Pyrrolizidine, Quinolizidine, and Indolizidine Alkaloids

  • David S. Seigler

Abstract

Pyrrolizidine, quinolizidine, and indolizidine alkaloids are chemically diverse and restricted in distribution. Some similarities in structures and biosynthesis exist, but as the pathways become more clear, these three major groups of alkaloids definitely are of distinct origins. Pyrrolizidine alkaloids are derived from arginine or ornithine and possess two fused 5-membered rings that share a nitrogen atom. Quinolizidine alkaloids are derived from lysine and have two fused 6-membered rings that share a nitrogen atom. Indolizidine rings have a 5-membered ring fused to 6-membered ring and share a nitrogen atom. Pyrrolizidine, quinolizidine, and indolizidine alkaloids are involved in many plant-herbivore interactions, but are of anthropocentric importance chiefly because of their involvement in livestock poisoning, although several have antitumor activity and others are used medicinally. The phenanthroindolizidine alkaloids are a major subgroup of indolizidine alkaloids.

Keywords

Deuterium Pyrrol NASH Isoleucine Ornithine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASLANOV, KH. A., Yu. K. KUSHMURADOV, and A. S. SADYKOV, Lupine alkaloids, in The Alkaloids, Vol. 31 (A. Brossi, ed.), 118–192, Academic Press, New York, 1987.Google Scholar
  2. BäUMEL, P., L. WITTE, F. CZYGAN, and P. PROKSCH, Transfer of quinolizidine alkaloids from various host plants of the Fabaceae to parasitizing Cuscuta species, Biochem. Syst. Ecol., 22, 647–656 (1964).Google Scholar
  3. BEIER, R. C. and H. N. NIGG, Natural toxicants in foods, in Phytochemical Resources for Medicine and Agriculture (H. G. Nigg and D. S. Seigler, eds.), 247–376, Plenum Press, New York, 1992.Google Scholar
  4. BENN, M., J. DE GRAVE, C. GNANASUNDERAM, and R. HUTCHINS, Host—plant pyrrolizidine alkaloids in Nyctemera annulata Boisduval: Their persistance through the life cycle and transfer to a parasite, Experientia, 35, 731–732 (1979).Google Scholar
  5. BERNAYS, E., J. A. EDGAR, and M. ROTHSCHILD, Pyrrolizidine alkaloids sequestered by aposematic grasshopper, Zonocerus variegatus, J. Zool. (Lond.), 182, 85–87 (1977).Google Scholar
  6. BICK, I. R. C. and M. A. HAI, Aristotelia alkaloids, in The Alkaloids, Vol. 24 (A. Brossi, ed.), 113–151, Academic Press, New York, 1985.Google Scholar
  7. BICK, I. R. C. and W. SINCHAI, Phenanthroindolizidine and phenanthroquinolizidine alkaloids, in The Alkaloids, Vol. 19 (R. G. A. Rodrigo, ed.), 193–220, Academic Press, New York, 1981.Google Scholar
  8. BIRECKA, H., M. BIRECKI, and M. W. FRöHLICH, Arginine and ornithine decarboxylases and polyamines in pyrrolizidine alkaloidcontaining plants, Abstracts, Phytochem. Soc. North America, Annual Meeting, 1988.Google Scholar
  9. BIRECKA, H., J. L. CATALFAMO, and R. N. EISEN, A sensitive method for detection and quantitative determination of pyrrolizidine alkaloids, Phytochemistry, 20, 343–344 (1981).Google Scholar
  10. BLASKó, G. and G. A. CORDELL, Recent developments in the chemistry of plant-derived anticancer drugs, in Economic and Medicinal Plant Research, Vol. 2 (H. Wagner, H. Hikino, and N. R. Farnsworth, eds.), 119–191, Academic Press, London, 1988.Google Scholar
  11. BOPPRé, M., Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies, Ent. Exp. Appl., 24, 264–277 (1978).Google Scholar
  12. BOPPRé, M., R. L. PETTY, D. SCHNEIDER, and J. MEINWALD, Behaviourally mediated contacts between scent organs: Another prerequisite for pheromone production in Danaus chrysippus males (Lepidoptera), J. Comp. Physiol., 126, 97–103 (1978).Google Scholar
  13. BORRIS, R. P. and J. M. SCHAEFFER, Antiparasitic agents from plants, in Phytochemical Resources for Medicine and Agriculture (H. G. Nigg and D. S. Seigler, eds.), 117–158, Plenum Press, New York, 1992.Google Scholar
  14. BROOKS, C. J. W. and D. G. WATSON, Phytoalexins, Nat. Prod. Rep, 2, 427–459 (1985).Google Scholar
  15. BROWN, K. S., Jr., Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator, Nature, 309, 707–709 (1984).Google Scholar
  16. CLARK, A. M. and C. D. HUFFORD, Antifungal alkaloids, in The Alkaloids, Vol. 42 (G. A. Cordell, ed.), 117–150, Academic Press, New York, 1992.Google Scholar
  17. CRABB, T. A., Nuclear magnetic resonance of alkaloids, in Annual Reports on NMR Spectroscopy, Vol. 13 (G. A. Webb, ed.), 60–210, Academic Press, London, 1982.Google Scholar
  18. CULVENOR, C. C. J., Pyrrolizidine alkaloids—Occurrence and systematic importance in Angiosperms, Bot. Notiser, 131, 473–486 (1978).Google Scholar
  19. DALY, J. W., Alkaloids of neotropical poison frogs (Dendrobatidae), Fortschr. Chem. Org. Naturst, 41, 205–340 (1982).PubMedGoogle Scholar
  20. DALY, J. W. and T. F. SPANDE, Amphibian alkaloids: Chemistry, pharmacology, and biology, in Alkaloids. Chemical and Biological Perspectives, Vol. 4 (S. W. Pelletier, ed.), 1–274, Wiley, New York, 1986.Google Scholar
  21. DALY, J. W., H. M. GARRAFFO, and T. F. SPANDE, Amphibian alkaloids, in The Alkaloids, Vol. 43 (G. A. Cordell, ed.), 186–288, Academic Press, New York, 1993.Google Scholar
  22. DAVIES, N. M. and D. H. G. CROUT, Pyrrolizidine alkaloid biosynthesis. Relative rates of incorporation of the isomers of isoleucine into the necic acid component of senecionine, J. Chem. Soc., Perkin Trans. I, 2079–2086 (1974).Google Scholar
  23. DEVLIN, J. A. and D. J. ROBINS, Pyrrolizidine alkaloids, biosynthesis of trichodesmic acid. J. Chem. Soc., Perkin Trans. I, 1229–1332 (1984).Google Scholar
  24. EDGAR, J. A., P. A. COCKRUM, and J. L. FRAHN, Pyrrolizidine alkaloids in Danaus plexippus L. and Danaus chrysippus L., Experientia, 32, 1535–1537 (1976).Google Scholar
  25. EDGAR, J. A., C. C. J. CULVENOR, and T. E. PLISKE, Coevolution of danaid butterflies and their host plants, Nature, 250, 646–648 (1974).PubMedGoogle Scholar
  26. EISNER, T. and J. MEINWALD, Alkaloid-derived pheromones and sexual selection in lepidoptera, in Pheromone Biochemistry (G. D. Prestwich and G. J. Blomquist, eds.), 251–269, Academic Press, Orlando, FL, 1987.Google Scholar
  27. ELBEIN, A. D. and R. J. MOLYNEUX, The chemistry and biochemistry of simple indolizidine and related polyhydroxy alkaloids, in Alkaloids. Chemical and Biological Perspectives, Vol. 5 (S. W. Pelletier, ed.), 2–54, Wiley, New York, 1987.Google Scholar
  28. ELLIS, B. E., Natural products from plant tissue culture, Nat. Prod. Rep., 5, 581–612 (1988).PubMedGoogle Scholar
  29. FELLOWS, L. E., Castanospermine, swainsonine, and related polyhydroxy alkaloids from plants, Phytochem. Soc. North America, Annual Meeting, 1988.Google Scholar
  30. FELLOWS, L. E., S. V. EVANS, R. J. NASH, and E. A. BELL, Polyhydroxy plant alkaloids as glycosidase inhibitors and their possible ecological role, in Natural Resistance of Plants to Pests (M. B. Green and P. A. Hedin, eds.), ACS Symposium Series 296, 72–78, American Chemical Society, Washington, DC, 1986.Google Scholar
  31. FELLOWS, L. E., G. C. KITE, R. J. NASH, M. S. J. SIMMONDS, and A. M. SCOFIELD, Castanospermine, swainsonine and related polyhydroxy alkaloids: Structure, distribution, and biological activity, in Plant Nitrogen Metabolism (J. E. Poulton, J. T. Romeo, and E. E. Conn, eds.), Recent Advances in Phytochemistry Vol. 23, 395–427, 1989.Google Scholar
  32. FRASER, A. M. and D. J. ROBINS, Application of 2H NMR spectroscopy to study the incorporation of enantiomeric 2H-labelled cadaverines into quinolizidine alkaloids, J. Chem. Soc., Perkin Trans. I, 105–109 (1987).Google Scholar
  33. GEISSMAN, T. A. and D. H. G. CROUT, Organic Chemistry of Secondary Plant Metabolism, Freeman Cooper, San Francisco, 1969.Google Scholar
  34. GELLERT, E., Indolizidine alkaloids, J. Nat. Prod., 45, 50–72 (1982).Google Scholar
  35. Goss, G. J., The interaction between moths and plants containing pyrrolizidine alkaloids, Environ. Entomol., 8, 487–493 (1979).Google Scholar
  36. HARBORNE, J. B., Introduction to Biochemical Ecology, 2nd ed., Academic Press, New York, 1982.Google Scholar
  37. HARBORNE, J. B., Recent advances in chemical ecology, Nat. Prod. Rep., 3, 323–344 (1986).PubMedGoogle Scholar
  38. HARBORNE, J. B., Recent advances in chemical ecology, Nat. Prod. Rep., 7, 85–109 (1989).Google Scholar
  39. HARRIS, C. M., M. J. SCHNEIDER, F. S. UNGEMACH, J. E. HILL, and T. M. HARRIS, Biosynthesis of the toxic indolizidine alkaloids slaframine and swainsonine in Rhizoctonia leguminicola: Metabolism of 1-hydroxyindolizidines, J. Am. Chem. Soc., 110, 940–949 (1987).Google Scholar
  40. HARTMANN, T., ALKALOIDS, in Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. 1, 2nd ed. (G. A. Rosenthal and M. R. Berenbaum, eds.), 79–121, Academic Press, San Diego, CA, 1991.Google Scholar
  41. HARTMANN, T., A. EHMKE, U. EILERT, K. VON BORSTEL, and C. THEURING, Sites of synthesis, translocation, and accumulation of pyrrolizidine alkaloid N-oxides in Senecio vulgaris L., Planta, 177, 98–107 (1989).Google Scholar
  42. HERBERT, R. B., The synthesis of indolizidine and quinolizidine alkaloids of Tylophora, Cryptocarya, Ipomoea, Elaeocarpus and related species, in Alkaloids. Chemical and Biological Perspectives, Vol. 3 (S. W. Pelletier, ed.), 241–273, Wiley, New York, 1985.Google Scholar
  43. HERBERT, R. B., The biosynthesis of plant alkaloids and nitrogenous microbial metabolites, Nat. Prod. Rep., 3, 185–203 (1986).Google Scholar
  44. HERBERT, R. B., The biosynthesis of plant alkaloids and nitrogenous microbial metabolites, Nat. Prod. Rep., 5, 523–540 (1988).PubMedGoogle Scholar
  45. HOWARD, A. S. and J. P. MICHAEL, Simple indolizidine and quinolizidine alkaloids, in The Alkaloids, Vol. 28 (A. Brossi, ed.), 183–308, Academic Press, New York, 1986.Google Scholar
  46. JANZEN, D. H., H. B. JUSTER, and E. A. BELL, Toxicity of secondary compounds to the seed-eating larvae of the bruchid beetle Callosobruchus maculatus, Phytochemistry, 16, 223–227 (1977).Google Scholar
  47. JENETT-SIEMS, K. M. KALOGA, and E. EICH, Ipangulines, the first pyrrolizidine alkaloids from the Convolvulaceae, Phytochemistry, 34, 437–440 (1993).Google Scholar
  48. KHAN, H. A. and D. J. ROBINS, Pyrrolizidine alkaloid biosynthesis. Synthesis of 13C-labelled putrescines and their incorporation into retronecine, J. Chem. Soc., Perkin Trans. I, 101–105 (1985a).Google Scholar
  49. KHAN, H. A. and D. J. ROBINS, Pyrrolizidine alkaloid biosynthesis. Synthesis of 13C-labelled putrescines and their incorporation into retronecine, J. Chem. Soc., Perkin Trans. I, 819–824 (1985b).Google Scholar
  50. KINGHORN, A. D. and M. F. BALANDRIN, Quinolizidine alkaloids of the Leguminosae: Structural types, analyses, chemotaxonomy, and biological properties, in Alkaloids. Chemical and Biological Perspectives, Vol. 2 (S. W. Pelletier, ed.), 105–204, Wiley, New York, 1984.Google Scholar
  51. KRASNOFF, S. B. and D. E. DUSSOURD, Dihydropyrrolizine attractants for arctiid moths that visit plants containing pyrrolizidine alkaloids, J. Chem. Ecol., 75, 47–60 (1989).Google Scholar
  52. LEETE, E., The biosynthesis of alkaloids, in Specialist Periodical Reports, Biosyntheis, Vol. 7 (R. B. Herbert and T. J. Simpson, eds.), 102–223, The Royal Society of Chemistry, Oxford, 1983.Google Scholar
  53. L’EMPEREUR, K. M., Y. LI, F. R. STERMITZ, and L. CRABTREE, Pyrrolizidine alkaloids from Hackelia californica and Gnophaela latipennis, an H. californica-hosted arctiid moth, J. Nat. Prod., 52, 360–366 (1989).Google Scholar
  54. MABRY, T. J. and J. A. MEARS, Alkaloids and plant systematics, in Chemistry of the Alkaloids (S. W. Pelletier, ed.), 719–746, Van Nostrand Reinhold, New York, 1970.Google Scholar
  55. MANN, J., Secondary Metabolism, Oxford University Press, Oxford, 1978; 2nd edition, 1987.Google Scholar
  56. MASTERS, A. R., Dual role of pyrrolizidine alkaloids in nectar, J. Chem. Ecol., 17, 195–205 (1991).Google Scholar
  57. MATTOCKS, A. R. and R. JUKES, Improved field tests for toxic pyrrolizidine alkaloids, J. Nat. Prod., 50, 161–166 (1987).PubMedGoogle Scholar
  58. MCCOY, J. W. and F. R. STERMITZ, Alkaloids from Castilleja miniata and Penstemon whippleanus, two host species for the plume moth, Ambryptilia (Platyptilia)pica, J. Nat. Prod., 46, 902–907 (1983).Google Scholar
  59. MEARS, J. A. and T. J. MABRY, Alkaloids in the Leguminosae, in Chemotaxonomy of the Leguminosae (J. B. Harborne, D. Boulter, and B. L. Turner, eds.), 73–178, Academic Press, London, 1971.Google Scholar
  60. MENDE, P. and M. WINK, Uptake of the quinolizidine alkaloid lupanine by protoplasts and isolated vacuoles of suspension-cultured Lupinus polyphyllus cells. Diffusion or carrier mediated transport, J. Plant Physiol., 729, 229–242 (1987).Google Scholar
  61. MOLYNEUX, R. J., Polyhydroxy indolizidine and related alkaloids, in Alkaloids and Sulphur Compounds (P. G. Waterman, ed.), Vol. 8 of Methods in Plant Biochemistry (P. M. Dey and J. B. Harborne, eds.), 511–530, Academic Press, London, 1993.Google Scholar
  62. MOLYNEUX, R. J. and L. F. JAMES, LOCO intoxication: Indolidizine alkaloids of spotted locoweed (Astragalus lentiginosus), Science, 216, 190–191 (1982).PubMedGoogle Scholar
  63. MOLYNEUX, R. J., B. C. CAMPBELL, and D. L. DREYER, Honeydew analysis for detecting phloem transport of plant natural products, J. Chem. Ecol., 16, 1899–1909 (1990).Google Scholar
  64. NAHRSTEDT, A., Strukturelle Beziehungen zwischen pflanzlichen und tierischen Sekundärstoffen, Planta Medica, 44, 2–14 (1982).PubMedGoogle Scholar
  65. PASTEELS, J. M., M. ROWELL-RAHIER, T. RANDOUX, J. C. BRAEKMAN, and D. DALOZE, Pyrrolizidine alkaloids of probable host-plant origin in the pronatal and elytral secretion of the leaf beetle Oreina cacaliae, Ent. Exp. Appl., 49, 55–58 (1988).Google Scholar
  66. PHILLIPSON, J. D. and M. J. O’NEILL, Antimalarial and amoebicidal natural products, in Biologically Active Natural Products (K. Hostettmann and P. J. Lea, eds.), 49–64, Clarendon Press, Oxford, 1987.Google Scholar
  67. PLISKE, T. E., Courtship behavior and use of chemical communication by males of certain species of ithomiine butterflies, Ann. Entomol. Soc. Am., 68, 935–942 (1975).Google Scholar
  68. PLISKE, T. E., J. A. EDGAR, and C. C. J. CULVENOR, The chemical basis of attraction of ithomiine butterflies to plants containing pyrrolizidine alkaloids, J. Chem. Ecol., 2, 255–262 (1976).Google Scholar
  69. ROBINS, D. J., Pyrrolizidine alkaloids, in Alkaloids and Sulphur Compounds (P. G. Waterman, ed.), Vol. 8 of Methods in Plant Biochemistry (P. M. Dey and J. B. Harborne, eds.), 175–195, Academic Press, London, 1993.Google Scholar
  70. ROBY, M. R. and F. R. STERMITZ, Pyrrolizidine and pyridine monoterpene alkaloids from two Castilleja plant hosts of the plume moth, Platyptilia pica, J. Nat. Prod., 47, 846–853 (1984).Google Scholar
  71. Röder, E., Pyrrolizidinalkaloidhaltige Arzneipflanzen, Deutsche Apoth. Zeit., 132, 2427–2435 (1992).Google Scholar
  72. SCHNEIDER, D., The strange fate of pyrrolizidine alkaloids, in Perspectives in Chemoreception and Behavior (R. F. Chapman, E. A. Bernays, and J. Stoffalono Jr., eds.), 123–142, Springer-Verlag, New York, 1987.Google Scholar
  73. SCHNEIDER, M. J. and F. R. STERMITZ, Uptake of host plant alkaloids by root parasitic Pedicularis species, Phytochemistry, 29, 1811–1814 (1990).Google Scholar
  74. SCHULTES, R. E. and A. HOFMANN, The Botany and Chemistry of Hallucinogens, CC Thomas, Springfield, IL, 1973.Google Scholar
  75. SPECIALIST PERIODIC REPORTS, The Alkaloids, Vol. 8, Royal Chemistry Society, London, 1978.Google Scholar
  76. SPECIALIST PERIODIC REPORTS, The Alkaloids, Vol. 9, Royal Chemistry Society, London, 1979.Google Scholar
  77. SPECIALIST PERIODIC REPORTS, The Alkaloids, Vol. 10, Royal Chemistry Society, London, 1978.Google Scholar
  78. SPENSER, I. D., Stereochemical aspects of the biosynthetic routes leading to the pyrrolizidine and the quinolizidine alkaloids, Pure Appl. Chem., 57, 453–470 (1985).Google Scholar
  79. STERMITZ, F. R. and G. H. HARRIS, Transfer of pyrrolizidine and quinolizidine alkaloids to Castilleja (Scrophulariaceae) hemiparasites from composite and legume host plants, J. Chem. Ecol., 13, 1917–1925 (1987).Google Scholar
  80. STERMITZ, F. R., G. N. BELOFSKY, D. NG, and M. C. SINGER, Quinolizidine alkaloids obtained by Pedicularis semibarbata (Scrophulariaceae) from Lupinus fulcratus (Leguminosae) fail to influence the specialist herbivore Euphydryas editha (Lepi-doptera) oviposition. J. Chem. Ecol., 15, 2521–2530 (1989).Google Scholar
  81. STERMITZ, F. R., G. H. HARRIS, and W. JING, Iridoids and alkaloids from Castilleja (Scrophulariaceae) host plants for Platyptilia pica (Lepidoptera: Pterophoridae). Rexifoline content of P. pica, Biochem. Syst. Ecol., 14, 499–506 (1986).Google Scholar
  82. STEVENS, K. L. and R. J. MOLYNEUX, Castanospermine—A plant growth regulator, J. Chem. Ecol., 14, 1467–1473 (1988).Google Scholar
  83. SUFFNESS, M. and G. A. CORDELL, Antitumor alkaloids, in The Alkaloids, Vol. 25 (A. Brossi, ed.), 3–355, Academic Press, New York, 1985.Google Scholar
  84. Tu, Z., C. KONNO, D. D. SOEJARTO, D. P. WALLER, A. S. BINGEL, R. J. MOLYNEUX, J. A. EDGAR, G. A. CORDELL, and H. H. S. FONG, Identification of senecionine and senecionine N-oxide as antifertility constituents in Senecio vulgaris, J. Pharm. Sci., 77, 461–463 (1988).PubMedGoogle Scholar
  85. VAN WYK, B. and G. H. VERDOORN, The chemotaxonomic significance of integerrimine in Buchenroedera and Lotonis section Krebsia, Biochem. Syst. Ecol., 16, 287–289 (1988).Google Scholar
  86. VAN WYK, B. and G. H. VERDOORN, Alkaloids as taxonomic characters in the tribe Crotalarieae (Fabaceae), Biochem. Syst. Ecol., 18, 503–515 (1990).Google Scholar
  87. VERPOORTE, R., R. VAN DER HEIJDEN, W. M. VAN GULIK, and H. J. G. TEN HOOPEN, Plant biotechnology for the production of alkaloids: Present status and prospects, in The Alkaloids, Vol. 40 (A. Brossi, ed.), 1–188, Academic Press, New York, 1991.Google Scholar
  88. WAGNER, H. and A. PROKSCH, Immunostimulatory drugs of fungi and higher plants, in Economic and Medicinal Plant Research, Vol. 1 (H. Wagner, H. Hikino, and N. R. Farnsworth, eds.), 113–153, Academic Press, London, 1985.Google Scholar
  89. WALLER, G. R. and E. K. NOWACKI, Alkaloid Biology and Metabolism in Plants, Plenum Press, New York, 1978.Google Scholar
  90. WATERMAN, P. G. and A. I. GRAY, Chemical systematics, Nat. Prod. Rep., 4, 175–203 (1987).PubMedGoogle Scholar
  91. WINK, M., Wounding-induced increase of quinolizidine alkaloid accumulation in lupin leaves, Z. Naturforsch., 38c, 905–909 (1983a).Google Scholar
  92. WINK, M., Inhibition of seed germination by quinolizidine alkaloids, Planta, 158, 365–368 (1983b).Google Scholar
  93. WINK, M., Chemical defense of lupins. Mollusc-repellent properties of quinolizidine alkaloids, Z. Naturforsch., 39c, 553–558 (1984a).Google Scholar
  94. WINK, M., The biochemistry and chemical ecology of lupin alkaloids, in Proceedings 3rd International Lupine Congress, I.L.A., La Rochelle, France 1984b.Google Scholar
  95. WINK, M., Chemische Verteidigung der Lupinen: Zur biologischen Bedeutung der Chinolizidinalkaloide, Plant Syst. Evol., 150, 65–81 (1985a).Google Scholar
  96. WINK, M., Storage of quinolizidine alkaloids in epidermal tissues, Z. Naturforsch., 41c, 375–380 (1985b).Google Scholar
  97. WINK, M., Quinolizidine alkaloids: Biochemistry, metabolism, and function in plants and cell suspension cultures, Planta Medica, 53, 509–514 (1987).PubMedGoogle Scholar
  98. WINK, M., Plant breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores, Theoret. Appl. Genet., 75, 225–253 (1988).Google Scholar
  99. WINK, M., Allelochemical properties or the raison d’etre of alkaloids, in The Alkaloids, Vol. 43 (G. A. Cordell, ed.), 1–105, Academic Press, New York, 1993a.Google Scholar
  100. WINK, M., Quinolizidine alkaloids, in Alkaloids and Sulphur Compounds (P. G. Waterman, ed.), Vol. 8 of Methods in Plant Biochemistry (P. M. Dey and J. B. Harborne, eds.), 197–239, Academic Press, London, 1993b.Google Scholar
  101. WINK, M. and T. HARTMANN, Localization of the enzymes of quinolizidine alkaloid biosynthesis in leaf chloroplasts of Lupinus polyphyllus, Plant Physiol., 70, 14–21 (1982).Google Scholar
  102. WINK, M. and T. HARTMANN, Enzymology of quinolizidine alkaloid biosynthesis, in Natural Products Chemistry 1984 (14th IUPAC Symposium on the Chemistry of Natural Products) (R. I. Zalewski and J. J. Skolik, eds.), Elsevier, Amsterdam, 1984.Google Scholar
  103. WINK, M. and P. RöMER, Acquired toxicity—the advantages of specializing on alkaloid-rich lupins to Macrosiphon albifrons (Aphidae), Naturwissenschaften, 73, 210–212 (1986).Google Scholar
  104. WINK, M. and D. SCHNEIDER, Carrier-mediated uptake of pyrroliz-idine alkaloids in larvae of the aposematic and alkaloidexploiting moth Creatonotos, Naturwissenschaften, 75, 524–525 (1988).Google Scholar
  105. WINK, M. and L. WITTE, Evidence for a wide-spread occurrence of the genes of quinolizidine alkaloid biosynthesis, FEBS Lett., 159, 196–200 (1983).Google Scholar
  106. WINK, M. and L. WITTE, Turnover and transport of quinolizidine alkaloids. Diurnal fluctuations of lupanine in the phloem sap, leaves and fruits of Lupinus albus, Planta, 161, 519–524 (1984).Google Scholar
  107. WINK, M. and L. WITTE, Quinolizidine alkaloids as nitrogen source for lupin seedlings and cell cultures, Z. Naturforsch., 40c, 767–775 (1985).Google Scholar
  108. WINK, M., T. HARTMANN, L. WITTE, and J. RHEINHEIMER, Interrelationship between quinolizidine alkaloid producing legumes and infesting insects: Exploitation of the alkaloid-containing phloem sap of Cytissus scoparius by the broom aphid Aphis cytisorum, Z. Naturforsch., 37c, 1081–1086 (1982).Google Scholar
  109. WITKOP, B. and E. GöSSINGER, Amphibian alkaloids, in The Alkaloids, Vol. 21 (A. Brossi, ed.), 139–253, Academic Press, New York, 1983.Google Scholar
  110. Wröbel, J. T., Pyrrolizidine alkaloids, in The Alkaloids, Vol. 26 (A. Brossi, ed.), 327–384, Academic Press, New York, 1985.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • David S. Seigler
    • 1
  1. 1.Department of Plant BiologyUniversity of IllinoisUrbanaUSA

Personalised recommendations