability is associated with tumors that characterize the hereditary nonpolyposis colorectal carcinoma syndrome. Cancer Res 53:5853–5855.PubMedGoogle Scholar
  172. 171.
    Hawn MT, Umar A, Carethers JM, Marra G, Kunkel TA, Boland CR, Koi M. 1995. Evidence for a connection between the mismatch repair system and the G2 cell cycle checkpoint. Cancer Res 55:3721–3725.PubMedGoogle Scholar
  173. 172.
    Dunlop MG. 1995. Molecular genetics of colon cancer. In: Cowell JK (ed), Molecular genetics of Cancer. Bios Scientific: Oxford, pp 113–134.Google Scholar
  174. 173.
    Miyoshi Y, Ando H, Nagase H, Nishisho L, Horii A, Miki Y, Mori T, Utsonomiya J, Baba S, Petersen G, Hamilton S, Kinzler KW, Vogelstein B, Nakamura Y. 1992. Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Proc Natl Acad Sci USA 89:4452–4456.PubMedGoogle Scholar
  175. 174.
    Smith KJ, Johnson KA, Bryan TM, Hill DE, Markowitz S, Willson JKV, Paraskeva C, Petersen GM, Hamilton SR, Vogelstein B, Kinzler KW. 1993. The APC gene product in normal and tumor cells. Proc Natl Acad Sci USA 90:2846–2850.PubMedGoogle Scholar
  176. 175.
    Smith KJ, Levy DB, Maupin P, Pollard TD, Vogelstein B, Kinzler KW. 1994. Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res 54:3672–3675.PubMedGoogle Scholar
  177. 176.
    Munemitsu S, Souza B, Müller O, Albert I, Rubinfeld B, Polakis P. 1994. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 54:3676–3681.PubMedGoogle Scholar
  178. 177.
    Su LK, Vogelstein B, Kinzler KW. 1993. Association of the APC tumor suppressor protein with catenins. Science 262:1731–1734.Google Scholar
  179. 178.
    Inomata M, Ochiai A, Akimoto S, Kitano S, Hirohashi S. 1996. Alteration of β-catenin expression in colonic epithelial cells of familial adenomatous polyposis patients. Cancer Res 56:2213–2217.PubMedGoogle Scholar
  180. 179.
    Vleminckx KL, Vakaet J, Mareel M, Fiers W, Roy FV. 1991. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66:107–119.PubMedGoogle Scholar
  181. 180.
    Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Presiinger AC, Thomas G, Kinzler KW, Vogelstein B. 1990. Identification of a chromosome 18q gene that is altered in colorctal cancers. Science 247:49–56.PubMedGoogle Scholar
  182. 181.
    Hedrick L, Cho KR, Fearon ER, Kinzler KW, Vogelstein B. 1994. The DCC gene product in cellular differentiation and colorectal tumorigenesis. Genes Dev 8:1174–1183.PubMedGoogle Scholar
  183. 182.
    Reale MA, Hu G, Zafar AI, Getzenberg RH, Levine SM, Fearon ER. 1994. Expression and alternative splicing of the deleted in colorectal cancer (DCC) gene in normal and malignant tissue. Cancer Res 54:4493–4501.PubMedGoogle Scholar
  184. 183.
    Turley H, Pezzella F, Kocialkowoski S, Comley M, Kaklamanis L, Fawcett J, Simmons D, Harris AL, Gatter KC. 1995. The distribution of the deleted in colon cancer (DCC) protein in human tissues. Cancer Res 55:5628–5631.PubMedGoogle Scholar
  185. 184.
    Jen J, Kim H, Piantadosi S, Liu Z-F, Levitt RC, Sistonen P, Kinzler KW, Vogelstein B, Hamilton SR. 1994. Allelic loss of chromosome 18q and prognosis in colorectal cancer. N Engl J Med 331:213–221.PubMedGoogle Scholar
  186. 185.
    Hahn SA, Schutte M, Shamsul Hoque ATM, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE. 1996. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353.PubMedGoogle Scholar
  187. 186.
    Levitzki A, Gazit A. 1995. Tyrosine kinase inhibition: an approach to drug development. Science 267:1782–1784.PubMedGoogle Scholar
  188. 187.
    Kiaris H, Spandidos DA. 1995. Mutations of ras genes in human tumours (review). Int J Oncol 7:413–421.PubMedGoogle Scholar
  189. 188.
    Kohl NE, Wilson FR, Mosser SD, Guiliani E, DeSoms SJ, Conner MW, Anthony NJ, Holtz WJ, Gomez RP, Lee T-J, Smith RL, Graham SL, Hartman GD, Gibbs JB, Oliff A. 1994. Protein farnesyltransferase inhibitors block the growth of ras-dependent tumors in nude mice. Proc Natl Acad Sci USA 91:9141–9145.PubMedGoogle Scholar
  190. 189.
    Prendergast GC, Davide JP, DeSolms SJ, Guiliani EA, Graham SL, Gobbs JB, Oliff A, Kohl NE. 1994. Farnesylransferase inhibition causes morphological reversion of ras-trans-formed cells by a complex mechanism that involves regulation of the actin cytoskeleton. Mol Cell Biol 14:4193–4202.PubMedGoogle Scholar
  191. 190.
    Sepp-Lorenzino L, Ma Z, Rands E, Kohl NE, Gibbs JB, Oliff A, Rosen N. 1995. A peptidomimetic inhibitor of farnesyl:protein transferase blocks the anchorage-dependent and-independent growth of human tumor cell lines. Cancer Res 55:5302–5309.PubMedGoogle Scholar
  192. 191.
    Kohl NE, Orner CA, Conner MW, Anthony NJ, Davide JP, DeSolms SJ, Guiliani EA, Gomez RP, Graham SL, Hamilton K, Handt LK, Hartman GD, Koblan KS, Kral AM, Miller PJ, Mosser SD, O’Neill TJ, Rands E, Schaber MD, Gibbs JB, Oliff A. 1995. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nature Med 1:792–797.PubMedGoogle Scholar
  193. 192.
    Nagasu T, Yoshimatsu K, Rowell C, Lewis MD, Garcia AM. 1995. Inhibition of human tumor xenograft growth by treatment with the farnesyl transferase inhibitor B956. Cancer Res 55:5310–5314.PubMedGoogle Scholar
  194. 193.
    Aznavoorian S, Murphy AN, Stetler-Stevenson WG, Liotta L. 1993. Molecular aspects of tumor cell invasion and metastasis. Cancer 71:1368–1383.PubMedGoogle Scholar
  195. 194.
    Duffy MJ. 1996. Proteases as prognostic markers in cancer. Clin Cancer Res 2:613–618.PubMedGoogle Scholar
  196. 195.
    Duffy MJ, Reilly D, McDermott E, O’Higgins N, Fenelly JJ, Andreasen PA. 1994. Urokinase plasminogen activator as a prognostic marker in different subgroups of patients with breast cancer. Cancer 74:2276–2280.PubMedGoogle Scholar
  197. 196.
    Khokha R, Zimmer MJ, Grahan CH, Lala PK, Waterhouse P. 1992. Suppression of invasion by inducible-expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in B16-F10 melanoma cells. J Natl Cancer Inst 84:1017–1022.PubMedGoogle Scholar
  198. 197.
    DeClerck YA, Perez N, Shimada H, Boone TC, Langley KE, Taylor SM. 1992. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 52:701–708.Google Scholar
  199. 198.
    Chirivi RGS, Garofalo A, Crimmin MJ, Bawden LJ, Stoppacciaro A, Brown PD, Giaviazzi R. 1994. Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int J Cancer 58:460–464.PubMedGoogle Scholar
  200. 199.
    Low JA, Johnson MD, Bone EA, Dickson RB. 1996. The matrix metalloproteinase inhibitor batimastat (BB-94) retards human breast cancer solid tumor growth but not ascites formation in nude mice. Clin Cancer Res 2:1207–1214.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Jean L. Grem

There are no affiliations available

Personalised recommendations