Advertisement

Characteristics of the Pathogenic Prokaryotes

  • Drion G. Boucias
  • Jacquelyn C. Pendland

Abstract

Bacteria share the common characteristic of being prokaryotic (proto = primitive, karyos = nucleus). Prokaryotes, preceding the evolution of eukaryotic cells by two billion years, are single-celled organisms that have developed a diverse array of life forms that dominate our planet (Mathieu and Sonea, 1995). Unlike eukaryotic organisms, prokaryotes lack a defined nucleus. The genetic information of bacteria, approximately a thousand times less than in eukaryotic cells, is contained within a single, covalently closed, double-stranded (ds) DNA molecule, which is not partitioned from the cytoplasm by a nuclear membrane. In addition to chromosomal DNA, bacteria also possess small, self-replicating DNA molecules termed plasmids or prophages. Additional structural and biochemical properties distinguish prokaryotes from eukaryotes (Table 5–1; see Chapter 8). Prokaryotes lack the cytoskeletal elements (microtubules) and membrane-associated organelles (Golgi, mitochondria or chloroplasts, endoplasmic reticulum) which are characteristic of eukaryotic cells (Fig. 5–1). Ribosomes of prokaryotes are of the 7OS type (except Archaeobacteria), whereas eukaryotic cells possess the 8OS type. Bacteria reproduce by binary fission and do not require the spindle formation characteristic of the eukaryotic mitotic cell division. The majority of bacteria possess a rigid cell wall, which is chemically distinct from the cell walls found in certain eukaryotic cells.

Keywords

Outer Membrane Pathogenic Bacterium Negative Bacterium Positive Bacterium Host Insect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. Alouf, J. E. and J. Freer 1991. Sourcebook of Bacterial Toxins Academic Press, London.Google Scholar
  2. Baron, S. (ed.). 1996. Medical Microbiology. Fourth edition. University of Texas Medical Branch Press, Galveston.Google Scholar
  3. Holt, J. G., N. R. Krieg, P. Sneath, J. T. Staley, and S. T. Williams (eds.). 1994. Bergeys Manual of Determinative Bacteriology. Ninth edition. Williams and Wilkens. Baltimore. 787 pp.Google Scholar
  4. Joklik, W. K. (et al.) eds. 1992. Zinnser Microbiology, 20th edition. Appleton and Lange, Norwalk, Conn. 1294p.Google Scholar
  5. Madigan, T., J. M. Martinko, and J. Parker. 1996. Brock’s Biology of Microorganisms, 7th edition. Prentis-Hall, New York.Google Scholar
  6. Murray, P. R., G. S. Kobayashi, M. A. Pfaller, K. S. Rosenthal 1994. Medical Microbiology 2nd edition. C.V. Mosby Co. St. Louis, Mo.Google Scholar
  7. Prescott, L. M., J. P. Harley and D. A. Klein. 1996. Microbiology, 3rd edition. W.C. Brown Publishers, Dubuque, Iowa.Google Scholar

Specific References

  1. Burrell, R. 1990. Immunomodulation by bacterial endotoxin. Critical Rev. Microbiol. 17:189–208.CrossRefGoogle Scholar
  2. Busse, H.-J., E. B. M. Denner, and W. Lubitz. 1996. Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. J. Biotechnol. 47:3–38.PubMedCrossRefGoogle Scholar
  3. Foster, S. J. and K. Johnstone. 1990. Pulling the trigger: the mechanism of bacterial spore germination. Mol. Microbiol. 4:137–141.PubMedCrossRefGoogle Scholar
  4. Gorby, G. L., E. N. Robinson, L. R. Barley, C. M. Clemens, and Z. A. McGee. 1988. Microbial invasion: a covert activity? Can. J. Microbiol. 34:507–512.Google Scholar
  5. Groisman, E. A., and H. Ochman. 1996. Pathogenicity islands: Bacterial evolution in quantum leaps. Cell 87:791–794.PubMedCrossRefGoogle Scholar
  6. Koch, A. L. 1990. Growth and form of the bacterial cell wall. American Scientist. 78:327–341.Google Scholar
  7. Mathieu, L. G. and S. Sonea. 1995. A powerful bacterial world. Endeavour. 19:112–117.PubMedCrossRefGoogle Scholar
  8. McGee, Z. A., G., L Gorby, L. R. Barley, C. Barlow, and C. M. Clemens 1988. Parasite-directed endocytosis. In: Bacteria-Host Cell Interactions. (ed) M. Horwitz. Alan Liss, Inc. N.Y. pp. 245–252.Google Scholar
  9. Mullis, K. B. and F.A. Faloona. 1987. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Entomology. 225:335–350.Google Scholar
  10. Robertson, B. D. and T.F. Meyer. 1992. Genetic variation in pathogenic bacteria. Trends Genet. 8:422–427.PubMedGoogle Scholar
  11. Sassar, M. and D. H. Smith. 1987. Parallels between ribosomal RNA and DNA homologies and fatty acid composition in Pseudomonas. Abs. Amer. Soc. Microb. p224Google Scholar
  12. Stragier, P. 1991. Sporulation of Bacillus subtilis is a simple developmental system. EMBO J. 10:3559–3566.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Drion G. Boucias
    • 1
  • Jacquelyn C. Pendland
    • 1
  1. 1.Institute of Food and Agricultural SciencesUniversity of FloridaUSA

Personalised recommendations