Skip to main content

Interpreting Multiplicity-Gated Fragment Distributions from Heavy-Ion Collisions

  • Chapter
Advances in Nuclear Dynamics 3

Abstract

In recent years, multifragmentation of nuclear systems has been extensively studied, and many efforts have been made to clarify the underlying physics[1]. However, no clear consensus exists on the mechanism for multifragmentation. Is the emission of intermediate mass fragments (IMF: 3 < Z > 20) a dynamical process (brought on by the occurrence of instabilities of one form or another) or a statistical process (i.e. the decay probabilities are proportional to a suitably defined exit channel phase space)?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.G. Moretto and G.J. Wozniak, Ann. Rev. of Nucl. & Part. Sci., 43, 379 (1993).

    Article  ADS  Google Scholar 

  2. J.E. Finn et al., Phys. Rev. Lett. 49, 1321 (1982).

    Article  ADS  Google Scholar 

  3. A.D. Panagiotou et al., Phys. Rev. Lett. 52, 496 (1984).

    Article  ADS  Google Scholar 

  4. X. Campi, Phys. Lett. B208, 351 (1988).

    ADS  Google Scholar 

  5. W. Bauer, Phys. Rev. C38, 1297 (1988).

    ADS  Google Scholar 

  6. W. Trautmann, U. Milkau, U. Lynen, and J. Pochodzalla, Z. Phys. A344, 447 (1993) and refs. therein.

    ADS  Google Scholar 

  7. T. Li et al., Phys. Rev. Lett. 70, 1924 (1993).

    Article  ADS  Google Scholar 

  8. P. Kreutz et al., Nucl. Phys. A 556, 672 (1993).

    Article  ADS  Google Scholar 

  9. M. L. Gilkes et al., Phys. Rev. Lett. 73, 1590 (1994).

    Article  ADS  Google Scholar 

  10. L.G. Moretto et al., Phys. Rev. Lett. 74, 1530 (1995).

    Article  ADS  Google Scholar 

  11. K. Tso et al., Phys. Lett. B 361, 25 (1995).

    Article  ADS  Google Scholar 

  12. L.G. Moretto et al., Phys. Rep., in press.

    Google Scholar 

  13. L. Phair et al., Phys. Rev. Lett. 75, 213 (1995).

    Article  ADS  Google Scholar 

  14. L. Phair et al., Phys. Rev. Lett. 77, 822 (1996).

    Article  ADS  Google Scholar 

  15. A. Ferrero et al., Phys. Rev. C 53, R5 (1996).

    Google Scholar 

  16. L.G. Moretto et al., Phys. Rev. Lett. 76, 372 (1996).

    Article  ADS  Google Scholar 

  17. U. Brosa, S. Grossmann, A. Müller, and E. Becker, Nucl. Phys. A 502, 423c (1989); Phys. Rep.197, 167 (1990).

    Article  ADS  Google Scholar 

  18. L.G. Moretto, K. Tso, N. Colonna, and G.J. Wozniak, Nucl. Phys. A 545, 237c (1992); Phys. Rev. Lett. 69, 1884 (1992).

    Article  ADS  Google Scholar 

  19. W. Bauer, G.F. Bertsch, and H. Schulz, Phys. Rev. Lett. 69, 1888 (1992).

    Article  ADS  Google Scholar 

  20. D.H.E. Gross, B.A. Li, and A.R. DeAngelis, Ann. Physik 1, 467 (1992).

    Article  ADS  Google Scholar 

  21. S.R. Souza and C. Ngô, Phys. Rev. C48, R2555 (1993).

    Google Scholar 

  22. H.M. Xu et al., Phys. Rev. C 48, 933 (1993).

    ADS  Google Scholar 

  23. L. Phair, W. Bauer, and C.K. Gelbke, Phys. Lett. B 314, 271 (1993).

    Article  ADS  Google Scholar 

  24. T. Glasmacher, C.K. Gelbke, and S. Pratt, Phys. Lett. B 314, 275 (1993).

    Article  ADS  Google Scholar 

  25. B. Borderie, B. Remaud, M.F. Rivet, and F. Sebille, Phys. Lett. B 302, 15 (1993).

    Article  ADS  Google Scholar 

  26. S. Pal, S.K. Samaddar, A. Das, and J.N. De, Phys. Lett. B 337, 14 (1994).

    Article  ADS  Google Scholar 

  27. Ph. Chomaz, M. Colonna, A. Guanera, and B. Jacquot, Nucl. Phys. A 583, 305c (1995).

    Article  ADS  Google Scholar 

  28. D.O. Handzy et al., Phys. Rev. C 51, 2237 (1995).

    Article  ADS  Google Scholar 

  29. M. Bruno et al., Phys. Lett. B 292, 251 (1992); Nucl. Phys. A 576, 138 (1994).

    Article  ADS  Google Scholar 

  30. L.G. Moretto et al., Phys. Rev. Lett. 77, 2634 (1996).

    Article  ADS  Google Scholar 

  31. R.T. de Souza et al., Nucl. Inst. Meth. A 311, 109 (1992).

    Google Scholar 

  32. W.C. Kehoe et al., Nucl. Inst. Meth. A 311, 258 (1992).

    Article  ADS  Google Scholar 

  33. D.R. Bowman et al., Phys. Rev. C 46, 1834 (1992).

    Article  ADS  Google Scholar 

  34. N.T.B. Stone et al., Phys. Rev. Lett. 78, 2084 (1997).

    Article  ADS  Google Scholar 

  35. D. Durand et al., submitted to Phys. Lett. B; J.F. Lecolley et al., submitted to Phys. Lett. B.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Phair, L. et al. (1997). Interpreting Multiplicity-Gated Fragment Distributions from Heavy-Ion Collisions. In: Bauer, W., Mignerey, A. (eds) Advances in Nuclear Dynamics 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4905-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4905-5_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7224-0

  • Online ISBN: 978-1-4615-4905-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics