Tissue Distribution, Cellular Uptake, and Intracellular Localization and Stability of Centrally Administered Oligonucleotides in the Brain: Implications for Behavioral and Physiological Effects of Antisense Oligonucleotides

  • Wolfgang Sommer
  • Donald W. Pfaff
  • Sonoko Ogawa
Part of the Perspectives in Antisense Science book series (DARE, volume 1)


The antisense oligodeoxynucleotide (ODN) method has established its status as one of the most powerful tools to study the role of certain molecular processes in the regulation of a specific behavior or brain function. This method has some advantages in comparison to the gene knockout method, another powerful molecular tool to assess the effects of manipulation of gene expression in vivo. For example: 1) the antisense ODN method can be applied to any gene product of any species as long as the genetic sequence is available, 2) blockade of gene expression by the antisense ODN method is reversible (e.g. manipulation of targeted gene products at a specific developmental stage is possible), and 3) local manipulation (e.g. specific brain regions) of gene expression is possible. In numerous studies reported in the last five years, it is clearly shown that antisense ODN treatment aiming to block the synthesis of a targeted gene product of in vivo neuronal systems can indeed modify the occurrence of various kinds of behaviors and brain functions (for review see Ogawa and Pfaff, 1996; Weiss et al., 1997)


Cellular Uptake Antisense Oligonucleotide Cationic Lipid Medial Preoptic Area Phosphorothioate Oligonucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal S, Temsamani J, Tang JY. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci USA 1991; 88: 7595–7599PubMedCrossRefGoogle Scholar
  2. Akabayashi A, Wahlestedt C, Alexander JT, Leibowitz SF. Specific inhibition of endogenous neuropeptide Y synthesis in arcuate nucleus by antisense oligonucleotides suppresses feeding behavior and insulin secretion. Mol Brain Res 1994; 21: 55–61PubMedCrossRefGoogle Scholar
  3. Akhtar S and Juliano RL. Liposome delivery of antisense oligonucleotides — adsorption and efflux characteristics of phosphorothioate oligodeoxynucleotides. J Control Release 1992; 22: 47–56CrossRefGoogle Scholar
  4. Akhtar S, Kole R, Juliano RL. Stability of antisense DNA oligodeoxynucleotide analogs in cellular extracts and sera. Life Sci 1991; 49: 1793–1801PubMedCrossRefGoogle Scholar
  5. Akhtar S, Shoji Y, Juliano RL. Pharmaceutical aspects of the biological stability and membrane transport characteristics of antisense oligonucleotides. Gene Reg 1992; 1: 133–143Google Scholar
  6. Beltinger C, Saragovi HU, Smith RM, Lesauteur L, Shah N, Dedionisio L, Christensen L, Raible A, Jarett L, Gewirtz AM. Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J Clin Invest 1995; 95: 1814–1823PubMedCrossRefGoogle Scholar
  7. Bennett CF, Chiang MY, Chan HD, Shoemaker J, Mirabelli CK. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol 1992; 41: 1023–1033PubMedGoogle Scholar
  8. Campbell JM, Bacon TA, Wickstrom E. Oligodeoxynucleotide phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J Biochem Biophys Meth 1990; 20: 259–267PubMedCrossRefGoogle Scholar
  9. Capaccioli S, Dipasquale G, Mini E, Mazzei T, Quattrone A. Cationic lipids improve antisense oligonucleotide uptake and prevent degradation in cultured cells and in human serum. Biochem Biophys Res Commun 1993; 197: 818–825PubMedCrossRefGoogle Scholar
  10. Chiasson BJ, Armstrong JN, Hooper ML, Murphy PR, Robertson HA. The application of antisense oligonucleotide technology to the brain: some pitfalls. Cell Mol Neurobiol 1994; 14: 507–521PubMedCrossRefGoogle Scholar
  11. Chien CC, Brown G, Pan YX, Pasternak GW. Blockade of U50,488H analgesia by antisense oligodeoxynucleotides to a kappa-opioid receptor. Eur J Pharmacol 1994; 253: R7–R8PubMedCrossRefGoogle Scholar
  12. Copple BL, Gmeiner WM, Iversen PL. Reaction between metabolically activated acetaminophen and phosphorothioate oligonucleotides. Toxicol Appl Pharmacol 1995; 133: 53–63PubMedCrossRefGoogle Scholar
  13. Cossum PA, Sasmor H, Dellinger D, Truong L, Cummins L, Owens SR, Markham PM, Shea JP, Crooke S. Disposition of the C-14-Labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats. J Pharmacol Exp Ther 1993; 267: 1181–1190PubMedGoogle Scholar
  14. Dragunow M, Tse C, Glass M, Lawlor P. c-fos antisense reduces expression of Knox 24 in rat caudate and neocortex. Cell Mol Neurobiol 1994; 14: 395–405PubMedCrossRefGoogle Scholar
  15. Feigner JH, Kumar R, Sridhar CN, Wheeler CJ, Tsai YJ, Border R, Ramsey P, Martin M, Feigner PL. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 1994; 269: 2550–2561Google Scholar
  16. Feigner PL and Ringold GM. Cationic liposome-mediated transfection. Nature 1989; 337: 387–388CrossRefGoogle Scholar
  17. Geselowitz DA and Neckers LM. Analysis of oligonucleotide binding, internalization, and intracellular trafficking utilizing a novel radiolabeled crosslinker. Antisense Res Dev 1992; 2: 17–25PubMedGoogle Scholar
  18. Geselowitz DA and Neckers LM. Bovine serum albumin is a major oligonucleotide-binding protein found on the surface of cultured cells. Antisense Res Dev 1995; 5: 213–217PubMedGoogle Scholar
  19. Ghosh MK, Ghosh K, Cohen JS. Phosphorothioate-phosphodiester oligonucleotide co-polymers — assessment for antisense application. Anti-Cancer Drug Des 1993; 8: 15–32Google Scholar
  20. Gillardon F, Beck H, Uhlmann E, Herdegen T, Sandkuhler J, Peyman A, Zimmermann M. Inhibition of c-fos protein expression in rat spinal cord by antisense oligonucleotide superfusion. Eur J Neurosci 1994; 6: 880–884PubMedCrossRefGoogle Scholar
  21. Gosh M and Cohen J. Antisense oligonucleotides as antisense inhibitors of gene expression. Progr Nucl Acid Res Mol Biol 1992; 42: 79–126CrossRefGoogle Scholar
  22. Guvakova MA, Yakubov LA, Vlodavsky I, Tonkinson JL, Stein CA. Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem 1995; 270: 2620–2627PubMedCrossRefGoogle Scholar
  23. Harney JP, Scarbrough K, Rosewell KL, Wise PM. In vivo antisense antagonism of vasoactive intestinal peptide in the suprachiasmatic nuclei causes aging-like changes in the estradiol-induced luteinizing hormone and prolactin surges. Endocrinology 1996; 137: 3696–3701PubMedCrossRefGoogle Scholar
  24. Hawley P and Gibson I. Interaction of oligodeoxynucleotides with mammalian cells. Antisense Nucleic Acid Drug Dev 1996; 6: 185–195PubMedCrossRefGoogle Scholar
  25. Hebb MO and Robertson HA. End-capped antisense oligonucleotides effectively inhibit gene expression in vivo and offer a low-toxicity alternative to fully modified phosphorothioate oligodeoxynucleotides. Mol Brain Res 1997; 47: 223–228PubMedCrossRefGoogle Scholar
  26. Heilig M and Schlingensiepen K-H. Antisense oligonucleotides as novel neuropharmacological tools for selective expression blockade in the brain. In: Genetic Manipulation of the Nervous System, D.S. Latchman, ed. Academic Press, 1996Google Scholar
  27. Hnatowich DJ. Pharmacokinetics of 99mTc-labeled oligonucleotides. Q J Nucl Med 1996; 40: 202–208PubMedGoogle Scholar
  28. Hooper ML, Chiasson BJ, Robertson HA. Infusion into the brain of antisense oligonucleotide to the immediate-early gene c-fos suppresses production of fos and produces behavioral effects. Neuroscience 1994; 63: 917–924PubMedCrossRefGoogle Scholar
  29. Iversen P. In vivo studies with phosphorothioate oligonucleotides — pharmacokinetics prologue. Anti Cancer Drug Des 1991; 6: 531–538Google Scholar
  30. Iversen PL, Crouse D, Zon G, Perry G. Binding of antisense phosphorothioate oligonucleotides to murine lymphocytes is lineage specific and inducible. Antisense Res Dev 1992a; 2: 223–233PubMedGoogle Scholar
  31. Iversen PL, Zhu S, Meyer A, Zon G. Cellular uptake and subcellular distribution of phosphorothioate oligonucleotides into cultured cells. Antisense Res Dev 1992b; 2: 211–222PubMedGoogle Scholar
  32. Jiao S, Acsadi G, Jani A, Feigner PL, Wolff JA. Persistence of plasmid DNA and expression in rat brain cells in vivo. ExperNeurol 1992; 115: 400–413Google Scholar
  33. Kang YS, Boado RJ, Pardridge WM. Pharmacokinetics and organ clearance of a 3′-biotinylated, internally [32P]-labeled phosphodiester oligodeoxynucleotide coupled to a neutral avidin/monoclonal antibody conjugate. Drug Metab Dispos 1995; 23: 155–159Google Scholar
  34. Leonetti JP, Mechti N, Degols G, Gagnor C, Lebleu B. Intracellular distribution of microinjected antisense oligonucleotides. Proc Natl Acad Sci USA 1991a; 88: 2702–2706PubMedCrossRefGoogle Scholar
  35. Leonetti JP, Mechti N, Degols G, Lebleu B. Nuclear accumulation of microinjected antisense oligonucleotides. Nucleos Nucleot 1991b; 10: 537–539CrossRefGoogle Scholar
  36. Li B, Hughes JA, Phillips MI. Uptake and efflux of intact antisense phosphorothioate deoxyoligonucleotide directed against angiotensin receptors in bovine adrenal calls. Neurochem Int 1997; 31: 393–403PubMedCrossRefGoogle Scholar
  37. Liu PK, Salminen A, He YY, Jiang MH, Xue JJ, Liu JS, Hsu CY. Suppression of ischemia-induced fos expression and AP-1 activity by an antisense oligodeoxynucleotide to c-fos mRNA. Ann Neurol 1994; 36: 4566–4576CrossRefGoogle Scholar
  38. Loke SL, Stein CA, Zhang XH, Mori K, Nakanishi M, Subasinghe C, Cohen JS, Neckers LM. Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci USA 1989; 19: 3474–3478CrossRefGoogle Scholar
  39. Lu XM, Fischman AJ, Jyawook SL, Hendricks K, Tompkins RG, Yarmush ML. Antisense DNA delivery in vivo — liver targeting by Receptor-Mediated uptake. J Nucl Med 1994; 35: 269–275PubMedGoogle Scholar
  40. Mani SK, Allen JMC, Clark JH, Blaustein JD, O’ Malley BW. Convergent pathways for steroid hormone-and neurotransmitter-induced rat sexual behavior. Science 1994; 265: 1246–1249PubMedCrossRefGoogle Scholar
  41. McCarthy MM, Brook PJ, Pfaus JG, Brown HE, Flanagan LM, Schwartz-Giblin S, Pfaff DW. Antisense oligodeoxynucleotides in behavioral neuroscience. Neuroprotocols 1993; 2: 67–74CrossRefGoogle Scholar
  42. McCarthy MM, Kleopoulos SP, Mobbs CV, Pfaff DW. Infusion of antisense oligodeoxynucleotides to the oxytocin receptor in the ventromedial hypothalamus reduces estrogen-induced sexual receptivity and oxytocin receptor binding in the female rat. Neuroendocrinology 1994a; 59: 432–440PubMedCrossRefGoogle Scholar
  43. McCarthy MM, Masters DB, Rimvall K, Schwartz-Giblin S, Pfaff DW. Intracerebral administration of antisense oligodeoxynucleotides to GAD(65) and GAD(67) mRNAs modulate reproductive behavior in the female rat. Brain Res 1994b; 636: 209–220PubMedCrossRefGoogle Scholar
  44. Neumann I, Porter DWF, Landgraf R, Pittman QJ. Rapid effect on suckling of an oxytocin antisense oligonucleotide administered into rat supraoptic nucleus. Am J Physiol 1994; 267: R852–R858PubMedGoogle Scholar
  45. Nicot A, Ogawa S, Berman YE, Carr KD, Pfaff DW. Effects of an intrahypothalamic injection of antisense oligonucleotides for preproenkephalin mRNA in female rats: evidence for opioid involvement in lordosis reflex. Behav Brain Res 1997; 777: 60–68Google Scholar
  46. Ogawa S, Brown HE, Okano HJ, Pfaff DW. Cellular uptake of intracerebrally administered oligodeoxynucleotides in mouse brain. Reg Peptides 1995; 59: 143–149CrossRefGoogle Scholar
  47. Ogawa S, Olazabal UE, Parhar IS, Pfaff, DW. Effects of intrahypothalamic administration of antisense DNA for progesterone receptor mRNA on reproductive behavior and progesterone receptor immunoreactivity in female rat. J Neurosci 1994; 14: 1766–1774PubMedGoogle Scholar
  48. Ogawa S and Pfaff DW. Application of antisense DNA method for the study of molecular bases of brain function and behavior. Behav Genet 1996; 26: 279–292PubMedCrossRefGoogle Scholar
  49. Ogawa S and Pfaff DW. Current status of antisense DNA methods in behavioral studies. Chem Senses 1998; in pressGoogle Scholar
  50. Pollio G, Xue P, Zanisi M, Nicolin A, Maggi A. Antisense oligonucleotide blocks progesterone-induced lordosis behavior in ovariectomized rats. Mol Brain Res 1993; 19: 135–139PubMedCrossRefGoogle Scholar
  51. Robertson GS, Tetzlaff W, Bedard A, St-Jean M, Wigle N. c-fos mediates antipsychotic-induced neurotensin gene expression in the rodent striatum. Neuroscience 1995; 67: 325–344PubMedCrossRefGoogle Scholar
  52. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996; 16: 675–686PubMedCrossRefGoogle Scholar
  53. Sakai RR, Ma LY, Zhang DM, McEwen BS, Fluharty SJ. Intracerebral administration of mineralocorticoid receptor antisense oligonucleotides attenuate adrenal steroid-induced salt appetite in rats. Neuroendocrinology 1996; 64: 425–429PubMedCrossRefGoogle Scholar
  54. Scarbrough K, Harney JP, Rosewell KL, Wise PM. Acute effects of antisense antagonism of a single peptide neurotransmitter in the circadian clock. Am J Physiol 1996; 270: R283–R288PubMedGoogle Scholar
  55. Sommer W, Bjelke B, Ganten D, Fuxe K. Antisense oligonucleotide to c-fos induces ipsilateral rotational behaviour to d-amphetamine. NeuroReport 1993; 5: 227–280CrossRefGoogle Scholar
  56. Sommer W, Cui X, Erdmann B, Wiklund L, Bricca G, Heilig M, Fuxe K. The spread and uptake pattern of intracerebrally administered oligonucleotides in nerve and glial cell populations of the rat brain. Antisense Res Dev 1998; in pressGoogle Scholar
  57. Sommer W and Fuxe K. On the role of c-fos expression in striatal transmission: the antisense oligonucleotide approach. Neurochem Int 1997; 31: 425–436PubMedCrossRefGoogle Scholar
  58. Sommer W, Rimondini R, O’ Connor W, Hansson AC, Ungerstedt U, Fuxe K. Intrastriatally injected c-fos antisense oligonucleotide interferes with striatonigral but not striatopallidal gamma-aminobutyric acid transmission in the conscious rat. Proc Natl Acad Sci USA 1996; 93: 14134–14139PubMedCrossRefGoogle Scholar
  59. Standifer KM, Chien CC, Wahlestedt C, Brown GP, Pasternak GW. Selective loss of delta opioid analgesia and binding by antisense oligodeoxynucleotides to a delta opioid receptor. Neuron 1994; 12: 805–810PubMedCrossRefGoogle Scholar
  60. Stec WJ, Zon G, Egan W, Stec B. Automated solid-phase synthesis, separation and stereochemistry of phosphorothioate analogues of oligodeoxyribonucleotides. J Am Chem Soc 1984; 106: 6077–6079CrossRefGoogle Scholar
  61. Stein CA and Cheng YC. Antisense oligonucleotides as therapeutic agents — is the bullet really magical. Science 1993; 261: 1004–1012PubMedCrossRefGoogle Scholar
  62. Stein CA, Mori K, Loke SL, Subasinghe C, Shinozuka K, Cohen JS, Neckers LM. Phosphorothioate and normal oligodeoxyribonucleotide with 5′-linked acridine: characterization and preliminary kinetics of cellular uptake. Gene 1988; 72: 333–341PubMedCrossRefGoogle Scholar
  63. Stein CA, Tonkinson JL, Yakubov L. Phosphorothioate oligodeoxynucleotides — antisense inhibitors of gene expression. Pharmacol Ther 1991; 52: 365–384PubMedCrossRefGoogle Scholar
  64. Szklarczyk A and Kaczmarek K. Antisense oligodeoxynucleotides: stability and distribution after intracerebral infusion into rat brain. J Neurosci Meth 1995; 60: 181–187CrossRefGoogle Scholar
  65. Szklarczyk A and Kaczmarek K. Pharmacokinetics of antisense analogues in the central nervous system. Neurochemlnt 1997; 31: 413–423CrossRefGoogle Scholar
  66. Temsamani J, Kubert M, Tang J, Padmapriya A, Agrawal S. Cellular uptake of oligodeoxynucleotide phosphorothioates and their analogs. Antisense Res Develop 1994; 4: 35–42Google Scholar
  67. Thierry AR and Dritschilo A. Intracellular availability of unmodified, phosphorothioated and liposomally encapsulated oligodeoxynucleotides for antisense activity. Nuc Acid Res 1992a; 20: 5691–5698CrossRefGoogle Scholar
  68. Thierry AR and Dritschilo A. Liposomal delivery of antisense oligodeoxynucleotides: application to the inhibition of the multidrug resistance in cancer cells. In: Antisense Strategies, R. Baserga and D.T. Denhardt, eds. New York: New York Academy of Sciences, 1992bGoogle Scholar
  69. Thierry AR, Rahman A, Dritschilo A. Liposomal delivery as a new approach to transport antisense oligonucleotides. Gene Reg 1992; 1: 147–161Google Scholar
  70. Tischmeyer W, Grimm R, Schicknick H, Brysch W, Schlingensiepen K-H. Sequence-specific impairment of learning by c-jun antisense oligonucleotides. NeuroReport 1994; 5: 1501–1504PubMedCrossRefGoogle Scholar
  71. Tonkinson JL, Guvakova M, Khaled Z, Lee J, Yakubov L, Marshall WS, Caruthers MH, Stein CA. Cellular pharmacology and protein binding of phosphoromonothioate and phosphorodithioate oligodeoxynucleotides: a comparative study. Antisense Res Dev 1994; 4: 269–278PubMedGoogle Scholar
  72. Tonkinson JL and Stein CA. Patterns of intracellular compartmentalization, trafficking and acidification of 5′-fluorescein-labeled phosphodiester and phosphorothioate oligodeoxynucleotides in HL60 cells. Nucleic Acids Res 1994; 22: 4268–4275PubMedCrossRefGoogle Scholar
  73. Wahlestedt C. Antisense oligonucleotide strategies in neuropharmacology. Trends Pharmacol Sci 1994; 15: 42–46PubMedCrossRefGoogle Scholar
  74. Wahlestedt C, Golanov E, Yamamoto S, Yee F, Ericson H, Yoo H, Inturrisi CE, Reis DJ. Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischcmic infarctions. Nature 1993a; 363: 260–263PubMedCrossRefGoogle Scholar
  75. Wahlestedt C, Pich EM, Koob GF, Yee F, Heilig M. Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligonucleotides. Science 1993b; 259: 528–531PubMedCrossRefGoogle Scholar
  76. Weiss B, Davidkova G, Zhang S-P. Antisense strategies in neurobiology. Neurochem Int 1997; 31: 321–348PubMedCrossRefGoogle Scholar
  77. Whitesell L, Geselowitz D, Chavany C, Fahmy B, Walbridge S, Alger JR, Neckers LM. Stability, clearance, and disposition of intraventricularly administered oligodeoxynucleotides — implications for therapeutic application within the central nervous system. Proc Natl Acad Sci USA 1993; 90: 4665–4669PubMedCrossRefGoogle Scholar
  78. Wielbo D, Shi N, Sernia C. Antisense inhibition of hypertension in the spontaneously hypertensive rat. Hypertension 1995; 25: 314–319PubMedCrossRefGoogle Scholar
  79. Yaida Y and Nowak JTS. Distribution of phosphodiester and phosphorothioate oligonucleotides in rat brain after intraventricular and intrahippocampal administration determined by in situ hybridization. Reg Peptides 1995; 59: 193–200CrossRefGoogle Scholar
  80. Yakubov LA, Deeva EA, Zarytova VF, Ivanova EM, Ryte AS, Yurchenko LV, Vlassov VV. Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? Proc Natl Acad Sci USA 1989; 86: 6454–6458PubMedCrossRefGoogle Scholar
  81. Yee F, Ericson H, Reis D, Wahlestedt C. Cellular uptake of intracerebroventricularly administered biotin-or digoxigenin-labeled antisense oligonucleotides in the rat. Cell Mol Neurobiol 1994; 14: 475–486PubMedCrossRefGoogle Scholar
  82. Zamecnik P, Aghajanian J, Zamecnik M, Goodchild J, Witman G. Electron micrographie studies of transport of oligodeoxynucleotides across eukaryotic cell membranes. Proc Natl Acad Sci USA 1994; 91: 3156–3160PubMedCrossRefGoogle Scholar
  83. Zendegui JG, Vasquez KM, Tinsley JH, Kessler DJ, Hogan ME. In vivo stability and kinetics of absorption and disposition of 3′ phosphopropyl amine oligonucleotides. Nucleic Acids Res 1992; 20: 307–314PubMedCrossRefGoogle Scholar
  84. Zhang M and Creese I. Antisense oligodeoxynucleotide reduces brain dopamine-D2 receptors — behavioral correlates. Neurosci Lett 1993; 161: 223–226PubMedCrossRefGoogle Scholar
  85. Zhang S-P, Zhou L-W, Morabito M, Lin RCS, Weiss B. Uptake and distribution of fluorescein-labeled D2 dopamine antisense oligodeoxynucleotide in mouse brain. J Mol Neurosci 1996; 7: 13–28PubMedCrossRefGoogle Scholar
  86. Zhang SP, Zhou LW, Weiss B. Oligodeoxynucleotide antisense to the D1-dopamine receptor mRNA inhibits D1-dopamine receptor-mediated behaviors in normal mice and in mice lesioned with 6-hydroxydopamine. J Pharmacol Exp Therapeut 1994; 271: 1462–1470Google Scholar
  87. Zhu N, Liggitt D, Liu Y, Debs R. Systemic gene expression after intravenous DNA delivery into adult mice. Science 1993; 261: 209–211PubMedCrossRefGoogle Scholar
  88. Zon G and Geiser TG. Phosphorothioate oligonucleotides — chemistry, purification, analysis, scale-up and future directions. Anti Cancer Drug Des 1991; 6: 539–568Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Wolfgang Sommer
  • Donald W. Pfaff
  • Sonoko Ogawa

There are no affiliations available

Personalised recommendations