Tannins

  • David S. Seigler

Abstract

Plant polyphenols, which have the ability to precipitate protein, collectively, are called tannins. These compounds have been used for millenia to convert raw animal hides into leather. In this process, tannin molecules cross-link the protein and make it more resistant to bacterial and fungal attack. Molecules in the molecular weight range of 500–2000 (3000) are most effective, but the ability to bind effectively varies with different tannin structures. Today, however, many substances considered to be tannins by virtue of their structure and biosynthetic origin have limited, if any, ability to make leather (Hagerman and Butler, 1981).

Keywords

NADPH Quercetin Phenylalanine Polyphenol Eucalyptus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, P. J., L. A. Suchar, C. T. Robbins, and A. E. Hagerman, Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle, J. Chem. Ecol., 15, 1335–1347 (1989).CrossRefGoogle Scholar
  2. Balza, F., Z. Abramowski, G. H. N. Towers, and P. Wiriyachitra, Identification of proanthocyanidin polymers as the piscicidal constituents of Mammea siamensis, Polygonum stagninum, and Diospyros diepenhorstii, Phytochemistry, 28, 1827–1830 (1989).CrossRefGoogle Scholar
  3. Barofsky, D. F., FAB-MS applications in the elucidation of proanthocyanidin structures, in Chemistry and Significance of Tannins (R. W. Hemingway and J. J. Karchesy, eds.), 175–195 Plenum Press, New York, 1989.CrossRefGoogle Scholar
  4. Bate-Smith, E. C., The phenolic constituents of plants and their taxonomic significance. I. Dicotyledons. Linn. Soc. London Bot. J., 58, 95–173 (1962).CrossRefGoogle Scholar
  5. Bate-Smith, E. C., Age and distribution of galloyl esters, iridoids, and certain other repellents in plants, Phytochemistry, 23, 945–950 (1984).CrossRefGoogle Scholar
  6. Bernays, E. and S. Woodhead, Plant phenols utilized as nutrients by a phytophagous insect, Science, 216, 201–202 (1982).PubMedCrossRefGoogle Scholar
  7. Bernays, E., D. J. Chamberlain, and S. Woodhead, Phenols as nutrients for a phytophagous insect Anacridium melanorhodon, J. Insect Physiol., 29, 535–539 (1983).CrossRefGoogle Scholar
  8. Bilgener, M., Chemical components of howler monkey (Alouatta palliata) food choice and kinetics of tannin binding with natural polymers, Ph.D. Dissertation, Boston University, 1988.Google Scholar
  9. Blytt, H. J., T. K. Guscar, and L. G. Butler, Antinutritional effects and ecological significance of dietary condensed tannins may not be due to binding and inhibiting digestive enzymes, J. Chem. Ecol., 14, 1455–1465 (1988).CrossRefGoogle Scholar
  10. Clausen, T. P., F. D. Provenza, E. A. Burritt, P. B. Reichardt, and J. P. Bryant, Ecological implications of condensed tannin structure: A case study, J. Chem. Ecol., 16, 2381–2392 (1990).CrossRefGoogle Scholar
  11. Coley, P. D., Interspecific variation in plant anti-herbivore properties: The role of habitat quality and rate of disturbance, New Phytol., 106,(Suppl.), 251–263 (1987).CrossRefGoogle Scholar
  12. Conn, E. E. and T. Swain, Biosynthesis of gallic acid in higher plants, Chem. Ind., 592–593 (1961).Google Scholar
  13. Cork, S. J. and A. K. Krockenberger, Methods and pitfalls of extracting condensed tannins and other phenolics from plants: Insights from investigations on Eucalyptus leaves, J. Chem. Ed., 17, 123–134 (1991).Google Scholar
  14. Corthout, J., L. A. Pbeters, M. Claeys, D. A. Vanden Berghe, and A. J. Vlietnick, Antiviral ellagitannins from Spondias mombin, Phytochemistry, 30, 1129–1130 (1991).CrossRefGoogle Scholar
  15. Dahlgren, R. M. T., S. R. Jensen, and B. J. Nielsen, A revised classification of the angiosperms with comments on correlation between chemical and other characters, in Phytochemistry and Angiosperm Phylogeny (D. A. Young and D. S. Seigler, eds.), 149–204, Praeger, New York, 1981.Google Scholar
  16. Dewick, P. M. and E. Haslam, Phenol biosynthesis in higher plants. Gallic acid, Biochem. J., 113, 537–542 (1969).Google Scholar
  17. Feeny, P. P., Plant apparency and chemical defence, in Biochemical Interaction between Plants and Insects (J. W. Wallace and R. L. Mansell, eds.), Recent Advances in Phytochemistry Vol 10, 1–40, Plenum Press, New York, 1976.CrossRefGoogle Scholar
  18. Ferreria, D. and E. V. Brandt, New NMR experiments applicable to structure and conformation analysis, in Chemistry and Significance of Tannins (R. W. Hemingway and J. J. Karchesy, eds.), 153–173, Plenum Press, New York, 1989.CrossRefGoogle Scholar
  19. Glombitza, K. W., H. U. Rosener, H. Vilter, and W. Rauwald, Phloroglucin aus Braunalgen, Planta Medica, 24, 301–302 (1973).PubMedCrossRefGoogle Scholar
  20. Glombitza, K. W., E. Sattler, F. W. Wehrli, and G. Eckhardt, Polyhydroxyphenylether aus der Phaeophycee Halidrys siliquosa, Tetrahedron, 33, 1239–1244 (1977).CrossRefGoogle Scholar
  21. Gross, G. G., Enzymology of gallotannin biosynthesis, in Plant Cell Polymers: Biogenesis and Biodegradation (N. G. Lewis and M. G. Paice, eds.), 108–121, American Chemical Society, Washington, DC, 1989.CrossRefGoogle Scholar
  22. Gross, G. G., Enzymatic synthesis of gallotannins and related compounds, in Phenolic Metabolism in Plants (H. A. Stafford and R. K. Ibrahim, eds.), 297–324, Plenum Press, New York, 1992.CrossRefGoogle Scholar
  23. Gupta, R. K., S. M. K. Al-Shafi, K. Layden, and E. Haslam, The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 2. Esters of (S)-hexahydroxydephenic acid with D-glucopyranose(4C1), J. Chem. Soc., Perkin Trans. 1, 2525–2534 (1982).CrossRefGoogle Scholar
  24. Haddock, E. A., R. K. Gupta, S. M. K. Al-Shafi, and E. Haslam, The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 1. Introduction. Naturally occurring galloyl esters, J. Chem. Soc. Perkin Trans. I, 2515–2524 (1982a).CrossRefGoogle Scholar
  25. Haddock, E. A., R. K. Gupta, and E. Haslam, The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 3. Esters of (R)-and (S)-hexahydroxydiphenic acid and dehydro-hexahydroxydiphenic acid with D-glucopyranose, J. Chem. Soc. Perkin Trans. I, 2535–2545 (1982b).CrossRefGoogle Scholar
  26. Haddock, E. A., R. K. Gupta, S. M. K. Al-Shafi, K. Layden, E. Haslam, and D. Magnolato, The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 4. Biogenetic and molecular taxonomic considerations, Phytochemistry, 21, 1049–1062 (1982c).CrossRefGoogle Scholar
  27. Hagerman, A. E., Radial diffusion method for determining tannin in plant extracts, J. Chem. Ecol., 13, 437–449 (1987).CrossRefGoogle Scholar
  28. Hagerman, A. E., Extraction of tannin from fresh and preserved leaves, J. Chem. Ecol., 14, 453–461 (1988).CrossRefGoogle Scholar
  29. Hagerman, A. E., Chemistry of tannin-protein complexation, in Chemistry and Significance of Tannins (R. W. Hemingway and J. J. Karchesy, eds.), 323–333, Plenum Press, New York, 1989.CrossRefGoogle Scholar
  30. Hagerman, A. E. and L.G. Butler, Protein precipitation method for the quantitative determination of tannins, J. Agric. Food Chem., 26, 809–812 (1978).CrossRefGoogle Scholar
  31. Hagerman, A. E. and L. G. Butler, The specificity of proanthocyanidin-protein interactions, J. Biol. Chem., 256, 4494–4497 (1981).PubMedGoogle Scholar
  32. Hagerman, A. E. and L. G. Butler, Choosing appropriate methods and standards for assaying tannin, J. Chem. Ecol., 75, 1795–1810 (1989).CrossRefGoogle Scholar
  33. Hagerman, A. E. and L. G. Butler, Tannins and lignins, in Herbovores: Their Interactions with Secondary Plant Metabolites, Vol. 1 (G. A. Rosenthal and M. R. Berenbaum, eds.), 355–388, Academic Press, San Diego, CA, 1991.CrossRefGoogle Scholar
  34. Hagerman, A. E. and C. T. Robbins, Implications of soluble tannin-protein complexes for tannin analysis and plant defense mechanisms, J. Chem. Ecol., 13, 1243–1259 (1987).CrossRefGoogle Scholar
  35. Harborne, J. B., Recent advances in chemical ecology, Nat. Prod. Rep., 4, 323–344 (1986).CrossRefGoogle Scholar
  36. Harborne, J. B., Recent advances in chemical ecology, Nat. Prod. Rep., 7, 85–109 (1989).CrossRefGoogle Scholar
  37. Haslam, E., The Shikimate Pathway, John Wiley and Sons, New York, 1974.Google Scholar
  38. Haslam, E., Natural proanthocyanidins, in The Flavonoids (J. B. Harborne, T. J. Mabry, and H. Mabry eds.), 505–559, Academic Press, New York, 1975.Google Scholar
  39. Haslam, E., Vegetable tannins, in Biochemistry of Plant Phenolics (T. Swain, J. B. Harborne, and C. F. van Sumere, eds.), Recent Advances in Phytochemistry Vol. 12, 475–523, Plenum Press, New York, 1979.CrossRefGoogle Scholar
  40. Haslam, E., Vegetable tannins, in Secondary Plant Products (E. E. Conn, ed.), Vol. 7 of The Biochemistry of Plants (P. K. Stumpf and E. E. Conn, eds.), 527–556, Academic Press, New York, 1981.Google Scholar
  41. Haslam, E., Proanthocyanidins, in The Flavonoids: Advances in Research (J. B. Harborne and T. J. Mabry, eds.), 417–447, Chapman & Hall, London, 1982.Google Scholar
  42. Haslam, E., Hydroxybenzoic acids and the enigma of gallic acid, in The Shikimic Acid Pathway (E. E. Conn, ed.), Recent Advances in Phytochemistry Vol. 20, 163–200, Plenum Press, New York, 1986.CrossRefGoogle Scholar
  43. Haslam, E., Plant Polyphenols, Cambridge University Press, Cambridge, 1989.Google Scholar
  44. Haslam, E. and T. H. Lilley, New polyphenols for old tannins, in The Biochemistry of Plant Phenolics (C. F. van Sumere and P. J. Lea, eds.), 237–256, Clarendon Press, Oxford, 1985.Google Scholar
  45. Haslam, E. and T. H. Lilley, Polyphenol complexation, in Flavonoids and Bioflavonoids, 1985 (L. Farkas, M. Gabor, and F. Kállay, eds.), 113–138, Akadémiai Kiadó, Budapest, 1986.Google Scholar
  46. Haslam, E., T. H. Lilley, Y. Cai, R. Martin, and D. Magnolato, Traditional herbal medicines—The role of polyphenols, Planta Medica, 55, 1–8 (1989).PubMedCrossRefGoogle Scholar
  47. Heller, W. and G. Forkmann, Biosynthesis, flavans and proanthocyanidins, in The Flavonoids: Advances in Research since 1980 (J. B. Harborne, ed.), 399–425, Chapman & Hall, London, 1988.Google Scholar
  48. Hemingway, R. W., Structural variations in proanthocyanidins and their derivatives, in Chemistry and Significance of Tannins (R. W. Hemingway and J. J. Karchesy, eds.), 83–107, Plenum Press, New York, 1989.CrossRefGoogle Scholar
  49. Hillis, W. E., Biosynthesis of tannins, in Biosynthesis and Biodegradation of Wood Components (T. Higuchi, ed.), 325–347, Academic Press, Orlando, FL, 1985.Google Scholar
  50. Inoue, K. H. and A. E. Hagerman, Determination of gallotannin with rhodanine, Anal. Biochem., 169, 363–369 (1988).PubMedCrossRefGoogle Scholar
  51. Karchesy, J. J., Y. Bae, L. Chalker-Scott, R. F. Helm, and L. Y. Foo, Chromatography of proanthocyanidins, in Chemistry and Significance of Tannins (R. W. Hemingway and J. J. Karchesy, eds.), 139–151, Plenum Press, New York, 1989.CrossRefGoogle Scholar
  52. Koch, M. and R. P. Gregson, Brominated phlorethols and nonhalogenated phlorotannins from the brown alga Cystophora congesta, Phytochemistry, 23, 2633–2637 (1984).CrossRefGoogle Scholar
  53. Lewis, N. G. and E. Yamamoto, Tannins—Their place in plant metabolism, in Chemistry and Significance of Condensed Tannins (R. W. Hemingway and J. J. Karchesy, eds.), 23–46, Plenum Press, New York, 1989.CrossRefGoogle Scholar
  54. Martin, J. S. and M. M. Martin, Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidins, and protein precipitating constituents in mature foliage of six oak species, Oecologia (Berlin), 54, 205–211 (1982).CrossRefGoogle Scholar
  55. Martin, J. S. and M. M. Martin, Tannin assays in ecological studies. Precipitation of ribulose-1,5-biphosphate carboxylase/ oxygenase by tannic acid, quebracho, and oak foliage extracts, J. Chem. Ecol., 9, 285–294 (1983).CrossRefGoogle Scholar
  56. Martin, J. S., M. M. Martin, and E. A. Bernays, Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores, J. Chem. Ecol., 13, 605–621 (1987).CrossRefGoogle Scholar
  57. Mckey, D. G., P. G. Waterman, C. N. Mbi, J. S. Gartlan, and T. T. Strusaker, Phenolic content of vegetation in two African rain-forests: Ecological implications, Science, 202, 61–64 (1978).Google Scholar
  58. Mehansho, H., A. Hagerman, S. Clements, L. Butler, J. Rogler, and D. M. Carlson, Modulation of proline-rich protein biosynthesis in rat parotid glands by sorghums with high tannin levels, Proc. Natl. Acad. Sci. USA, 80, 3948–3952 (1983).PubMedCrossRefGoogle Scholar
  59. Mole, S. and P. G. Waterman, Stimulatory effects of tannins and cholic acid on tryptic hydrolysis of proteins: Ecological implications, J. Chem. Ecol., 11, 1323–1332 (1985).CrossRefGoogle Scholar
  60. Mole, S. and P. G. Waterman, Tannins as antifeedants to mammalian herbivores—Still an open question? in Allelochemicals: Role in Agriculture and Forestry (G. R. Waller, ed.), ACS Symposium Series 330, 572–587, American Chemical Society, Washington, DC, 1987a.CrossRefGoogle Scholar
  61. Mole, S. and P. G. Waterman, A critical analysis of techniques for measuring tannins in ecological studies. I. Techniques for chemically defining tannins, Oecologia, 72, 137–147 (1987b).CrossRefGoogle Scholar
  62. Mole, S. and P. G. Waterman, A critical analysis of techniques for measuring tannins in ecological studies. II. Techniques for biochemically defining tannins, Oecologia, 72, 148–156 (1987c).CrossRefGoogle Scholar
  63. Morton, J. F., Further associations of plant tannins and human cancer, J. Crude Drug Res., 12, 1829–1841 (1972).Google Scholar
  64. Morton, J. F., Economic botany in epidemiology, Econ. Bot., 32, 111–116(1978).CrossRefGoogle Scholar
  65. Morton, J. F., Tannin as a carcinogen in bush-tea, tea, maté, and khat, in Chemistry and Significance of Tannins (R. W. Hemingway and J. J. Karchesy, eds.), 403–416, Plenum Press, New York, 1989.CrossRefGoogle Scholar
  66. Nonaka, G., I. Nishioka, M. Nishizawa, T. Yamagishi, Y. Kashi-Wada, G. E. Dutschman, A. J. Bodner, R. E. Kllkuskie, Y. Cheng, and K. Lee, Anti-AIDS agents, 2. Inhibitory effects of tannins on HIV reverse transcriptase and HIV replication in H9 lymphocyte cells, J. Nat. Prod., 53, 587–595 (1990).PubMedCrossRefGoogle Scholar
  67. Okuda, T., T. Yoshida, and T. Hatano, New methods of analyzing tannins, J. Nat. Prod., 52, 1–31 (1989a).CrossRefGoogle Scholar
  68. Okuda, T., T. Yoshida, and T. Hatano, Ellagitannins as active constituents of medicinal plants, Planta Medica, 55, 117–122 (1989B).PubMedCrossRefGoogle Scholar
  69. Peng, S. and C. Jay-Allemand, Use of antioxidants in extraction of tannins from walnut plants, J. Chem. Ecol., 17, 887–896 (1991).CrossRefGoogle Scholar
  70. Porter, L. J., Flavans and proanthocyanidins, in The Flavonoids: Advances in Research since 1980 (J. B. Harborne, ed.), 21–62, Chapman & Hall, London, 1988.Google Scholar
  71. Porter, L. J., Tannins, in Plant Phenolics (J. B. Harborne, ed.), Vol. 1 of Methods in Plant Biochemistry (P. M. Dey and J. B. Harborne, eds.), 389–419, Academic Press, New York, 1989.Google Scholar
  72. Rhoades, D. F. and R. G. Cates, Toward a general theory of plant antiherbivore chemistry, in Biochemical Interaction between Plants and Insects (J. W. Wallace and R. L. Mansell, eds.), Recent Advances in Phytochemistry, Vol 10), 168–213, Plenum Press, New York, 1976.CrossRefGoogle Scholar
  73. Robbins, C. T., T. A. Hanley, A. E. Hagerman, O. Hjelford, D. L. Baker, C. C. Schwartz, and W. W. Mautz, Role of tannins in defending plants against ruminants: Reduction in protein availability, Ecology, 68, 98–107 (1987).CrossRefGoogle Scholar
  74. Roux, D. G. and D. Ferreira, “Angular” and “linear” condensed tannins. Chemical parameters which direct the course of biomimetic condensations, in Flavonoids and Bioflavonoids, 1981 (L. Farkas, M. Gábor, F. Kállay, and H. Wagner, eds.), 81–103, Elsevier, Amsterdam, 1982.Google Scholar
  75. Sauo, R., Pathway of gallic acid biosynthesis and its esterification with catechins in young tea shoots, Agric. Biol. Chem., 47, 455–460 (1983).CrossRefGoogle Scholar
  76. Sanderson, G. W., The chemistry of tea and tea manufacturing, (V. C. Runeckles and T. C. Tso, eds.), Recent Advances in Phytochemistry, Vol. 5 247–316, Academic Press, New York, 1972.Google Scholar
  77. Schmidt, O. T. and W. Mayer, Natürliche Gerbstoffe, Angew. Chem., 68, 103–105 (1956).CrossRefGoogle Scholar
  78. Schultz, J. C, Tannin-insect interactions, in Chemistry and Significance of Tannins (R. W. Hemingway and J. J. Karchesy, eds.), 417–433, Plenum Press, New York, 1989.CrossRefGoogle Scholar
  79. Spencer, C. M., Y. Cai, R. Martin, S. H. Gaffney, P. N. Goulding, D. Magnolato, T. H. Lilley, and E. Haslam, Polyphenol complexation—Some thoughts and observations, Phytochemistry, 27, 2397–2409 (1988).CrossRefGoogle Scholar
  80. Stafford, H. A., The enzymology of proanthocyanidin biosynthesis, in Chemistry and Significance of Condensed Tannins (R. W. Hemingway and J. J. Karchesy, eds.), 47–70, Plenum Press, New York, 1989.CrossRefGoogle Scholar
  81. Steinly, B. A. and M. Berenbaum, Histopathological effects of tannins on the midgut epithelium of Papilio polyxenes and Papilio glaucus, Entomol. Exp. Appl., 39, 3–9 (1985).CrossRefGoogle Scholar
  82. Swain, T., Phenolics in the environment, in The Biochemistry of Plant Phenolics (T. Swain, J. B. Harborne, and C. F. van Sumere, eds.), Recent Advances in Phytochemistry, Vol. 12, 617–640, Plenum Press, New York, 1979.CrossRefGoogle Scholar
  83. Wolter-Filho, W., A. I. Da Rocha, M. Yoshida, and O. R. Gottlieb, Chemosystematics of Rhabdodendron, Phytochemistry, 28, 2355–2357 (1989).CrossRefGoogle Scholar
  84. Ya, C, S. H. Gaffney, T. H. Lilley, and E. Haslam, Carbohydrate-polyphenol complexation, in Chemistry and Significance of Tannins (R. W. Hemingway and J. J. Karchesy, eds.), 307–322, Plenum Press, New York, 1989.Google Scholar
  85. Zucker, W. V., Tannins: Does structure determine function?—An ecological perspective, Am. Nat., 121, 335–365 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • David S. Seigler
    • 1
  1. 1.Department of Plant BiologyUniversity of IllinoisUrbanaUSA

Personalised recommendations