Polyketides

  • David S. Seigler

Abstract

Polyketide or polyacetate compounds are derived from ace-tate-malonate pathways and, in terms of biosynthesis, are related to fatty acids. Polyketides are assembled by condensation of acetate and malonate units; however, in contrast to fatty acid biosynthesis, the carbonyl groups may not be reduced and intermediate compounds typically condense to produce aromatic ring systems, usually with phenolic substitutions (Packter, 1980).

Keywords

NADPH Streptomyces Tetracycline Bark Lactone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkofahi, A., J. K. Rupprecht, J. E. Anderson, J. L. Mclaug-Hlin, K. L. Mikolajczak, and B. A. Scott, Search for new pesticides from higher plants, in Insecticides of Plant Origin (J. T. Arnason, B. J. R. Philogene, and P. Morand, eds.), A.C.S. Symposium Series 387, 25–43, American Chemical Society, Washington, DC, 1989.CrossRefGoogle Scholar
  2. Bailey, J. A. and J. W. Mansfield, Phytoalexins, Wiley, New York, 1982.Google Scholar
  3. Ballio, A., Structure-activity relationships, in Toxins in Plant Disease (R. D. Durbin, ed.), 395–441, Academic Press, New York, 1981.Google Scholar
  4. Beier, R. C. and H. N. Nigg, Natural toxicants in foods, in Phytochemical Resources for Medicine and Agriculture (H. N. Nigg and D. S. Seigler, eds.), 247–367, Plenum, New York, 1992.Google Scholar
  5. Birch, A. J. and F. W. Donovan, Studies in relation to biosynthesis. I. Some possible routes to derivatives of orcinol and phloroglucinol, Aust. J. Chem., 6, 360–368 (1953).CrossRefGoogle Scholar
  6. Bories, C, P. Loiseau, D. Cortes, S. H. Myint, R. Hocquemiller, P. Gayral, A. Cave, and A. Laurens, Antiparasitic activity of Annona muricata and Annona cherimolia seeds, Planta Medica, 57, 434–436 (1991).PubMedCrossRefGoogle Scholar
  7. Boris, R. P. and J. M. Schaeffer, Antiparasitic agents from plants, in Phytochemical Resources for Medicine and Agriculture (H. N. Nigg and D. S. Seigler, eds.), 117–158, Plenum, New York, 1992.Google Scholar
  8. Ciegler, A., Mycotoxins: Occurrence, chemistry, biological activity, Lloydia, 38, 21–35 (1975).PubMedGoogle Scholar
  9. Claydon, N., J. G. Grove, and M. Hosken, Phenolic metabolites of Ceratocystis ulmi, Phytochemistry, 13, 2567–2571 (1974).CrossRefGoogle Scholar
  10. Coulombe, R. A., Oflatoxins, in, Mycotoxins and Phytoalexins (R. P. Sharma and D. K. Salunkhe, eds.), CRC Press, Boca Raton, Honda, 1991.Google Scholar
  11. Craig, R., R. O. Mumma, D. L. Gerhold, B. L. Winner, and R. Snetsinger, Genetic control of a biochemical mechanism for mite resistance in geraniums, in Natural Resistance of Plants to Pests (M. B. Green and P. A. Hedin, eds.), ACS Symposium Series 296, 168–176, American Chemical Society, Washington, DC, 1986.CrossRefGoogle Scholar
  12. Culberson, C. F., Chemical and Botanical Guide to Lichen Products, University of North Carolina. Press, Chapel Hill, NC, 1969.Google Scholar
  13. Culberson, C. F., Supplement to Chemical and Botanical Guide to Lichen Products, Bryologist, 73, 177–377 (1970).CrossRefGoogle Scholar
  14. Culberson, C. F., Culberson W. L., and A. Johnson, Second Supplement to Chemical and Botanical Guide to Lichen Products, American Bryological Lichenological Society, St. Louis, MO, 1977.Google Scholar
  15. Cutler, H. G., Herbicidal compounds from higher plants, in Phytochemical Resources for medicine and agriculture (H.G. Nigg and D. S. Seigler, eds.), 205–226, Plenum Press, New York, 1992.Google Scholar
  16. Durand, R. and M. H. Zenk, Biosynthesis of plumbagin (1,5-hydroxy-2-methyl-l,4-naphthoquinone) via the acetate pathway in higher plants, Tetrahedron Lett., 3009–3012 (1971).Google Scholar
  17. Elix, J. A., A. A. Whitton, and M. V. Sargent, Recent progress in the chemistry of lichen substances, Fortschr. Chem. Org. Naturst., 45, 103–234 (1984).CrossRefGoogle Scholar
  18. Gaucher, G. M., Mycotoxins—Their biosynthesis in fungi: Patulin and related carcinogenic lactones, J. Food Protect., 42, 810–814(1979).Google Scholar
  19. Geissman, T, A. and D. H. G. Crout, Organic Chemistry of Secondary Plant Metabolism, Freeman Cooper, San Francisco, 1969.Google Scholar
  20. Gerhold, D. L., R. Craig, and R. O. Mumma, Analysis of trichome exudate from mite-resistant geraniums, J. Chem. Ecol., 10, 713–722 (1984).CrossRefGoogle Scholar
  21. Gloer, J. B. and S. M. Truckenbrod, Interference competition among coprophilous fungi: Production of ( + )-isoepoxydon by Poronia punctata, Appl. Environ. Microbiol., 54, 861–864 (1988).PubMedGoogle Scholar
  22. Harborne, J. B., Introduction to Ecological Biochemistry, Academic Press, London, 1977; 2nd edition, 1982.Google Scholar
  23. Harborne, J. B., Recent advances in chemical ecology, Nat. Prod. Rep., 4, 323–344 (1986).CrossRefGoogle Scholar
  24. Harborne, J. B., Recent advances in chemical ecology, Nat. Prod. Rep., 7, 85–109 (1989).CrossRefGoogle Scholar
  25. Haslam, E., Secondary metabolism—Fact or fiction, Nat. Prod. Rep., 4, 217–249 (1986).CrossRefGoogle Scholar
  26. Herbert, R. B., The Biosynthesis of Secondary Metabolites, Chapman & Hall, London, 1981.CrossRefGoogle Scholar
  27. Huneck S. and I. Yoshimura, Identification of Lichen Substances, Springer-Verlag, Berlin, 1996.CrossRefGoogle Scholar
  28. Jaenicke, L., Development: Signals in the development of cryptogams, Prog. Bot., 52, 138–189 (1991).CrossRefGoogle Scholar
  29. Jayasuriya, H., J. D. Mcchesney, S. M. Swanson, and J. M. Pezzuto, Antimicrobial and cytotoxic activity of rottlerin-type compounds from Hypericum drummondii, J. Nat. Prod., 52, 325–331 (1989).PubMedCrossRefGoogle Scholar
  30. Kono, Y., H. W. Knoche, and J. M. Daly, Structure: Fungal hostspecific, in Toxins in Plant Disease (R. D. Durbin, ed.), 221–257, Academic Press, New York, 1981.Google Scholar
  31. Lieb. F., M. Nonfon, U. Wachendorff-Neumann, and D. Wendisch, Annonacine und Annostatin aus Annona squamosa, Planta Medica., 56, 317–319 (1990).PubMedCrossRefGoogle Scholar
  32. Mann, J., Secondary Metabolism, Oxford University Press, Oxford, 1978; 2nd edition, 1987.Google Scholar
  33. Morris, H. R., G. W. Taylor, M. S. Masento, K. A. Jermyn, and R. R. Kay, Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum, Nature, 328, 811–814(1987).PubMedCrossRefGoogle Scholar
  34. Nahrstedt, A., Neue pharmakologisch interessant Naturstoffe (1983-1984), Oesterreichische Apotheker-Zeitung, 39, 733–741 (1985).Google Scholar
  35. Navarette, A., R. Mata, and G. Delgado, Alkylanacardic acids from Amphypterygium adstringens, Planta Medica, 55, 579 (1989).CrossRefGoogle Scholar
  36. O’hagan, D., Evolution of the polyketide metabolites, Chem. Br., 246–250 (1990).Google Scholar
  37. Omura, S., Macrolide Antibiotics, Academic Press, Orlando, FL, 1984.Google Scholar
  38. Packter, N. M., Biosynthesis of acetate-derived phenols (polyketides), in Lipids: Structure and Function (P. K. Stumpf ed.), Vol. 4 of The Biochemistry of Plants, (P. K. Stumpf and E. E. Conn, eds.), 535–570, Academic Press, New York, 1980.Google Scholar
  39. Plattner, R. D., D. Weisleder, D. D. Shackleford, R. Peterson, and R. G. Powell, A new fumonisin from solid cultures of Fusarium moniliforme, Mycopathologia, 117, 23–28 (1992).PubMedCrossRefGoogle Scholar
  40. Rupprecht, J. K., C. Chang, J. M. Cassady, J. L. Mclaughlin, K. L. Mikolajczak, and D. Weisleder, Asimicin, a new cytotoxic and pesticidal acetogenin from the pawpaw, Asimina triloba (Annonaceae), Heterocycles, 24, 1197–1201 (1986).CrossRefGoogle Scholar
  41. Sanakawa, U., The biosynthesis of anthraquinonoid mycotoxins from Penicillium isandicum Sopp and related fungi, in The Biosynthesis of Mycotoxins (P. Steyn, ed.), 357–394, Academic Press, New York, 1980.Google Scholar
  42. Simpson, T. J., The biosynthesis of polyketides, in Specialist Periodical Reports, Biosynthesis, Vol. 7 (R. B. Herbert and T. J. Simpson, eds.), 1–44, Royal Society of Chemistry, London, 1983.CrossRefGoogle Scholar
  43. Simpson, T. J., The biosynthesis of polyketides, Nat. Prod. Rep., 1, 281–297 (1984).CrossRefGoogle Scholar
  44. Simpson, T. J., 13C-NMR in metabolic studies, in Nuclear Magnetic Resonance (H. F. Linskens and J. F. Jackson, eds.), 1–42, Springer-Verlag, Berlin, 1986.CrossRefGoogle Scholar
  45. Simpson, T. J., Applications of multinuclear NMR to structural and biosynthetic studies of polyketide microbial metabolites, Chem. Soc. Rev., 16, 123–160 (1987).CrossRefGoogle Scholar
  46. Steyn, P., (ed.), The Biosynthesis of Mycotoxins, Academic Press, New York, 1980.Google Scholar
  47. Stoessl, A., Structure and biogenetic relations: Fungal non-hostspecific, in Toxins in Plant Disease (R. D. Durbin, ed.), 109–219, Academic Press, New York, 1981.Google Scholar
  48. Stoessl, A., Biosynthesis of phytoalexins, in Phytoalexins (J. A. Bailey and J. W. Mansfield, eds.), 133–180, Wiley, New York, 1982.Google Scholar
  49. Thomas, R. and D. J. Williams, Oxytetracycline biosynthesis: Mode of incorporation of [l-13C, 2H3]acetate, J. Chem. Soc., Chem. Comm., 443–444 (1984).Google Scholar
  50. Thomas, R. and D. J. Williams, Oxytetracycline biosynthesis: Mode of incorporation of [l-13C, 18O2]acetate, J. Chem. Soc., Chem. Comm., 802–803 (1985).Google Scholar
  51. Torssell, K. B. G., Natural Product Chemistry, John Wiley and Sons, Chichester, 1983.Google Scholar
  52. Tuchinda, P., J. Udchachon, V. Reutrakul, T. Santisuk, W. C. Taylor, N. R. Farnsworth, J. M. Pezzuto, and A. D. Kinghorn, Bioactive butenolides from Melodorumfruticosum, Phytochemistry, 30, 2685–2689 (1991).CrossRefGoogle Scholar
  53. Vleggaar, R. and P. Steyn, The biosynthesis of some miscellaneous mycotoxins, in The Biosynthesis of Mycotoxins (P. Steyn, ed.), 395–422, Academic Press, New York, 1980.Google Scholar
  54. Walters, D. S., R. Craig, and R. O. Mumma, Fatty acid incorporation in the biosynthesis of anacardic acids of geraniums, Phytochemistry, 29, 1815–1822 (1990).CrossRefGoogle Scholar
  55. Weiss, U. and J. M. Edwards, The Biosynthesis of Aromatic Compounds, Wiley, New York, 1980.Google Scholar
  56. Wicklow, D. T., Ecological approaches to the study of mycotoxigenic fungi, in Toxigenic Fungi—Their Toxins and Health Hazard (H. Kurata and Y. Ueno, eds.), 33–43, Kodansha, Tokyo, 1984.Google Scholar
  57. Wicklow, D. T., Metabolites in the coevolution of fungal chemical defense systems, in Coevolution of Fungi with Plants and Animals (K. Pirozinski and D. Hawksworth, eds.), 173–201, Academic Press, London, 1988.Google Scholar
  58. Wilkinson, A. P., C. M. Ward, and M. R. A. Morgan, Immunological analysis of mycotoxins, in Plant Toxin Analysis (H. F. Linskens and J. F. Jackson, eds.), 185–225, Springer-Verlag, Berlin, 1992.CrossRefGoogle Scholar
  59. Williams, D. H., M. J. Stone, P. R. Hauck, and S. K. Rahman, Why are secondary metabolites (natural products) biosynthesized? J. Nat. Prod., 52, 1189–1208 (1989).PubMedCrossRefGoogle Scholar
  60. Wood, R. K. S., A. Ballio, and G. Graniti (eds.), Phytotoxins in Plant Diseases, Academic Press, London, 1972.Google Scholar
  61. Yates, S. G., Increased concentration of myristicin and 6-me-thoxymellein in carrot root upon irradiation with UV light, in Allelochemicals: Role in Agriculture and Forestry (G. R. Waller, ed.), ACS Symposium Series 330, 295–299, American Chemical Society, Washington, DC, (1987).CrossRefGoogle Scholar
  62. Zamir, L. O., The biosynthesis of patulin and penicillic acid, in The Biosynthesis of Mycotoxins (P. Steyn, ed.), 223–268, Academic Press, New York, 1980.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • David S. Seigler
    • 1
  1. 1.Department of Plant BiologyUniversity of IllinoisUrbanaUSA

Personalised recommendations