Skip to main content

Advances in Spray Drying Desulfurization for High-Sulfur Coals

  • Chapter

Abstract

Advances in spray drying desulfurization for high-sulfur coals were investigated, with a focus on two major areas where improvements can be made: the spray dryer technology itself and the chemical process involving the absorption of SO2. This chapter documents (1) measuring lime dissolution rates at different conditions and with additives in a bench-scale apparatus; (2) direct tests of additive mechanisms in a pilot spray dryer absorber; (3) tests of hydrated fly ash and lime mixtures as new sorbents in a pilot spray dryer; and (4) theoretical studies on the mechanisms of the additive effects.

The mechanisms responsible for improvements in performance with the use of additives were investigated and discussed. Changes in the hygroscopicity of the sorbent slurry were incorporated into a spray dryer mathematical model that examines the drying of slurry droplets, mass transfer, and reaction in the droplet. This model describes the improvements measured in experimental tests with reasonable accuracy.

The lime dissolution rate was measured in the presence of a variety of inorganic and organic additives. The effects of additives were studied directly in a spray dryer. Hygroscopic additives had significant effects on improving lime utilization and SO2 removal in spray dryers; buffer additives had little or no effect. Experiments showed that over 90% removal of the SO2 concentration from a high sulfur coal flue gas can be achieved in spray dryers with the appropriate use of additives and operating conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Masters, K., Spray Drying Handbook, Fourth Edition, NY, John Wiley & Sons Inc. (1985)

    Google Scholar 

  2. Boynton, R. S., Chemistry and Technology of Lime and Limestone, Interscience Publishers, a Division of John Wiley & Sons, Inc., February 1967

    Google Scholar 

  3. Beals, J., J. Cannell and J. Hengel, “How FGD Reagent Quality Affects System Performance,” Power, 128(3), March 1984

    Google Scholar 

  4. Kelly, M. E., J. D. Kilgroe and T. G. Brna, “Current Status of Dry SO2 Control Systems,” Proceedings: Symposium on Flue Gas Desulfurization, 2, EPRI, Palo Alto, CA, March 1983

    Google Scholar 

  5. Reinauer, T. V., J. P. Monat and M. Mutsakis, “Reducing Plant Pollution Exposure: Dry FGD on an Industrial Boiler,” Chem. Eng. Prog., 79(3), March 1983

    Google Scholar 

  6. Haslam, R., G. Calingaert and C. Taylor, J. Am. Chem. Soc., 46, 308 (1924)

    Article  CAS  Google Scholar 

  7. Bassett, H. Jr., J. Chem. Soc, 1270 (1934)

    Google Scholar 

  8. Stearns Catalytic Corp., Economic Evaluation of Dry-Injection FGD Technology, EPRI, Palo Alto, CA., January 1986

    Google Scholar 

  9. Midkiff, L.A., “Spray-Dryer System Scrubs SO2,” Power, 123(1), January 1979

    Google Scholar 

  10. Gooch, J. P. et al. Humidification of Flue Gas to Augment SO 2 Capture by Dry Sorbents, Topical Report to Environmental Protection Agency, EPA Cooperative Agreement No. CR811683 and CR812811 (Draft), August 1988

    Google Scholar 

  11. Getier, J. L., H. L. Shelton and D. A. Furlong, “Modelling the Spray Absorption Process for SO2 Removal,” JAPCA, 29(12), 1270 (1979)

    Google Scholar 

  12. Partridge, G. P. Jr., A Mechanistic Spray Dryer Mathematical Model Based on Film Theory to Predict Sulfur Dioxide Absorption and Reaction by A Calcium Hydroxide Slurry in the Constant-Rate Period, Ph.D. Dissertation, The University of Tennessee, Knoxville, December 1987

    Google Scholar 

  13. Uchida, S. and C. Y. Wen, “Rate of Gas Absorption into a Slurry Accompanied by Instantaneous Reaction,” Chem. Eng. Sci., 32, 1277–1281 (1977)

    Article  CAS  Google Scholar 

  14. Makansi, J., “Particulate Control: Optimizing Precipitators and Fabric Filters for Today’s Power Plants, Special Report,” Power, December 1986

    Google Scholar 

  15. White, H. J., Industrial Electrostatic Precipitation, Addison-Wesley Publishing Company, Inc., MA (1963)

    Google Scholar 

  16. Damle, A. S., Modelling of SO 2 Removal in Spray Dryer Flue Gas Desulfurization System, EPA-600/7-85-038, December 1985

    Google Scholar 

  17. Yoon, H., M. R. Stouffer, W. A. Rosenhoover and R. M. Statnick, “Laboratory and Field Development of Coolside SO2 Abatement Technology,” Second Annual Pittsburgh Coal Conference, Pittsburgh, PA, September 1985

    Google Scholar 

  18. Klingspor, J., H.T. Karlsson and I. Bjerle, “A Kinetic Study of the Dry SO2-Limestone Reaction at Low Temperature,” Chem. Eng. Comm., 22, 88 (1983)

    Article  Google Scholar 

  19. Babu, M. et al., 5-MW Toronto HALT Pilot Plant Testing — Final Testing Results, DOE Contract DE-AC22-85PC81012, December 1988

    Google Scholar 

  20. Felsvang, K. S., O. E. Hansen and E. I. Rasmussen, Process for Flue Gas Desulfurization, US Patent No. 4279873, July 21, 1981

    Google Scholar 

  21. Weeter, D. W., “Utilization of Dry Calcium Based Flue Gas Desulfurization Waste as a Hazardous Waste Fixation Agent,” Proceedings: Waste Treatment & Disposal Aspects: Combustion & Air Pollution Control Progresses, South Atlantic Section, Air Pollution Control Association, February 1981

    Google Scholar 

  22. 22.Donnelly, J. R., R. P. Ellis and W. C. Webster, “Dry Hue Gas Desulfurization End-Product Disposal Riverside Demonstration Facility Experience,” Proceedings: Symposium on Flue Gas Desulfurization, 2, EPRI, Palo Alto, CA, March 1983

    Google Scholar 

  23. Vuceta, J., J. P. Woodyard and D. W. Weeter, “Disposal Techniques for Dry Flue Gas Desulfurization Process Residues,” Proceedings: Waste Treatment & Disposal Aspects: Combustion & Air Pollution Control Progresses, South Atlantic Section, Air Pollution Control Association, February 1981

    Google Scholar 

  24. Kuchibotla, S. et al. “The Stabilization of Orimulsion Spray Dryer Waste for Landfill Disposal,” Proceedings: EPRI 1993 SO 2 Control Symposium, Session 8B, Boston, MA, August 24–27, 1993

    Google Scholar 

  25. Jarvis, J. B., Farmer, R. W. and D. A. Stewart, “Description and Mechanisms of Limestone FGD Operating Problems Due to Aluminum/Fluoride Chemistry,” 7/79-7/83, Proceedings: Tenth Symposium on Flue Gas Desulfurization, 1, EPRI CS-5167, May 1987

    Google Scholar 

  26. Chang, J. C. S. and T. G. Brna, “Enhancement of Wet Limestone Flue Gas Desulfurization by Organic Acid/Salt Additives,” paper 6b, Tenth Symposium on Flue Gas Desulfurization, Atlanta, GA, November 18–21, 1986

    Google Scholar 

  27. Wang, S. C. and D. A. Burbank, “Adipic Acid Enhanced Lime/Limestone Test Results at EPA Alkali Scrubbing Test Facility,” in Flue Gas Desulfurization, J.L. Hudson and G.T. Rochelle, eds., Amer. Chem. Soc. Symp. Ser. 188, 243–265, Washington (1982)

    Google Scholar 

  28. Rochelle, G. T. et al. “Buffer Additives for Lime/Limestone Slurry Scrubbing,” in Flue Gas Desulfurization, J. L. Hudson and G. T. Rochelle, eds., Amer. Chem. Soc. Symp. Ser. 188, 243–265, Washington (1982)

    Google Scholar 

  29. Moser, R. E. and D. R. Owens, “Overview on the Use of Additives in Wet FGD Systems,” Proceedings: 1991 SO 2 Control Symposium, EPRI TR-101054, 1, 3A-1, 3A-21, November 1992

    Google Scholar 

  30. Stohs, M. et al. “Results of Formate Ion Additive Tests at EPRFs High Sulfur Test Center,” EPRI 1991 SO 2 Control Symposium, Washington, D.C., Dec. 3–6, 1991

    Google Scholar 

  31. Burke, J. et al. “Results of Sodium Format Addition at EPRFs HSTC and AECI’s Thomas Hill Unit 3 FGD System,” Proceedings: 1990 SO 2 Control Symposium, Vol. 2, 5–23 to 5–44, September 1990

    Google Scholar 

  32. Moser, R. E., J. M. Burke and S. M. Gray, “Results of Wet FGD Testing at EPRI’s High Sulfur Test Center,” Proceedings: EPA/EPRI First Combined FGD and Dry SO 2 Control Symposium, EPRI CS-6307, RP 982-41, St. Louis, MO, October 1988

    Google Scholar 

  33. Weilert, C.V. and R. D. Norton, “Compliance Strategy for Future Capacity Additives: The Role of Organic Acid Additives,” EPRI 1991 SO 2 Control Symposium, Washington, D.C., December 3–6, 1991

    Google Scholar 

  34. Moser, R., and F. Meserole, U.S. Patent No. 4,994,246, February, 1991

    Google Scholar 

  35. Mailer, G., F. Meserole and R. Moser, “Use of Thiosulfate and EDTA to Inhibit Sulfite Oxidation in Wet Limestone FGD Processes: Results of Laboratory and Bench-scale Testing,” Proceedings: EPRI 1990 SO 2 Control Symposium, 3, 7B53-74, September 1990

    Google Scholar 

  36. Blythe, G., T. Slater and R. Moser, “Full-scale Demonstration of EDTA and Sulfur Addition to Control Sulfite Oxidation,” Proceedings: EPRI 1991 SO 2 Control Symposium, EPRI Report TR-101054, November 1992

    Google Scholar 

  37. Moser, R., D. Owens and D. Colley, “Control and Reduction of Gypsum Scale in Wet Lime/Limestone FGD by Addition of Thiosulfate: Summary of Field Experiences,” Proceedings: First Combined FGD and Dry SO 2 Control Symposium, 1, 5–335 to 5–355, April 1989

    Google Scholar 

  38. Owens, D. et al. “Inhibited Sulfite Oxidation by Thiosulfate in Wet Lime/Limestone FGD Processes: Results of Laboratory Studies and Testing at EPRI’s HSTC Mini-Pilot,” Proceedings: First Combined FGD and Dry SO 2 Control Symposium, 1, 5–310 to 5–334, April 1989

    Google Scholar 

  39. Moser, R. E. and D. R. Owens, “Overview on the Use of Additives in Wet FGD System,” EPRI 1991 SO 2 Control Symposium, Washington, D.C., December 3–6, 1991

    Google Scholar 

  40. Bailey, M. et al. “Results of an Investigation to Improve the Performance and Reliability of HL&P’s Limestone Station FGD System,” Proceedings: EPRI 1991 SO 2 Control Symposium, Washington, D.C., December 3–6, 1991

    Google Scholar 

  41. Teixeira, D. P. T. A. Lott, and L. J. Muzio, “Dry Sorbent SO2 Control for New Power Plants Burning Low Sulfur Western Coals,” paper 7, Proceedings: 1986 Joint Symposium on Dry SO 2 and Simultaneous SO 2/NO x Control Technologies, 1, EPRI CS-4966, December 1986

    Google Scholar 

  42. Weber, G. F, M. E. Collings and M. H. Bobman, “Enhanced Utilization of Furnace Injected Calcium-Based Sorbents,” paper 9, Proceedings: 1986 Joint Symposium on Dry SO 2 and Simultaneous SO 2/NO x Control Technologies, 1, EPRI CS-4966, December 1986

    Google Scholar 

  43. Snow, G. C., J. M. Lorrain and S. L. Rakes, “Pilot Scale Furnace Evaluation of Hydrated Sorbents for SO2 Capture,” paper 6, Proceedings: 1986 Joint Symposium on Dry SO 2 and Simultaneous SO 2/NO x Control Technologies, 1, EPRI CS-4966, December 1986

    Google Scholar 

  44. Muzio, L. J., A. A. Boni, G. R. Offen and R. Beittel, “The Effectiveness of Additives for Enhancing SO2 Removal with Calcium Based Sorbents,” paper 13, Proceedings: 1986 Joint Symposium on Dry SO 2 and Simultaneous SO 2/NO x Control Technologies, 1, EPRI CS-4966, December 1986

    Google Scholar 

  45. Ruiz-Alsop, R.N. and G.T. Rochelle, “Effect of Delquescent Salt Additives on the Reaction of Sulfur Dioxide with Dry Ca(OH)2,” Amer.Chem. Soc. Div. Fuel Chem. Prepr, 30(2), 88 (1985)

    CAS  Google Scholar 

  46. Ruiz-Alsop, R. N. and G. T. Rochelle, “Fossil Fuels Utilization: Environmental Concerns,” Am. Chem. Soc., 209–222 (1986)

    Google Scholar 

  47. Yoon, H. et al. “Sorbent Improvement and Computer Modeling Studies for Coolside Desulfur-ization,” 1986 Joint Symposium on Dry SO 2 and Simultaneous SO 2/NO x Control Technologies, Raleigh, NC, June 2–6, 1986

    Google Scholar 

  48. Stouffer, M. F, H. Yoon and F. P. Burker, “The Mechanism of CaO Sulfation in Boiler Limestone Injection,” 194th American Chemical Society National Meeting, August 30, New Orleans, LA (1987)

    Google Scholar 

  49. Yoon, H. et al., “Pilot Process Variable Study of Coolside Desulfurization,” Environmental Progress, 7(2), 104–111 (1988)

    Article  CAS  Google Scholar 

  50. Staudinger, G., P. Melcher and K. Eckersdorfer, “Austrian Experience with Furnace Limestone Injection,” presented at the First Combined FGD and Dry SO2 Control Symposium, St. Louis, MO (1988)

    Google Scholar 

  51. Bjerle, I., J. Klinspor and H.T. Karsson, Ind. Environ. Protec., 4(1), (1984)

    Google Scholar 

  52. Cunill, F. et al. “Influence of Different Additives on the Reaction Between Hydrated Lime and Sulfur Dioxide,” Environmental Progress, 10,4, 273–277, November 1991

    Article  CAS  Google Scholar 

  53. Seinfeld, J. H., Atmospheric Chemistry and Physics of Air Pollution, John Wiley & Sons, Inc. (1986)

    Google Scholar 

  54. Lowell, P. S. and T. B. Parson, Identification of Regenerable Metal Oxide SO 2 for Fluidized-Bed Coal Combustion, Report by Radian Corporation, Austin, Texas, EPA-650/2-75-065 (1975)

    Google Scholar 

  55. Ruth, L. A. and G. M. Varga, Jr., Regenerable Sorbents for Fluidized-Bed Combustion, Exxon Research and Engineering Co., Linden, N.J., Quarterly Progress Report Nos. 4–5 to Nat. Sc. Found. under Contract No. AER 75-16194 (1977)

    Google Scholar 

  56. Yang, T. R. and M. S. Shen, “Calcium Silicates: A New Class of Highly Regenerative Sorbents for Hot Gas Desulfurization,” J. AIChE, 25, 811–819 (1979)

    Article  CAS  Google Scholar 

  57. Jozewicz, W. and G. T. Rochelle, “Fly Ash Recycle in Dry Scrubbing,” Environmental Progress, 5,2, 219–224 (1986)

    Article  CAS  Google Scholar 

  58. Petersen, T., J. Peterson, H. T. Karlsson and I. Bjerle, “Physical and Chemical Activation of Fly Ash to Produce Reagent For Dry FGD Processes,” Proceedings: First Combined FGD and Dry SO 2 Control Symposium, St. Louis, MO, October 1988

    Google Scholar 

  59. Peterson, J. R. and G. T. Rochelle. “Aqueous Reaction of Fly Ash and Ca(OH)2 to Produce Calcium Silicate Absorbent for Flue Gas Desulfurization,” Environmental Science and Technology, 22,11, 1299–1304 (1988)

    Article  CAS  Google Scholar 

  60. Jocewicz, W., C. Jorgensen, J. C. S. Chang, C. B. Sedman and T. B. Brna. “Development and Pilot Plant Evaluation of Silica-Enhanced Lime Sorbents for Dry Flue Gas Desulfurization,” JAPCA, 38,6, 796–805 (1988)

    Article  Google Scholar 

  61. Jocewicz, W., J. C. S. Chang, C. B. Sedman and T. B. Brna, “Silica-Enhanced Sorbents For Dry Injection Removal of SO2 From Flue Gas,” J. APCA, 38,8, 1027–1034 (1988)

    Google Scholar 

  62. Martinez, J. C, J. F. Izquierdo, F. Cunill, J. Tejero and J. Querol. “Reactivation of Fly Ash and Ca(OH)2 Mixtures for SO2 Removal of Flue Gas,” Ind. Eng. Chem. Res., 30,9, 2143–2147 (1991)

    Article  CAS  Google Scholar 

  63. Hall, B. W., C. Singer, W. Jozewicz, C. B. Sedman and M. A. Maxwell. “Current Status of the ADVACATE Process for Flue Gas Desulfurization,” J. A&WMA, 42,1, 103–110 (1992)

    CAS  Google Scholar 

  64. Ho, C. S. and S. M. Shih. “Ca(OH)2/Fly Ash Sorbents for SO2 Removal,” Ind. Eng. Chem. Res., 31,4, 1130–1135 (1992)

    Article  CAS  Google Scholar 

  65. Sanders, J., T. C. Keener and J. Wang, “Heated Fly Ash/Hydrated Lime Slurries for SO2 Removal in Spray Dryer Absorbers,” Ind. Eng. Chem. Res., 34,1, 302–307 (1995)

    Article  CAS  Google Scholar 

  66. Costa, V. and F. Massazza, “Natural Pozzolanas and Fly Ashes,” in S. Diamond, ed., Effects of flyash Incorporation in Cement and Concrete, Materials Research Society, Boston, MA, 134 (1981)

    Google Scholar 

  67. Tognon, G. and P. Ursella, “Combined Lime and Specific Surface Area of Lime-Pozzolana and Lime-Flyash Mixes,” in S. Diamond, ed., Effects of Fly Ash Incorporation in Cement and Concrete, Materials Research Society, Boston, MA, 145 (1981)

    Google Scholar 

  68. Jorgensen, C. and J. C. S. Chang, “Evaluation of Sorbents and Additives for Dry SO2 Removal,” Environmental Progress, 6(2), 26 (1987)

    Article  CAS  Google Scholar 

  69. Jozewicz, W. and J. C. S. Chang, Evaluation of FGD Dry Injection Sorbents and Additives, Vol 1, Development of High Reactivity Sorbents, EPA-600/7-89-006a (NTIS PB89-208920), May 1989

    Google Scholar 

  70. Chang, J. C. S. and C. Jorgensen, Evaluation of FGD Dry Injection Sorbents and Additives, Vol. 2, Pilot Plant Evaluation of High Reactivity Sorbents, EPA-600/7-89-006b (NTIS PB89-214314), May 1989

    Google Scholar 

  71. Meserole, B. F., B. M. Eklund, K. W. Luke and L. J. Holcombe, Limestone Dissolution Studies, Final Report, EPRI CS-4845, Project 1031-4, November 1986

    Google Scholar 

  72. Barton, P. and T. Vatanatham, Env. Sci. Tech., 10, 262 (1976)

    Article  CAS  Google Scholar 

  73. Barton, P. and T. Vatanatham, Env. Sci. Tech., 13, 1420 (1979)

    Google Scholar 

  74. Berner, R. A. and J. W. Morse, “Dissolution Kinetics of Calcium Carbonate in Sea Water-Theory of Calcite Dissolution,” American J. of Science 274(2), 108–134 (1974)

    Article  CAS  Google Scholar 

  75. Plummer, L. N., D. L. Parkhurst and T. M. L. Wigley, Amer. Chem. Soc. Symp. Ser., 93, 538–573 (1979)

    Google Scholar 

  76. Wentzler, H. T. and F. Aplan, “Kinetics of Limestone Dissolution by Acid Wastewaters,” Proceedings of Environmental Control Symposium, 1972. ASME Metallurgical Society, New York, 513–523 (1972)

    Google Scholar 

  77. Uchida, S., C. Y. Wen and W. J. McMichael, “Dissolution Rate of Limestone into Acid Solution,” J. Chin. Inst. Chem. Eng. 5, 111–114 (1974)

    CAS  Google Scholar 

  78. Kim, K. Y, M. E. Deming and J. D. Hatfield, “Dissolution of Limestone in Simulated Slurries for Removal of Sulfur Dioxide from Stack Gases,” Env. Sci. Tech. 9(10), 949–945, (1975)

    Article  CAS  Google Scholar 

  79. Chan, P. K. and G. T. Rochelle, “Limestone Dissolution — Effects of pH, CO2, and Buffers Modeled by Mass Transfer,” Amer. Chem. Soc. Symp. Ser. 188: 75 (1982)

    CAS  Google Scholar 

  80. Toprac, A. J. and G. T. Rochelle, Environmental Progress, 1, 52 (1982)

    Article  CAS  Google Scholar 

  81. Noda, K., S. Uchida and M. Miyazaki, “Limestone Neutralization of Acid Solutions Containing Dissolved Iron,” J. of Chem. Eng. of Japan, 22,3, 253–257 (1989)

    Article  CAS  Google Scholar 

  82. Sjoberg, L. E., “A Fundamental Equation for Calcite Dissolution Kinetics,” Geochimica et Cosmochimica Acta, 40, 441–447 (1976)

    Article  Google Scholar 

  83. Evans, J. T. and M. G. Moseley, “Suitability and Availability of Texas Limestone for Flue-Gas Desulfurization,” Proceedings of the Gulf Coast Lignite Conference: Geology, Utilization, and Environmental Aspects (1978)

    Google Scholar 

  84. Pesret, F., Kinetics of Carbonate-Seawater Interactions, AD-747976. University of Hawaii, Hawaii Institute of Geophysics, Honolulu, HI, August 1972

    Google Scholar 

  85. Pearson, H. F. and A. J. McDonnell, “Use of Crushed Limestone to Neutralized Acid Wastes,” ASCE, J. Env. Eng. Div., 101 (EEI), 139–158 (1975)

    CAS  Google Scholar 

  86. Gooch, J. P. et al. “Sorbent Development and Production Studies,” paper 11, Proceedings: 1986 Joint Symposium on Dry SO 2 and Simultaneous SO 2/NO x Control Technologies, Vol. 1, EPRI CS-4966, December 1986

    Google Scholar 

  87. Gage, L. C. and G. T. Rochelle, “Limestone Dissolution in Flue Gas Scrubbing: Effect of Sulfite,” J. A&WMA, 42,7, 962–935, July 1992

    Google Scholar 

  88. Jarvis, J. B., B. F. Meserole, J. T. Selm, G. T. Rochelle, L. C. Gage and E. R. Moser, “Development of a Predictive Model for Limestone Dissolution in Wet FGD Systems,” EPA/EPRI Combined FGD and Dry SO 2 Control Symposium, St. Louis, MO (1988)

    Google Scholar 

  89. Ukawa, N., S. Okino, M. Oshima and T. Oishi, “Effects of Salts on Limestone Dissolution Rate in Wet Limestone Flue Gas Desulfurization,” J. of Chem. Eng. of Japan, 26,1, 112–113 (1993)

    Article  CAS  Google Scholar 

  90. Tseng, P. C. and G. T. Rochelle, “Dissolution Rate of Calcium Sulfite Hemihydrate in Rue Gas Desulfurization Processes,” Environmental Progress, 5, 35–40 (1986)

    Article  Google Scholar 

  91. Tseng, P. C. and G. T. Rochelle, “Calcium Sulfite Hemihydrate: Crystal Growth Rate and Crystal Habit,” Environmental Progress, 5, 5–11 (1986)

    Article  CAS  Google Scholar 

  92. Kelly, B., B. Keough and A. D. Randolph, “Some Effects of Crystal Modifiers on CaSO3.l/ 2H2O Crystal habit, Growth and Nucleation,” AIChE National Meeting, Houston, March 27–31, 1983

    Google Scholar 

  93. Giles, E. D., I. M. Ritchie and B. A. Xu, “The Kinetics of Dissolution of Slaked Lime,” Hydro-metallurgy, 32, 119–128 (1993)

    Article  CAS  Google Scholar 

  94. Perry, R. H. and D. Green, Perry’s Chemical Engineer’s Handbook, 6th Edition, McGraw-Hill, Inc. (1984)

    Google Scholar 

  95. Blythe, G. M. et al. “Results of EPRI’s High Sulfur Test Center Spray Dryer/Pulse-Jet Fabric Pilot Test,” EPRI Proceedings: 1990 SO 2 Control Symposium, Volume 2, 4c–47, 4c–64 (1990)

    Google Scholar 

  96. Fellman, R. T. and P. N. Cheremisineff, “A Survey of Lime/Limestone Scrubbing for SO2 Removal,” Air Pollution Control and Design, Part 2, Edited by Paul N. Cheremisineff and Richard A. Young, Maral Dekker, Inc. (1977)

    Google Scholar 

  97. Ranz, W. E. and W. R. Marshall, Jr., “Evaporation From Droplets,” Chem. Eng. Prog., 48,3, 141–146, 173–80 (1952)

    CAS  Google Scholar 

  98. Bird, R. B., W. E. Stewart and E. N. Lightfoot, Transport Phenomena, John Wiley and Sons, NY (1960)

    Google Scholar 

  99. Parti, M. and B. Palancz, “Mathematical Model for Spray Drying,” Chem. Eng. Sci., 29, 355–362(1974)

    Article  CAS  Google Scholar 

  100. Hinds, W. C., Aerosol Technology, John Wiley & Sons, Inc. (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keener, T.C., Wang, J., Khang, SJ. (1998). Advances in Spray Drying Desulfurization for High-Sulfur Coals. In: Dry Scrubbing Technologies for Flue Gas Desulfurization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4951-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4951-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7247-9

  • Online ISBN: 978-1-4615-4951-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics