Insect Pathogenic Protozoa

  • Drion G. Boucias
  • Jacquelyn C. Pendland

Abstract

Members of the subkingdom Protozoa represent a heterogenous group of protists that belong to the kingdom Protoctista (Margulis et al., 1990). Comparative analysis of the ribosomal RNA sequences of protozoa has placed them in an evolutionary branch between the plant and animal kingdoms. These unicellular organisms are an ancient group that arose well before animals, helminths, and yeasts. Protozoa are not monophyletic and diverged very early in evolutionary time and on a scale greater than that estimated for either the plant or animal kingdoms. Protozoa possess at least one motile stage powered by cilia, flagella, or pseudopodia. The vegetative cells of most protozoa are membrane-bound and lack the rigid cell wall structure common to both fungi and plants. The structure of the cell membrane of protozoa is similar to that found in other eukaryotes and generally fits the fluid mosaic model. In many cases the outer membrane surface may be coated with a thin pellicle or glycocalyx.

Keywords

Mold Superoxide Pyruvate Fibril Microbe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. Brooks, W. M. 1988. Entomogenous protozoa. In: Handbook of Natural Pesticides, Vol. 5. Microbial. Insecticides. Part A Entomogenous Protozoa and Fungi. CRC. (ed) Ignoffo, C. Press, Boca Raton, FL., pp. 1–149.Google Scholar
  2. Brunckner, D. A. 1992. Amebiasis. Clin. Microbiol. Rev. 5:356–369.Google Scholar
  3. Corliss, J. O. 1979. The Ciliated Protozoa: Characterization, Classification and Guide to the Literature. Pergamon Press, London.Google Scholar
  4. Cox, F. E. G. 1993. Modem Parasitology, Second edition. Oxford: Blackwell Scientific Publications.CrossRefGoogle Scholar
  5. Dollet, M. 1984. Plant diseases caused by flagellate protozoa (Phytomonas). Ann. Rev. Phytopathol. 22:115–132.CrossRefGoogle Scholar
  6. Lee, J. J., and S. H. Hutner 1985 Orderll. Kinetoplastida Honigberg, 1963 Emend Vickerman, 1976. In: An Illustrated Guide to the Protozoa (Lee., J. J., and S. H. Hutner, and E.C. Bouce eds). Society of Protozoologists, Lawrence, KS.Google Scholar
  7. Levine, N. D. 1988. The Protozoan Phylum Apicomplexa,Vol I CRC Press Boca Raton, FL.Google Scholar
  8. Lynn, D. H., and E. B. Small. 1991. Phylum Ciliophora. In: Margulis, L., J. O. Corliss, M. Melkonian, and D. J. Chapman. Handbook of Protoctista. Jones and Bartlett Publishers, BostGoogle Scholar
  9. Mellhorn, H. (Ed) 1988. Parasitology in Focus: Facts and Trends. Springer Verlag BerlinGoogle Scholar
  10. Moore, J. 1984. Parasites that change the behavior of their host. Sci. Amer. 250:108–115.CrossRefGoogle Scholar
  11. Moulder, J. W. 1985. Comparative biology of intracellular parasitism. Microbiol. Rev. 49:298–337.PubMedGoogle Scholar
  12. Prescott, D. M. 1994. The DNA of ciliated protozoa. Microbiol. Rev. 58:233–267.PubMedGoogle Scholar
  13. Schmidt, G. D., and L. S. Roberts. 1989. Foundations of Parasitology. 4th ed. Times/Mirror/ Mosby College, St. Louis.Google Scholar
  14. Schwemmler, W. and G. Gassner, eds. 1989. Insect Endocytobiosis: Morphology, Physiology, Genetics, Evolution. Boca Raton, FL CRC Press.Google Scholar
  15. Sinden, R. E. 1984. The biology of Plasmodium in the mosquito. Experientia 40:1330–1340.PubMedCrossRefGoogle Scholar
  16. Sleigh, M. A. 1989. Protozoa and other Protists. Hodder and Stoughton, London.Google Scholar
  17. Smith, D. C., and A. E. Douglas. 1987. The Biology of Symbiosis. Edward Arnold, London.Google Scholar
  18. Undeen, A. H., and J. Vavra. 1997. Research methods for entomopathogenic protozoa In: Manual of Techniques in Insect Pathology, (ed) L. Lacy. Academic Press, San Diego. pp. 117–149.CrossRefGoogle Scholar
  19. Vanhamme, L., and E. Pays. 1995. Control of gene expression in trypanosomes. Microbiol. Rev. 59:223–240.PubMedGoogle Scholar
  20. Wallis, F. G. 1964. The trypanosomatid parasites of insects and arachnids. Exp. Parasitai. 18:124–138.Google Scholar

Specific References

  1. Bastin, P., K. R. Matthews, and K. Gull. 1996. The paraflagellar rod of Kinetoplastida: solved and unsolved questions. Parasitai. Today 12:302–306.CrossRefGoogle Scholar
  2. Batson, B. S. 1983. Tetrahymena dimorpha sp. nov. (Hymenostomatida: Tetrahymenidae), a new ciliate parasite of Simuliidae (Diptera) with potential as a model for the study of ciliate morphogenesis. Phil. Trans. Roy. Soc. 301B:345–363.Google Scholar
  3. Breznak, J. A. 1984. Biochemical aspects of symbiosis between termites and their intestinal microbiota. In: Invertebrate-Microbial Interactions, (eds.) J. M. Anderson, A. D. M. Rayner, and D. W. H Walton. Cambridge Univ. Press, pp. 173–204.Google Scholar
  4. Clopton R. E., and R. E. Gold. 1995. Effects of pH on excystation of Gregarina cuneata and Gregarina polymorpha (Eugregarinida: Gregarinidae). J. Euk. Microbiol. 42:540–544.CrossRefGoogle Scholar
  5. Corliss, J. O., and D. W. Coats. 1976. A new cuticular cyst-producing tetrahymenid ciliate, Lambomella clarkin. sp., and the current status of ciliatosis in culicine mosquitoes. Trans. Am. Micro. Soc. 95:725–739.CrossRefGoogle Scholar
  6. Du, Y., D. A. Maslov, and K. P. Chang. 1994. Monophyletic origin of beta-division proteobacterial endosymbionts and their coevolution with insect trypanosomatid protozoa Blastocrithidia culicis and Crithidia spp. PNAS 91:8437–8441.PubMedCrossRefGoogle Scholar
  7. Egerter, D. E., J. R. Anderson, and J. O. Washburn. 1986. Dispersal of the parasitic ciliate Lambomella clarki: implications for ciliates in the biological control of mosquitoes. PNAS. 83:7335–7339.PubMedCrossRefGoogle Scholar
  8. Garcia, G. E., R. A. Wirtz, and R. Rosenberg. 1997. Isolation of a substance from the mosquito that activates Plasmodium fertilization. Mol. Biochem. Parasitology 88:127–135.CrossRefGoogle Scholar
  9. Gorman, M. J., and S. M. Paskewitz. 1997. Agenetic study of amelanization response to Sephadex beads in plasmodium-refactory and susceptible strains of Anopheles gambiae. Am. J. Trop. Med.Hyg. 56:446–451.PubMedGoogle Scholar
  10. Harry, O. G., and L. H. Finlayson. 1976. The life-cycle, ultrastructure and mode of feeding of the locust amoeba Malpighameba locustae. Parasitology. 72:127–135.CrossRefGoogle Scholar
  11. Henry, D. P. 1933. Hirmocysts termitis (Leidy) and Kofoidina ovata gen. nov., sp. nov. from termites. Arch. Protistenk. 80:101–115.Google Scholar
  12. Jacobson R. L., G. Muller, and G. Aboud. 1995. Sandfly biology and interrelation with Leishmania. Parasitai. Today 11:203–204.CrossRefGoogle Scholar
  13. Jeon, K.W. 1995. The large, free-living amoebae: wonderful cells for biological studies. J. Euk. Microbiol. 42(1):1–7.PubMedCrossRefGoogle Scholar
  14. Kamm, M. 1922. Studies on gregarines. II Synopsis of the polycystid gregarines of the world, excluding those from the Myriapoda, Orthoptera, and Coleoptera. 111. Biol. Monogr. 7:4–104.Google Scholar
  15. Lanzer, M., K. Fischer, and S. M. LeBlanc 1995. Parasitism and chromosomal dynamics in protozoan parasites: is there a connection? Mol. Biochem. Parasitol. 70:1–8.PubMedCrossRefGoogle Scholar
  16. LeCuyer, K. A., and D. M. Crothers. 1994. Kinetics of an RNA conformational switch. PNAS 91:3373–3377.PubMedCrossRefGoogle Scholar
  17. Leippe, M., E. Bahr, E. Tannich, and R. D. Horstmann. 1993. Comparison of pore-forming peptides from pathogenic and nonpathogenic Entamoeba histolytica. Mol. Biochem. Parasitai. 59:101–110.CrossRefGoogle Scholar
  18. Liu, T. P. 1985. Scanning electron microscopy of developmental stages of Malpighamoeba melliflcae Prell in the honey bee. J. Protozool. 32:139–144.Google Scholar
  19. Lukes, J., J. Jerku, D. Dolezel, I. Krav’ova, L. Hollar, and D. A. Maslov. 1997. Analysis of ribosomal RNA genes suggest that trypanosomes are monophyletic. J. Mol. Evol. 44:521–527.PubMedCrossRefGoogle Scholar
  20. Malone, L. A., and S. Dhana. 1988. Life cycle and ultrastructure of Adelina tenebrionis (Sporozoa: Adeleidae) from Heteronychus arator (Coleoptera: Scarabaeidae). Parasitai. Res. 74(3):201–207.CrossRefGoogle Scholar
  21. Margos, G., W. A. Maier, and H. M. Seitz. 1992. The effect of nosematosis on the development of Plasmodium falciparum in Anopheles stephensi. Parasitai. Res. 78:168–171.CrossRefGoogle Scholar
  22. Menard, R., A. A. Sultan, C. Cortes, R. Altszuler, Van Dijk, M. R., C. J. Janse, A. P. Waters, R. S. Nussenzweig, and V. Nussenzweig. 1997. Circumsporozoite protein is required for developmemnt of malaria sporozoites in mosquitoes. Nature. 385:336–340.PubMedCrossRefGoogle Scholar
  23. Osir, E. O., L. Abubaker, and M. O. Imbuga. 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly Glossina longipennis. Parasitai. Res. 81:276–281.CrossRefGoogle Scholar
  24. Petri, W. A. Jr. 1991. Invasive amebiasis and the galactose-specific lectin of Entamoeba histolytica. ASM News 57(6):299–306.Google Scholar
  25. Proux, J. 1991. Lack of responsiveness of Malpighian tubules to the AVP-like insect diuretic hormone on migratory locusts infected with the protozoan Malameba locustae. J. Invertebr. 58:353–361.CrossRefGoogle Scholar
  26. Rodriguez, M.C., F. Zamudio, J. A. Torres, L. Gonzalez-Ceron, L. D. Possani, and M. H. Rodriguez. 1995. Effect of a crecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium. Exp. Parasitai. 80:596–604.CrossRefGoogle Scholar
  27. Schrevel, J., E. Caigneaux, D. Gros, M. Philippe. 1983. The three cortical membranes of the gregarines. I. Ultrastructural organization of Gregarina blaberae. J. Cell Sci. 61:151–174.PubMedGoogle Scholar
  28. Siegel, J. P., R. J. Novak, and J. Maddox. 1992. Effects of Ascogregarina barretti (Engregarinida: Lecudinidae) infection on Aedes triseriatus (Diptera: Culicidae) in Illinois. J. Med. Entomol. 6:968–973.Google Scholar
  29. Sulaiman, I. 1992. Infectivity and pathogenicity of Ascogregarina culicis (Eugregarinida: Lecudinidae) to Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 29:1–4.PubMedGoogle Scholar
  30. Teixeira, M. M., M. G. Serrano, L. R. Nunes, M. Campaner, G. A. Buck, and E. P. Camargo. 1996. Trypanosomatidae: a spliced-leader-derived probe specific for the genus Phytomonas. Exp. Parasitai. 84:311–319.CrossRefGoogle Scholar
  31. Ullu, E., and C. Tschudi. 1991. Trans splicing in trypanosomes requires methylation of the 5 end of the spliced leader RNA. PNAS 88:10075–10078.CrossRefGoogle Scholar
  32. Van der Ploeg, L. H. T., K. Gottesdiener, and M. G-S. Lee. 1992. Antigenic variation in African trypanosomes. Trends Genetics. 8:452–457.Google Scholar
  33. Van der Ploeg, L. H., S. H. Giannini, and C. R. Cantor. 1985. Heat shock genes: regulatory role for differentiation in parasitic protozoa. Science. 228:1443–1446.PubMedCrossRefGoogle Scholar
  34. Washburn, J. O., and J. R. Anderson. 1990. Insect ciliates: potential for container breeding mosquitoes. Proc.Vth Int.Colloquium Insect Pathology, Adelaide, Australia. pp. 507–511.Google Scholar
  35. Woolhouse, M. E. J., J. J. McNamara, J. W. Hargrove, and K. A. Bealby. 1996. Distribution and abundance of trypanosome (subgenus Nannomonas) infections of the tsetse fly Glossina pallidipes in southern Africa. Mol. Ecol. 5:11–18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Drion G. Boucias
    • 1
  • Jacquelyn C. Pendland
    • 1
  1. 1.Institute of Food and Agricultural SciencesUniversity of FloridaUSA

Personalised recommendations