Advertisement

Abstract

Sesquiterpenes are the most numerous of all terpenoid compounds. The approximately 5000 known compounds of this type mostly can be grouped into about 30 major skeletal types, but at least 200 less common skeletal types are known (Fig. 21.1). The distribution of sesquiterpenes in plants is essentially the same as monoterpenes. Sesquiterpene hydrocarbons are common essential oil components. Although only a few fungi accumulate monoterpenes, many accumulate sesquiterpenes. Abscisic acid, a plant growth-regulating compound, is synthesized as a sesquiterpene in fungi. Despite the fact that this compound often is considered a sesquiterpene, in higher plants abscisic acid is derived from the breakdown of xanthophylls and should be considered as a tetraterpene derivative see Chapter 26)

Keywords

Juvenile Hormone Sesquiterpene Lactone Mevalonic Acid Farnesyl Pyrophosphate Copyright Owner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon., Contraceptives, Chem. Br., 970 (1984).Google Scholar
  2. Arigoni, Stereochemical aspects of sesquiterpene biosynthesis, Pure Appl. Chem., 41, 219–245 (1975).CrossRefGoogle Scholar
  3. Baerheim Svendsen, A. and J. J. C. Scheffer (eds.), Essential Oils and Aromatic Plants, Nijhoff/Junk, Dordrecht, 1985.Google Scholar
  4. Ballio, A., Structure-activity relationships, in Toxins in Plant Disease (R. D. Durbin, ed.), 395–441, Academic Press, New York, 1981.Google Scholar
  5. Banthorpe, D. V. and B. V. Charlwood, The terpenoids in Secondary Plant Products, (E. A. Bell and B. V. Charlwood, eds.), Encyclopedia of Plant Physiology Vol. 8), 185–220, Springer-Verlag, Berlin 1980.CrossRefGoogle Scholar
  6. Beale, M. H. and J. Macmillan, The biosynthesis of C5-C2o terpenoid compounds, Nat. Prod. Rep. 5, 247–264 (1988).CrossRefGoogle Scholar
  7. Beier, R. C. and H. N. Nigg, Natural toxicants in foods, in Phytochemical Resources for Medicine and Agriculture (H. N. Nigg and D. S. Seigler, eds.), 247–367, Plenum Press, New York, 1992.Google Scholar
  8. Bingel, A. S. and H. H. S. Fong, Potential fertility-regulating agents from plants, in Economic and Medicine Plant Research, Vol. 2 (H. Wagner, H. Kikino, and N. R. Farnsworth, eds.), 73–118, Academic Press, London, 1988.Google Scholar
  9. Bohlmann, F., Structure and biological activity of compounds from the Compositae, in Advances in Medicinal Phytochemistry (D. Barton and W. D. Ollis, eds.), 37–46, Libbey, London, 1986.Google Scholar
  10. Borg-Karlson, A., Chemical and ethological studies of pollination in the genus Ophrys (Orchidaceae), Phytochemistry, 29, 1359–1387 (1990).CrossRefGoogle Scholar
  11. Borris, R. P. and J. M. Schaeffer, Antiparasitic agents from plants, in Phytochemical Resources for Medicine and Agriculture (H. N. Nigg and D. S. Seigler, eds.), 117–158, Plenum Press, New York, 1992.Google Scholar
  12. Bowers, W. S., Phytochemical resources for plant protection, in Recent Advances in the Chemistry of Insect Control (N. F. Janes, ed.), Special Publication No. 53, 272–292, Royal Society of Chemistry, London, 1985.Google Scholar
  13. Bowers, W. S., Insect hormones and antihormones in plants, terpenoids, in Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. 1 (G. A. Rosenthal and M. R. Berenbaum, eds.), 431–456, Academic Press, San Diego, CA, 1991.CrossRefGoogle Scholar
  14. Bowers, W. S., Insecticidal compounds from plants, in Phytochemical Resources for Medicine and Agriculture (H. N. Nigg and D. S. Seigler, eds.), 227–235, Plenum Press, New York, 1992.Google Scholar
  15. Brooks, C. J. W. and D. G. Watson, Phytoalexins, Nat. Prod. Rep., 2, 427–459 (1985).CrossRefGoogle Scholar
  16. Cane, D. E., Biosynthesis of sesquiterpenes, in Biosynthesis of Isoprenoid Compounds, Vol. 1 (J. W. Porterand S. L. Spurgeon, eds.), 283–374, Wiley, New York, 1981.Google Scholar
  17. Cane, D. E., Isoprenoid biosynthesis. Stereochemistry of the cyclization of allylic pyrophosphates, Acc. Chem. Res., 18, 220–226 (1985).CrossRefGoogle Scholar
  18. Cane, D. E., Enzymatic formation of sesquiterpenes, Chem. Rev., 90, 1089–1103 (1990).CrossRefGoogle Scholar
  19. Capinera, J. L., D. R. Gardner, and F. R. Stermitz, Cantharidin levels in blister beetles (Coleoptera: Meloidae) associated with alfalfa in Colorado, J. Econ. Entomol., 78, 1052–1055 (1985).Google Scholar
  20. Charlwood, B. V. and D. V. Banthorpe, The biosynthesis of monoterpenes in Progress in Phytochemistry Vol. 5 (L. Reinhold, J. B. Harborne, and T. Swain, eds.), 65–125, Pergamon, Oxford, 1978.Google Scholar
  21. Charlwood, B. V. and K. A. Charlwood, Terpenoid production in plant cell cultures, in Ecological Chemistry and Biochemistry of Plant Terpenoids (J. B. Harborne and F. A. Tomás-Barberán, eds.), Phytochemistry, Society of Europe Vol. 31, 95–132, Oxford University Press, Oxford, 1991.Google Scholar
  22. Coates, R. M., Biogenetic-type rearrangements of terpenes, Fortschr. Chem. Org. Naturst., 33, 73–220 (1976).PubMedCrossRefGoogle Scholar
  23. Coates, R. M., J. F. Denissen, J. A. Juvik, and B. A. Babka, Identification of α-santalenoic and endo-ß-bergamotenoic acids as moth oviposition stimulants from wild tomato leaves, J. Org. Chem., 55, 2186–2192 (1988).CrossRefGoogle Scholar
  24. Compadre, C. M., J. M. Pezzuto, A. D. Kinghorn, and S. K. Kamath, Hernandulcin: An intensely sweet compound discovered by review of ancient literature, Science, 227, 417–419 (1985).PubMedCrossRefGoogle Scholar
  25. Compadre, C. M., R. A. Hussain, R. L. L. De Compadre, J. M. Pezzuto, and A. D. Kinghorn, The intensely sweet sesquiterpene hernandulcin: Isolation, synthesis, characterization, and preliminary safety evaluation, J. Agric. Food Chem., 55, 273–279 (1987).CrossRefGoogle Scholar
  26. Cordell, G. A., Anticancer agents from plants, in Progress in Phytochemistry Vol. 5 (L. Reinhold, J. B. Harborne, and T. Swain, eds.), 273–316, Pergamon, London, 1978.Google Scholar
  27. Coscia, C. J., Picrotoxin, in Cyclopentanoid Terpene Derivatives (W. I. Taylor and A. R. Battersby, eds.), 147–201, Marcel Dekker, Inc., New York, 1969.Google Scholar
  28. Coscia, C. J., Terpenoids, Vol. 1 of Handbook of Chromatography (G. Zweig and J. Sherma, eds.), CRC Press, Boca Raton, FL, 1984.Google Scholar
  29. Coxon, T., Phytoalexins from other families, in Phytoalexins (J. A. Bailey and J. W. Mansfield, eds.), 106–132, Wiley, New York, 1982.Google Scholar
  30. Croteau, R., Biosynthesis and catabolism of monoterpenoids, Chem. Rev., 87, 929–954 (1987).CrossRefGoogle Scholar
  31. Croteau, R. and A. Gundy, Cyclization of farnesyl pyrophosphate to the sesquiterpene olefins humulene and caryophyllene by an enzyme system from sage (Salvia officinalis), Arch. Biochem. Biophys., 233, 838–841 (1984).PubMedCrossRefGoogle Scholar
  32. Croteau, R. and M. A. Johnson, Biosynthesis of terpenoids in glandular trichomes, in Biology and Chemistry of Plant Trichomes (E. Rodríguez, P. L. Healey, and I. Mehta, eds.), 133–186, Plenum Press, New York, 1984.Google Scholar
  33. Croteau, R. and M. A. Johnson, Biosynthesis of terpenoid wood extractives, in Biosynthesis and Biodegradation of Wood Components (T. Higuchi, ed.), 379–439, Academic Press, Orlando, FL, 1985.Google Scholar
  34. Croteau, R., S. L. Munck, C. C. Akoh, H. J. Fisk, and D. M. Satterwhite, Biosynthesis of the sesquiterpene patchoulol from farnesyl pyrophosphate in leaf extracts of Pogostemon cablin (patchouli): Mechanistic considerations, Arch. Biochem. Biophys. 256, 56–68 (1987).PubMedCrossRefGoogle Scholar
  35. Cutler, H. G., An historical perspective of ancient poisons, in Phytochemical Resources for Medicine and Agriculture (H. N. Nigg and D. S. Seigler, eds.), 1–13, Plenum, Press, New York, 1992.Google Scholar
  36. Dahlgren, R. M. T., S. R. Jensen, and R. J. Nielsen, A revised classification of the Angiosperms with comments on correlation between chemical and other characters, in Phytochemistry and Angiosperm Phylogeny (D. A. Young and D. S. Seigler, eds.), 149–204, Praeger, New York, 1981.Google Scholar
  37. Dawson, G. W., D. C. Griffiths, J. A. Pickett, L. J. Wadhams, and C. M. Woodcock, Plant-derived synergists of alarm pheromone from turnip aphid, Lipaphis (Hyadaphis)erysimi (Homoptera, Aphididae), J. Chem. Ecol., 13, 1663–1671 (1987).CrossRefGoogle Scholar
  38. Dehal, S. S. and R. Croteau, Partial purification and characterization of two sesquiterpene cyclases from sage (Salvia officinalis) which catalyze the respective conversion of farnesyl pyrophosphate to humulene and caryophyllene, Arch. Biochem. Biophys., 261, 346–356 (1988).PubMedCrossRefGoogle Scholar
  39. De Rosa, S., Terpenoids of marine plants, in Ecological Chemistry and Biochemistry of Plant Terpenoids (J. B. Harborne and F. A. Tomás-Barberán, eds.), Phytochemistry Society of Europe, Vol. 31, 28–62, Oxford University Press, Oxford, 1991.Google Scholar
  40. Doskotch, R. W., H. Y. Cheng, T. M. Odell, and L. Girard, Nerolidol: An antifeeding sesquiterpene alcohol for gypsy moth larvae from Melaleuca leucadendron, J. Chem. Ecol., 6, 845–851 (1980).CrossRefGoogle Scholar
  41. Douglass, S. K., J. A. Juvik, H. Pyun, and R. M. Coates, Structure-activity relationship for analogs of ( + )-(E)-endo-β-berga-moten-12-oic acid, an oviposition stimulant of Helicoverpa zea (Boddie), J. Chem. Ecol., 19, 11–27 (1993).CrossRefGoogle Scholar
  42. Ellis, B. E., Natural products from plant tissue culture, Nat. Prod. Rep., 5, 581–612 (1988).PubMedCrossRefGoogle Scholar
  43. Evans, F. J. and R. J. Schmidt, Plants and plant products that induce contact dermatitis, Planta Medica, 38, 289–316 (1980).PubMedCrossRefGoogle Scholar
  44. Farnsworth, N. R., T. O. Henderson, and D. D. Soejarto, Plants with potential molluscicidal activity, in Plant Molluscicides, 131–204, John Wiley & Sons, Ltd., Chichester, 1987.Google Scholar
  45. Fenwick, R. and M. Morgan, Natural toxicants in plant foods, Chem. Br., 1027–1029 (1991).Google Scholar
  46. Fischer, N. H., On the Biogenesis of pseudoguaianolides, Rev. Latinoamer. Quim. 9, 41 (1978).Google Scholar
  47. Fischer, N. H., Sesquiterpene lactones: Biogenesis and biomimetic transformations, in Biochemistry of the Mevalonic Acid Pathway to Terpenoids (G. H. N. Towers and H. A. Stafford, eds.) Recent Advances in Phytochemistry Vol. 24, 161–201, Plenum Press, New York, 1990.CrossRefGoogle Scholar
  48. Fischer, N. H., Plant terpenoids as allelopathic agents, in Ecological Chemistry and Biochemistry of Plant Terpenoids (J. B. Harborne and F. A. Tomás-Barberán, eds.), Phytochemical Society of Europe Vol. 31, 377–398, Oxford University Press, Oxford, 1991a.Google Scholar
  49. Fischer, N. H., Sesquiterpene lactones, in Terpenoids (B. V. Charlwood and D. V. Banthorpe, eds.), Vol. 7 of Modern Methods in Plant Biochemistry (J. B. Harborne and P. M. Dey, eds.), 187–211, Academic Press, London, 1991b.Google Scholar
  50. Fischer, N. H., E. J. Olivier, and H. D. Fischer, The biogenesis and chemistry of sesquiterpene lactones, Fortschr. Chem. Org. Naturst., 38, 47–390 (1979).CrossRefGoogle Scholar
  51. Fischer, N. H., J. D. Weidenhamer, and J. M. Bradow, Inhibition and promotion of germination by several sesquiterpenes, J. Chem. Ecol., 15, 1785–1793 (1989a).CrossRefGoogle Scholar
  52. Fischer, N. H., J. D. Weidenhamer, and J. M. Bradow, Dihydroparthenolide and other sesquiterpene lactones stimulate witchweed germination, Phytochemistry, 28, 2315–2317 (1989b).CrossRefGoogle Scholar
  53. Fischer, N. H., J. D. Weidenhamer, J. L. Riopel, L. Quuano, and M. A. Menelaou, Stimulation of witchweed germination by sesquiterpene lactones: A structure-activity study, Phytochemistry, 29, 2479–2483 (1990).CrossRefGoogle Scholar
  54. Fraga, B. M., Sesquiterpenes, in Terpenoids (B. V. Charlwood and D. V. Banthorpe, eds.), Vol. 7 of Modern Methods in Plant Biochemistry (J. B. Harborne and P. M. Dey, eds.), 145–185, Academic Press, London, 1991.Google Scholar
  55. Gershenzon, J. and R. Croteau, Regulation of monoterpene biosynthesis in higher plants, in Biochemistry of the Mevalonic Acid Pathway to Terpenoids (G. H. N. Towers and H. A. Stafford, eds.), Recent Advances in Phytochemistry Vol. 24, 99–160, Plenum Press, New York, 1990.CrossRefGoogle Scholar
  56. Gershenzon, J. and R. Croteau, Terpenoids, in Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. 1 (G. A. Rosenthal and M. R. Berenbaum, eds.), 165–219, Academic Press, San Diego, CA, 1991.CrossRefGoogle Scholar
  57. Gilbert, B., Natural product derivatives in tropical insect and parasite control, in Natural Products and the Protection of Plants (G. B. Marini-Bettolo, ed.), 225–252, Elsevier, Amsterdam, 1977.Google Scholar
  58. Gross, D., Phytoalexine und verwandte Pflanzenstoffe, Fortschr. Chem. Org. Naturst., 34, 188–247 (1977).Google Scholar
  59. Hall, I. H., K. Lee, E. C. Mar, C. O. Starnes, and T. G. Waddell, Tenulin and helenalin and related cyclopentenones, J. Med. Chem., 20, 333–337 (1977).PubMedCrossRefGoogle Scholar
  60. Harborne, J. B., Introduction to Ecological Biochemistry, 2nd ed., Academic Press, New York, 1982.Google Scholar
  61. Harborne, J. B., The role on phytoalexins in natural plant resistance, in Natural Resistance of Plants to Pests (M. B. Green and P. A. Hedin, eds.), ACS Symposium Serres 296, 22–35, American Chemical Society, Washington, DC, 1986a.CrossRefGoogle Scholar
  62. Harborne, J. B., Recent advances in chemical ecology, Nat. Prod. Rep., 3, 323–344 (1986b).PubMedCrossRefGoogle Scholar
  63. Harborne, J. B., Recent advances in chemical ecology, Nat. Prod. Rep., 7, 85–109 (1989).CrossRefGoogle Scholar
  64. Hay, M. E. and W. Fenical, Marine plant-hervivore interactions: The ecology of chemical defense, Annu. Rev. Ecol. Syst., 19, 111–145 (1988).CrossRefGoogle Scholar
  65. Hay, M. E., P. E. Renaud, and W. Fenical, Large mobile versus small sedentary herbivores and their resistance to seaweed chemical defenses, Oecologia, 75, 246–252 (1988).CrossRefGoogle Scholar
  66. Hedin, P. A., F. G. Maxwell, and J. N. Jenkins, Insect plant attractants, feeding stimulants, repellents, deterrents, and other related factors affecting insect behavior, in Proc. Summer Inst. Biol. Control of Plant Insects and Diseases (F. G. Maxwell and F. A. Harris, eds.), 494–527, University of Mississippi Press, Jackson, 1974.Google Scholar
  67. Hegnauer, R., The chemistry of the Compositae, in Biology and Chemistry of the Compositae, Vol. 1. (V. H. Heywood, J. B. Harborne, and B. L. Turner, eds.), 283–335, Academic Press, London, 1977.Google Scholar
  68. Henderson, T. O., N. R. Farnsworth, and T. C. Myers, Biochemistry of recognized molluscicidal compounds of plant origin, in Plant Molluscicides, 109–130, John Wiley & Sons, Ltd., Chichester, 1987.Google Scholar
  69. Hendrych, R., Quantitive Übersicht rezenter Cormobionten, Preslia, 57, 359–370 (1985).Google Scholar
  70. Herout, V., Some relations between plants, insects, and their isoprenoids, in Progress in Phytochemistry Vol. 2 (L. Reinhold and Y. Liwschitz, eds.), 143–202, Interscience, London, 1970.Google Scholar
  71. Herout, V., Biochemistry of sesquiterpenoids, in Aspects of Terpenoid Chemistry and Biochemistry (T. W. Goodwin, ed.), 53–94, Academic Press, London, 1973.Google Scholar
  72. Herz, W., Sesquiterpene lactones in the Compositae, in Biology and Chemistry of the Compositae, Vol. 2. (V. H. Heywood, J. B. Harborne, and B. L. Turner, eds.), 337–357, Academic Press, London, 1977.Google Scholar
  73. Hikino, H., Recent research on oriental medicinal plants, in Economic and Medicinal Plant Research, Vol. 1 (H. Wagner, H. Hikino, and N. R. Farnsworth, eds.), 53–85, Academic Press, London, 1985.Google Scholar
  74. Holub, M., J. Toman, and V. Herout, The phylogenetic relationships of the Asteraceae and Apiaceae based on phytochemical characters, Biochem. Syst. Ecol., 15, 321–326 (1987).CrossRefGoogle Scholar
  75. Howard, J. J., J. Cazin Jr., and D. F. Wiemer, Toxicity of terpenoid deterrents to the leafcutting ant Atta cephaloides and its mutualistic fungus, J. Chem. Ecol., 14, 59–69 (1988).CrossRefGoogle Scholar
  76. Isman, M. B. and E. Rodriguez, Larval growth inhibitors from species of Parthenium (Asteraceae), Phytochemistry, 22, 2709–2713 (1983).CrossRefGoogle Scholar
  77. Jacobson, M., Plants, insects, and man—Their interrelationships, Econ. Bot., 36, 346–354 (1982).CrossRefGoogle Scholar
  78. Jaenicke, L., VI. Development: Signals in the development of cryptogams, Prog. Bot., 52, 138–198 (1991).CrossRefGoogle Scholar
  79. Jarvis, B. B., J. O. Midiwo, D. Tuthill, and G. A. Bean, Interaction between the antibiotic trichothecenes and the higher plant Baccharis megapotamica, Science, 214, 460–461 (1981).PubMedCrossRefGoogle Scholar
  80. Jarvis, B. B., J. O. Midiwo, G. A. Bean, M. B. Aboul-Nasr, and C. S. Barros, The mystery of trichothecene antibiotics in Baccharis species, J. Nat. Prod., 51, 736–744 (1988).PubMedCrossRefGoogle Scholar
  81. Jarvis, B. B., N. Mokhtari-Rejali, E. P. Schenkel, C. S. Barros, and N. I. Matzenbacher, Trichothecene mycotoxins from Brazilian Baccharis species, Phytochemistry, 30, 789–797 (1991).CrossRefGoogle Scholar
  82. Jarvis, B. B., N. B. Pena, M. M. Rao, N. S. Cömezoglu, T. Cömezoglu, and N. B. Mandava, Allelopathic agents from Parthenium hysteropherus and Baccharis megapotamica, in The Chemistry of Allelopathy (A. C. Thompson, ed.), ACS Symposium Series, 268, 149–159, American Chemical Society, Washington, DC, 1985.CrossRefGoogle Scholar
  83. Jennings, R. C, K. J. Judy, and D. A. Schooley, Biosynthesis of the homosesquiterpenoid juvenile hormone JH II [Methyl (2E, 6E, 10Z)-10, 11-epoxy-3,7, 11-trimethyltridecadienoate] from [5-3H]homomevalonate in Manduca sexta, J. Chem. Soc., Chem. Commun. 21–22 (1975).Google Scholar
  84. Johnson, A. W., The interface of academic and industrial research, Chem. Br., 14, 332–337 (1978).Google Scholar
  85. Kelsey, R. L., G. W. Reynolds, and E. Rodriguez, The chemistry of biologically active constituents secreted and stored in plant glandular trichomes, in Biology and Chemistry of Plant Trichomes (E. Rodriguez, P. L. Healey, and I. Mehta, eds.), 187–241, Plenum Press, New York, 1984.Google Scholar
  86. Klayman, D. L., Qinghaosu (artemisinin): An antimalarial drug from China, Science, 228, 1049–1054 (1985).PubMedCrossRefGoogle Scholar
  87. Klayman, D. L., Weeding out malaria, Nat. Hist., 10, 118–126 (1989).Google Scholar
  88. Kubo, I. and K. Nakanishi, Insect antifeedants and repellents from African plants, in Host Plant Resistance to Pests (P. A. Hedin, ed.), ACS Symposium Series 62, 165–178, American Chemical Society, Washington, DC, 1977.CrossRefGoogle Scholar
  89. Kuć, J., Phytoalexins from the Solanaceae, in Phytoalexins (J. A. Bailey and J. W. Mansfield, eds.), Wiley, New York, 1982.Google Scholar
  90. Kuc, J., Antifungal compounds from plants, in Phytochemical Resources for Medicine and Agriculture (H. N. Nigg and D. S. Seigler, eds.), 159–184, Plenum Press, New York, 1992.Google Scholar
  91. Kullenberg, B. and G. Bergström, Chemical communication between living organisms, Endeavour, 34, 59–66 (1975).PubMedCrossRefGoogle Scholar
  92. Kullenberg, B. and G. Bergström, Hymenoptera aculeata males as pollinators of Ophrys orchids, Zool. Scr., 5, 13–23 (1976).CrossRefGoogle Scholar
  93. Kuti, J. O., B. B. Jarvis, N. Mokhtari-Rejali, and G. A. Bean, Allelochemical regulation of reproduction and seed germination of two Brazilian Baccharis species by phytotoxic trichothecenes, J. Chem. Ecol., 16, 3441–3453 (1990).CrossRefGoogle Scholar
  94. Law, J. H., Biosynthesis of juvenile hormones in insects, in Biosynthesis of Isoprenoid Compounds, Vol. 2 (J. W. Porter and S. L. Spurgeon, eds.), 507–534, Wiley, New York, 1983.Google Scholar
  95. Lewis, W. H., Plants used medicinally by indigenous peoples, in Phytochemical Resources for Medicine and Agriculture (H. N. Nigg and D. S. Seigler, eds.), 33–74, Plenum Press, New York, 1992.Google Scholar
  96. Loomis, W. D. and R. Croteau, Biochemistry of terpenoids, in Lipids, Structure and Function (P. K. Stumpf, ed.), Vol. 4 of The Biochemistry of Plants (P. K. Stumpf and E. E. Conn, eds.), 363–418, Academic Press, New York, 1980.Google Scholar
  97. Mabry, T. J., Infraspecific variation of sesquiterpene lactones in Ambrosia (Compositae): Applications to evolutionary problems at the populational level, in Phytochemical Phylogeny (J. B. Harborne, ed.), 269–300, Academic Press, London, 1970.Google Scholar
  98. Mabry, T. J., Major frontiers in phytochemistry, Recent Advances in Phytochemistry Vol. 4, 273–306, Appleton Century Crofts, New York, 1972.Google Scholar
  99. Mabry, T. J., The chemistry of geographical races, in Pure Appl. Chem., 34, 377–400 (1973).CrossRefGoogle Scholar
  100. Mabry, T. J. and J. E. Gell, Sesquiterpene lactones and other terpenoids, in Herbivores (G. A. Rosenthal and D. H. Janzen, eds.), 502–537, Academic Press, New York, 1979.Google Scholar
  101. Mace, M. E., R. D. Stipanovic, and A. A. Bell, Toxicity and role of terpenoid phytoalexins in verticillium wilt resistance in cotton, Physiol. Plant Path., 26, 209–218 (1985).CrossRefGoogle Scholar
  102. Mackie, H. and K. H. Overton, Hydrolysis and isomerization of trans, trans-famesyl diphosphate by Andrographis tissueculture enzymes, Eur. J. Biochem., 77, 101–106 (1977).PubMedCrossRefGoogle Scholar
  103. Macko, V., W. Acklin, C. Hindenbrand, F. Weibel, and D. Arigoni, Structure of the three isomeric host-specific toxins from Helminthosporium sacchari, Experientia, 39, 343, 566 (1983).CrossRefGoogle Scholar
  104. Mann, J., Secondary Metabolism, Oxford University Press, Oxford, 1978; 2nd edition, 1987.Google Scholar
  105. Marchant, Y. Y., F. Balza, B. F. Abeysekera, and G. H. N. Towers, Molluscicidal activity of sesquiterpene lactones, Biochem. Syst. Ecol., 12, 285 (1984).CrossRefGoogle Scholar
  106. Mascarenhas, J. P., Sexual chemotaxis and chemotropism in plants, in Taxis and Behaviour (G. L. Hazelbauer, ed.), 169–203, Chapman & Hall, London, 1978.Google Scholar
  107. Mash, E. A., G. M. Gurria, and C. D. Poulter, Farnesylpyrophosphate synthetase. Evidence for a rigid geranyl cation-pyrophosphate anion pair, J. Am. Chem. Soc., 103, 3927–3929 (1981).CrossRefGoogle Scholar
  108. Mccormick, J. P. and J. E. Carrel, Cantharidin biosynthesis and function in meloid beetles, in Pheromone Biochemistry (G. D. Prestwich and G. J. Blomquist, eds.), 307–350, Academic Press, Orlando, FL, 1987.Google Scholar
  109. Menn, J. J. and M. Beroza, Insect Juvenile Hormones, Academic Press, New York, 1972.Google Scholar
  110. Munakata, K., Insect antifeedants of Spodoptera litura, in Host Plant Resistance to Pests (P. A. Hedin, ed.), ACS Symposium Series 62, 185–196, American Chemical Society, Washington, DC, 1977.CrossRefGoogle Scholar
  111. O’day, D. H. and P. A. Horgen, Sexual Interactions in Eucaryotic Microbes, Academic Press, New York, 1981.Google Scholar
  112. Newman, A. A., (ed.), Chemistry of Terpenes and Terpenoids, Academic Press, London, 1972.Google Scholar
  113. Nahrstedt, A., Chemische Waffen bei höheren Pflanzen, Pharmazie in unserer Zeit, 8, 129–138 (1979).PubMedGoogle Scholar
  114. Paul, V. J. and W. Fenical, Natural products chemistry and chemical defense in tropical marine algae of the phylum Chlorophyta, in Bioorganic Marine Chemistry, Vol. 1 (P. J. Scheuer, ed.), 1–29, Springer-Verlag, Berlin, 1987.CrossRefGoogle Scholar
  115. Paul, V. J., M. M. Littler, D. S. Littler, and W. Fenical, Evidence for chemical defense in tropical green alga Caulerpa ashmeadii (Caulerpaceae: Chlorophyta): Isolation of new bioactive sesquiterpenoids, J. Chem. Ecol., 13, 1171–1185 (1987).CrossRefGoogle Scholar
  116. Pepperman, A. B., Jr. and E. J. Blanchard, Improvements in the synthesis of strigol and its analogs, in The Chemistry of Allelopathy (A. C. Thompson, ed.), ACS Symposium Series 268, 415–425, American Chemical Society, Washington, DC, 1985.CrossRefGoogle Scholar
  117. Peter, M. G., W. D. Woggon, C. Schlatter, and H. Schmid, Einbaurersuche mit Geraniol und Farnesol in Cantharidin, Helv. Chim. Acta, 60, 844–866 (1977).PubMedCrossRefGoogle Scholar
  118. Peter, M. G., W. D. Woggon, C. Schlatter, and H. Schmid, Einbaurersuche mit (3H und 14C),-dopplemarkiertem Farnesol in Cantharidin, Helv. Chim. Acta, 60, 1262–1272 (1977).PubMedCrossRefGoogle Scholar
  119. Picman, A. K., Biological activities of sesquiterpene lactones, Biochem. Syst. Ecol., 14, 255–281 (1986a).CrossRefGoogle Scholar
  120. Picman, A. K., Aqueous solubility of isoalantolactone and its effect on germination and biomass production of redroot pigweed and late flowering goosefoot, Biochem. Syst. Ecol., 14, 361–364 (1986b).CrossRefGoogle Scholar
  121. Plattner, R. D., M. N. Beremand, and R. G. Powell, Analysis of trichothecene mycotoxins by mass spectrometry and tandem mass spectrometry, Tetrahedron, 45, 2251–2262 (1989).CrossRefGoogle Scholar
  122. Pommerville, J. C, J. B. Strickland, and K. E. Harding, Pheromone interactions and ionic communication in gametes of aquatic fungus Allomyces macrogynus, J. Chem. Ecol., 16, 121–129 (1990).CrossRefGoogle Scholar
  123. Porter, J. W. and S. L. Spurgeon (eds.), Biosynthesis of Isoprenoid Compounds, Vol. 1, p. 177, Wiley, New York, 1981.Google Scholar
  124. Poulter, C. D. and H. C. Rilling, The prenyl transfer reaction. Enzymatic and mechanistic studies of the l′-4 coupling reaction in the terpene biosynthetic pathway, Acc. Chem. Res., 11, 307–313 (1978).CrossRefGoogle Scholar
  125. Poulter, C. D., J. C. Argyle, and E. A. Mash, Farnesyl pyrophosphate synthetase, J. Biol. Chem., 253, 7227–7233 (1978).PubMedGoogle Scholar
  126. Poulter, C. D., P. L. Wiggins, and A. T. Le, Farnesylpyrophosphate synthetase. A stepwise mechanism for the l′-4 condensation reaction, J. Am. Chem. Soc., 103, 3926–3927 (1981).CrossRefGoogle Scholar
  127. Prestwich, G. D. and G. J. Blomquist, Pheromone Biochemistry, Academic Press, Orlando, FL, 1987.Google Scholar
  128. Rodriguez, E., G. H. N. Towers, and J. C. Mitchell, Biological activities of sesquiterpene lactones, Phytochemistry, 15, 1573–1580 (1976).CrossRefGoogle Scholar
  129. RüCker, G., Sesquiterpenes, Angew. Chem. Int. Ed., 12, 793–806 (1973).CrossRefGoogle Scholar
  130. Saito, K., T. Nagao, S. Takatsuki, K. Koyama, and S. Natori, The sesquiterpenoid carcinogen of bracken fern, and some analogues, from the Pteridaceae, Phytochemistry, 29, 1475–1479 (1990).CrossRefGoogle Scholar
  131. Seaman, F. C, Sesquiterpene lactones as taxonomic characters in the Asteraceae, Bot. Rev., 48, 121–595 (1982).CrossRefGoogle Scholar
  132. Seigler, D. S., The role of lipids in plant resistance to insects, in Plant Resistance to Insects (P. A. Hedin, ed.), ACS Symposium Series 208, 303–327, American Chemical Society Washington, DC, 1983.CrossRefGoogle Scholar
  133. Sláma, K. and C. M. Williams, Juvenile hormone activity for the bug Pyrrhocoris apterus, Proc. Natl. Acad. Sci. USA, 54, 411–414(1965).PubMedCrossRefGoogle Scholar
  134. Spencer, G. F., R. B. Wolf., and D. Weisleder, Germination and growth inhibitory sesquiterpenes from Iva axillaris seeds, J. Nat. Prod., 47, 730–732 (1984).CrossRefGoogle Scholar
  135. Stadler, E., Contact Chemoreception, in Chemical Ecology of Insects (W. J. Bell and R. T. Cardé, eds.), 3–35, Chapman & Hall, London, 1984.Google Scholar
  136. Stevens, K. L., Biological Activity and chemistry of sesquiterpene lactones, in Isopentenoids in Plants (W. D. Nes, G. Fuller, and L. Tsai, eds.), 65–80, Marcel Dekker, Inc., New York, 1984.Google Scholar
  137. Stoessl, A., Structure and biogenetic relations: Fungal nonhostspecific, in Toxins in Plant Disease (R. D. Durbin, ed.), 109–219, Academic Press, New York, 1981.Google Scholar
  138. Stoessl, A., Stress compound formation in the interaction of potato tubers with Alternaria solani and A. solani metabolites, Physiol. Plant Path., 20, 263–273 (1982).CrossRefGoogle Scholar
  139. Sutherland, O. R. W., C. H. Wearing, and R. F. N. Hutchins, Production of α-farnesene, an attractant and oviposition stimulant for codling moth, developing fruit of ten varieties of apple, J. Chem. Ecol., 3, 625–631 (1977).CrossRefGoogle Scholar
  140. Teranishi, R., R. G. Buttery, K. E. Matsumoto, D. J. Stern, R. T. Cunningham, and S. Gothilf, Recent developments in chemical attractants for tephritid fruit flies, in Allelochemicals: Role in Agriculture and Forestry (G. R. Waller, ed.), ACS Symposium Series 330, 431–438, American Chemical Society, Washington, DC, 1987.CrossRefGoogle Scholar
  141. Threlfall, D. R. and I. M. Whitehead, Terpenoid phytoalexins: Aspects of biosynthesis, catabolism, and regulation, in Ecological Chemistry and Biochemistry of Plant Terpenoids (J. B. Harborne and F. A. Tomás-Barberán, eds.), Phytochemistry Society of Europe Vol. 31, 159–208, Oxford University Press, Oxford, 1991.Google Scholar
  142. Van der Meer, R., Semiochemicals and the red imported fire ant (Solenopsis invicta Buren) (Hymenoptera: Formicidae), Fla. Entomol., 66, 139–161 (1983).CrossRefGoogle Scholar
  143. Wagner, H., Non-steroid, cardioactive plant constituents, in Economic and Medicinal Plant Research, Vol. 2 (H. Wagner, H. Hikino, and N. R. Farnsworth, eds.), 17–38, Academic Press, London, 1988.Google Scholar
  144. Wagner, H. and A. Proksch, Immunostimulatory drugs of fungi and higher plants, in Economic and Medicinal Plant Research, Vol. 1 (H. Wagner, H. Hikino, and N. R. Farnsworth, eds.), 113–153, Academic Press, London, 1985.Google Scholar
  145. Waterman, P. G. and A. I. Gray, Chemical systematics, Nat. Prod. Rep., 4, 175–203 (1987).PubMedCrossRefGoogle Scholar
  146. Wiemer, D. F. and D. C. Ales, Lasidiol angelate: Ant repellent sesquiterpenoid from Lasianthaea fruticosa, J. Org. Chem., 46, 5449–5450 (1981).CrossRefGoogle Scholar
  147. Wong, W., R. Kasai, W. Choshi, Y. Nakagawa, K. Mizutani, K. Ohtani, and O. Tanaka, Acyclic sesquiterpene oligoglycosides from pericarps of Sapindus delavayi, Phytochemistry, 30, 2699–2702 (1991).CrossRefGoogle Scholar
  148. Yoshida, Y., J. Nobuhara, M. Uchida, and T. Okuda, Buddledin A, B and C. Piscidical sesquiterpenes from Buddleja davidii Franch, Tetrahedron Lett., 3717 (1976).Google Scholar
  149. Yoshioka, H., T. J. Mabry, and B. N. Timmermann, Sesquiterpene Lactones, University of Tokyo Press, Tokyo, 1973.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • David S. Seigler
    • 1
  1. 1.Department of Plant BiologyUniversity of IllinoisUrbanaUSA

Personalised recommendations