Skip to main content

Linearity and Gain Control in V1 Simple Cells

  • Chapter
Models of Cortical Circuits

Part of the book series: Cerebral Cortex ((CECO,volume 13))

Abstract

The primary visual cortex (V1) is arguably the most studied area in the mammalian cortex, and one of the very few for which we can say something sensible about the computations that it performs. V1 cells are selective for the position, shape, size, velocity, color, and eye of presentation of a visual stimulus. The mechanism of this selectivity as well as its rationale have recently begun to be understood, although some aspects still constitute an area of intense debate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, L. F., Varela, J. A., Sen, K., and Nelson, S. B., 1997, Synaptic depression and cortical gain control, Science 275:220–224.

    Article  PubMed  CAS  Google Scholar 

  • Adelson, E. H., and Bergen, J. R., 1985, Spatiotemporal energy models for the perception of motion, J. Opt. Soc Am. A 2:284–299.

    Article  PubMed  CAS  Google Scholar 

  • Ahmed, B., Allison, J. D., Douglas, R. J., and Martin, K. A. C., 1997, An intracellular study of the contrastdependence of neuronal activity in cat visual cortex, Cerebral Cortex, 7:559–570.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht, D. G., 1995, Visual cortex neurons in monkey and cat: Effect of contrast on the spatial and temporal phase transfer functions, Vis. Neurosci. 12:1191–1210.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht, D. G., and Geisler, W. S., 1991, Motion sensitivity and the contrast-response function of simple cells in the visual cortex, Vis. Neurosci. 7:531–546.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht, D. G., and Hamilton, D. B., 1982, Striate cortex of monkey and cat: Contrast response function, J. Neurophysiol. 48:217–237.

    PubMed  CAS  Google Scholar 

  • Albrecht, D. G., Farrar, S. B., and Hamilton, D. B., 1984, Spatial contrast adaptation characteristics of neurones recored in the Cat’s visual cortex, Physiol. (Lond.) 347:713–739.

    CAS  Google Scholar 

  • Andrews, B. W., and Pollen, D. A., 1979, Relationship between spatial frequency selectivity and receptive field profile of simple cells, J. Physiol. (Lond.287:163–176.

    CAS  Google Scholar 

  • Bauman, L. A., and Bonds, A. B., 1991, Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex, Vis. Res. 31:933–944.

    Article  PubMed  CAS  Google Scholar 

  • Baylor, D. A., and Hodgkin, A. L., 1974, Changes in time scale and sensitivity in turtle photoreceptors, J. Physiol. (Lond.) 242:729–758.

    CAS  Google Scholar 

  • Benardete, E. A., and Kaplan, E., 1997, The receptive field of the primate P retinal ganglion cell. I: Linear dynamics, Vis. Neurosci. 14:169–185.

    Article  PubMed  CAS  Google Scholar 

  • Benardete, E. A., Kaplan, E., and Knight, B. W., 1992, Contrast gain in the primate retina: P cells are not X-like, some M cells are, Vis. Neurosci. 8:483–486.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yishai, R., Or, R. L. B., and Sompolinsky, H., 1995, Theory of orientation tuning in the visual cortex, Proc. Natl. Acad. Sci. USA 92:3844–3848.

    Article  PubMed  CAS  Google Scholar 

  • Berman, N.J., Douglas, R.J., Martin, K. A. C., and Whitteridge, D., 1991, Mechanisms of inhibition in cat visual cortex, J. Pliysiol. (Lond.) 440:697–722.

    CAS  Google Scholar 

  • Bishop, P. O., Coombs, J. S., and Henry, G. H., 1973, Receptive fields of simple cells in the cat striate cortex, J. Physiol. (Lond.) 231:31–60.

    CAS  Google Scholar 

  • Blakemore, C., and Tobin, E. A., 1972, Lateral inhibition between orientation detectors in the cat’s visual cortex, Exp. Brain Res. 15:439–440.

    Article  PubMed  CAS  Google Scholar 

  • Blasdel, G. G., and Lund, J. S., 1983, Termination of afferent axons in macaque striate cortex, J. Neurosci. 3:1389–1413.

    PubMed  CAS  Google Scholar 

  • Blomfield, S., 1974, Arithmetical operations performed by nerve cells, Brain Res. 69:115–124.

    Article  PubMed  CAS  Google Scholar 

  • Bonds, A. B., 1989, Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex, Vis. Neurosci 2:41–55.

    Article  PubMed  CAS  Google Scholar 

  • Bonds, A. B., 1991, Temporal dynamics of contrast gain in single cells of the cat striate cortex, Vis. Neurosci 6:239–255.

    Article  PubMed  CAS  Google Scholar 

  • Bonds, A. B., 1992, Spatial and temporal nonlinearities in receptive fields on the cat striate cortex, in: Nonlinear Vision (R. B. Pinter and B. Nabet, eds.), CRC Press, Boca Raton, FL, pp. 329–352.

    Google Scholar 

  • Borg-Graham, L. J., Monier, C., and Frégnac, Y., 1998, Visual input evokes transient and strong shunting inhibition in visual cortical neurons, Nature 393:369–373.

    Article  PubMed  CAS  Google Scholar 

  • Born, R. T., and Tootell, R. B. H., 1991, Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex, Proc. Natl. Acad. Sci. USA 88:7071–7075.

    Article  PubMed  CAS  Google Scholar 

  • Carandini, M., and Ferster, D., 1997a, Intracellular correlates of adaptation and masking in cat simple cells, Inv. Ophthalmol. Vis. Sci. 38/4:S16.

    Google Scholar 

  • Carandini, M., and Ferster, D., 1997b, A tonic hyperpolarization underlying contrast adaptation in cat visual cortex, Science 276:949–952.

    Article  PubMed  CAS  Google Scholar 

  • Carandini, M., and Heeger, D. J., 1994, Summation and division by neurons in visual cortex, Science 264:1333–1336.

    Article  PubMed  CAS  Google Scholar 

  • Carandini, M., and Ringach, D. L., 1997, Predictions of a recurrent model of orientation selectivity, Vis. Res. 37:3061–3071.

    Article  PubMed  CAS  Google Scholar 

  • Carandini, M., Heeger, D. J., and Movshon, J. A., 1993, Amplitude and phase of contrast responses in LGN and V1, Soc. Neurosci. Abstr. 19:628.

    Google Scholar 

  • Carandini, M., Mechler, F., Leonard, C. S., and Movshon, J. A., 1996, Spike train encoding in regularspiking cells of the visual cortex, J. Neurophysiol. 76:3425–3441.

    PubMed  CAS  Google Scholar 

  • Carandini, M., Barlow, H. B., O’Keefe, L. P., Poirson, A. B., and Movshon, J. A., 1997a, Adaptation to contingencies in macaque primary visual cortex, Proc. R. Soc. Land. B 352:1149–1154.

    CAS  Google Scholar 

  • Carandini, M., Heeger, D. J., and Movshon, J. A., 1997b, Linearity and normalization in simple cells of the macaque primary visual cortex, J. Neurosci. 17:8621–8644.

    PubMed  CAS  Google Scholar 

  • Carandini, M., Anderson, J., and Ferster, D., 1998, Tuning of membrane conductance changes in simple cells of the cat striate cortex, Soc. Neurosci. Abstr. 24:766.

    Google Scholar 

  • Cavanaugh, J., Bair, W., and Movshon, J., 1997, Orientation-selective setting of contrast gain by the surrounds of macaque striate cortex neurons, Soc. Neurosci. Abstr. 23:567.

    Google Scholar 

  • Chagnac-Amitai, Y., and Connors, B. W., 1989, Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition, J. Neurophysiol. 61:747–758.

    PubMed  CAS  Google Scholar 

  • Coombs, J. S., Eccles, J. C., and Fatt, P., 1955, The inhibitory suppression of reflex discharges from motoneurones, J. Physiol. (Lond.) 130:396–413.

    CAS  Google Scholar 

  • Crook, J. M., and Eysel, U. T., 1992, GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): Effects on orientation tuning, J. Neurosci 12:1816–1825.

    PubMed  CAS  Google Scholar 

  • Dean, A. F., 1981, The relationship between response amplitude and contrast for cat striate cortical neurones, J. Physiol. (Lond.) 318:413–427.

    CAS  Google Scholar 

  • Dean, A. F., and Tolhurst, D.J., 1983, On the distinctness of simple and complex cells in the visual cortex of the cat, J. Physiol. (Lond.) 344:305–325.

    CAS  Google Scholar 

  • Dean, A. F., and Tolhurst, D. J., 1986, Factors influencing the temporal phase of response to bar and grating stimuli for simple cells in the cat striate cortex, Exp. Brain Res. 62:143–151.

    Article  PubMed  CAS  Google Scholar 

  • Dean, A. F., Hess, R. F., and Tolhurst, D. J., 1980, Divisive inhibition involved in direction selectivity, J. Physiol. (Lond.) 308:84p–85p.

    Google Scholar 

  • DeAngelis, G. C., Robson.J. G., Ohzawa, I., and Freeman, R. D., 1992, The organization of supression in receptive fields of neurons in cat visual cortex, J. Neurophysiol. 68:144–163.

    PubMed  CAS  Google Scholar 

  • DeAngelis, G. C., Ohzawa, I., and Freeman, R. D., 1993a, Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. I. General characteristics and postnatal development, J. Neurophysiol. 69:1091–1117.

    PubMed  CAS  Google Scholar 

  • DeAngelis, G. C., Ohzawa, I., and Freeman, R. D., 1993b, Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation, J. Neurophysiol. 69:1118–1135.

    PubMed  CAS  Google Scholar 

  • DeAngelis, G. C., Freeman, R. D., and Ohzawa, I., 1994, Length and width tuning of neurons in the cat’s primary visual cortex, J. Neurophysiol. 71:347–374.

    PubMed  CAS  Google Scholar 

  • deBoer. E., and Kuyper, P., 1968, Triggered correlation, IEEE Trans. Biomed. Eng. 15:169–179.

    Article  CAS  Google Scholar 

  • Derrington, A. M., and Lennie, P., 1984, Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque, J. Physiol. (Lond.) 357:219–240.

    CAS  Google Scholar 

  • De Valois, K. K., De Valois, R. L., and Yund, E. W., 1979, Responses of striate cortex cells to grating and checkerboard patterns, J. Physiol. (Lond.), 291:483–505.

    Google Scholar 

  • De Valois, R. L., Albrecht, D. G., and Thorell, L. G., 1982a, Spatial frequency selectivity of cells in macaque visual cortex, Vis. Res. 22:545–559.

    Article  PubMed  Google Scholar 

  • De Valois, R. L., Yund, E. W., and Hepler, N., 1982b, The orientation and direction selectivity of cells in macaque visual cortex, Vis. Res. 22:531–544.

    Article  PubMed  Google Scholar 

  • De Valois, R. L., Thorell, L. G., and Albrecht, B. G., 1995, Periodicity of Striate-cortex-cell receptive fields, J. Opt. Soc. Am. 2:1115–1123.

    Article  Google Scholar 

  • Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C., and Suarez, H. H., 1995, Recurrent excitation in neocortical circuits, Science 269:981–985.

    Article  PubMed  CAS  Google Scholar 

  • Dreher, B., Fukuda, Y., and Rodieck, R. W., 1976, Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the LGN of Old World monkeys, J. Physiol. (Lond.) 258:433–452.

    CAS  Google Scholar 

  • Dreifuss, J. J., Kelly, J. S., and Krnjevic, K., 1969, Cortical inhibition and gamma-aminobutyric acid, Exp. Brain Res. 9:137–154.

    Article  PubMed  CAS  Google Scholar 

  • Einstein, G., Davis, T. L., and Sterling, P., 1987, Ultrastructure of synapses from the A-laminae of the lateral geniculate nucleus in layer IV of the cat striate cortex, J. Comp. Neurol. 260:63–75.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, R. C., 1988, A linear model for symmetric receptive fields: Implications for classification test with flashed and moving images, Spatial Vision 3:159–177.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, R. C., and Citron, M. C., 1992, Linear and nonlinear mechanisms of motion selectivity in simple cells of the cat’s striate cortex, in: Nonlinear Vision: Determination of Neural Receptive Fields, Function and Networks (R. B. Pinter and B. Nabet, eds.), CRC Press, Boca Raton, FL, pp. 75–89.

    Google Scholar 

  • Enroth-Cugell, C., and Robson, J. G., 1966, The contrast sensitivity of retinal ganglion cells of the cat, J. Physiol. (Lond.) 187:517–552.

    CAS  Google Scholar 

  • Enroth-Cugell, C., and Robson, J. G., 1984, Functional characteristics and diversity of cat retinal ganglion cells, Inv Ophtlialmol. Vis. Sci. 25:250–267.

    CAS  Google Scholar 

  • Enroth-Cugell, C., Robson, J. G., Schweitzer-Tong, D. E., and Watson, A. B., 1983, Spatiotemporal interactions in cat retinal ganglion cells showing linear spatial summation, J. Physiol. (Lond.) 341:279–307.

    CAS  Google Scholar 

  • Fahle, M., and Poggio, T., 1981, Visual hyperacuity: Spatiotemporal interpolation in human vision, Proc. R. Soc. Lond. B 213:451–477.

    Article  PubMed  CAS  Google Scholar 

  • Fatt, P., and Katz, B., 1953, The effect of inhibitory nerve impulses on a crustacean muscle fiber, J. Physiol. (Lond.) 121:374–389.

    CAS  Google Scholar 

  • Ferster, D., 1981, A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex, J. Physiol. (Lond.) 311:623–655.

    CAS  Google Scholar 

  • Ferster, D., 1986, Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex, J. Neurosci. 6:1284–1301.

    PubMed  CAS  Google Scholar 

  • Ferster, D., 1988, Spatially opponent excitation and inhibition in simple cells of the cat visual cortex, J. Neurosci 8:1172–1180.

    PubMed  CAS  Google Scholar 

  • Ferster, D., 1990a, Binocular convergence of synaptic potentials in cat visual cortex, Vis. Neurosci. 4:625–629.

    Article  PubMed  CAS  Google Scholar 

  • Ferster, D., 1990b, X-and Y-mediated current sources in area 17 and 18 of cat visual cortex, Vis. Neurosci. 4:135–145.

    Article  PubMed  CAS  Google Scholar 

  • Ferster, D., and Jagadeesh, B., 1992, EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording, J. Neurosci. 12:1262–1274.

    PubMed  CAS  Google Scholar 

  • Ferster, D., and Lindstrom, S., 1983, An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat, J. Physiol. (Lond.) 342:181–215.

    CAS  Google Scholar 

  • Ferster, D., Chung, S., and Wheat, H. S., 1996, Orientation selectivity of thalamic input to simple cells of cat visual cortex, Nature 380:249–252.

    Article  PubMed  CAS  Google Scholar 

  • Field, D. J., and Tolhurst, D. J., 1986, The structure and symmetry of simple-cell receptive field profiles in the cat’s visual cortex, Proc. R. Soc. Lond. B 228:379–400.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, R. D., Ohzawa, I., and Robson, J. G., 1987, A comparison of monocular and binocular inhibitory processes in the visual cortex of cat, J. Physiol. (Lond.) 396:69p.

    Google Scholar 

  • Garey, L. J., and Powell, T. P. S., 1971, An experimental study of the termination of the lateral geniculocortical pathway in the cat and monkey, Proc. R. Soc. Land. B 179:41–63.

    Article  CAS  Google Scholar 

  • Gaudiano, P., 1992, A unified neural network model of spatiotemporal processing in X and Y retinal ganglion cells I: Analytical results, Biol. Cybernet. 67:11–21.

    Article  CAS  Google Scholar 

  • Geisler, W. S., and Albrecht, D. G., 1992, Cortical neurons: Isolation of contrast gain control, Vis. Res. 8:1409–1410.

    Article  Google Scholar 

  • Gilbert, C. D., and Wiesel, T. N., 1990, The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat, Vis. Res. 30:1689–1701.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, C. D., Das, A., Ito, M., Kapadia, M., and Westheimer, G., 1996, Spatial integration and cortical dynamics, Proc. Nail. Acad. Sci. USA93:615–622.

    Article  CAS  Google Scholar 

  • Gizzi, M. S., Katz, E., Schumer, R. A., and Movshon, J. A., 1990, Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex, J. Neurophysiol. 63:1529–1543.

    PubMed  CAS  Google Scholar 

  • Glezer, V. D., Tscherbach, T. A., Gauselman, V. E., and Bondarko, V. E., 1980, Linear and nonlinear properties of simple and complex receptive fields in area 17 of the cat visual cortex, Biol Cybernet. 37:195–208.

    Article  CAS  Google Scholar 

  • Glezer, V. D., Tscherbach, T. A., Gauselman, V. E., and Bondarko, V. E., 1982, Spatiotemporal organization of receptive fields of the cat striate cortex, Biol. Cybernet. 43:35–49.

    Article  CAS  Google Scholar 

  • Grossberg, S., 1988, Nonlinear neural networks: Principles, mechanisms and architectures, Neural Networks 1:17–61.

    Article  Google Scholar 

  • Gulyas, B., Orban, G. A., Duysens, J., and Maes, H., 1987, The suppressive influence of moving textured backgrounds on responses of cat striate neurons to moving bars, J. Neurophysiol. 57:1767–1791.

    PubMed  CAS  Google Scholar 

  • Hammond, P., and MacKay, D. M., 1981, Modulatory influences of moving textured backgrounds on responsiveness of simple cells in feline striate cortex, J. Physiol. (Lond.) 319:431–442.

    CAS  Google Scholar 

  • Hawken, M. J., Shapley, R. M., and Grosof, D. H., 1992, Temporal frequency tuning of neurons in macaque VI: Effects of luminance contrast and chromaticity, Inv. Ophthalmol. Vis. Sci. (Suppl.) 33:955.

    Google Scholar 

  • Heeger, D.J., 1991, Nonlinear model of neural responses in cat visual cortex, in: Computational Models of Visual Processing (M. S. Landy and A. Movshon, eds.), MIT Press, Cambridge, MA, pp. 119–133.

    Google Scholar 

  • Heeger, D. J., 1992a, Half-squaring in responses of cat simple cells, Vis. Neurosci. 9:427–443.

    Article  PubMed  CAS  Google Scholar 

  • Heeger, D. J., 1992b, Normalization of cell responses in cat striate cortex, Vis. Neurosci. 9:181–197.

    Article  PubMed  CAS  Google Scholar 

  • Heeger, D. J., 1993, Modeling simple cell direction selectivity with normalized, half-squared, linear operators, J. Neurophysiol. 70:1885–1897.

    PubMed  CAS  Google Scholar 

  • Heggelund, P., 1981, Receptive-field organization of simple cells in cat striate cortex, Exp. Brain Res. 42:89–98.

    PubMed  CAS  Google Scholar 

  • Heggelund, P., 1986, Quantitative studies of the discharge fields of single cells in cat striate cortex, J. Physiol. (Lond.) 373:277–292.

    CAS  Google Scholar 

  • Hendrickson, A. E., Wilson, J. R., and Ogren, M. P., 1978, The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates, J. Comp. Neurol. 182:123–136.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, J. A., Alonso, J. M., and Reid, R. C., 1995, Visually evoked calcium action potentials in cat striate cortex, Nature 378:612–616.

    Article  PubMed  CAS  Google Scholar 

  • Hochstein, S., and Shapley, R. M., 1976, Quantitative analysis of retinal ganglion cell classifications, J. Physiol. (Lond.) 262:237–264.

    CAS  Google Scholar 

  • Holub, R. A., and Morton-Gibson, M., 1981, Response of visual cortical neurons of the cat to moving sinusoidal gratings: Response-contrast functions and spatiotemporal interactions, J. Neurophysiol. 46:1244–1259.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. (Lond.) 160:106–154.

    CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculocortical fibers in macaque monkeys, J. Comp. Neurol. 146:421–450.

    Article  PubMed  CAS  Google Scholar 

  • Jack, J. J. B., Noble, D., and Tsien, R. W., 1975, Electric Current Flow in Excitable Cells, Oxford University Press, Oxford.

    Google Scholar 

  • Jagadeesh, B., Wheat, H. S., and Ferster, D., 1993, Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex, Science 262:1901–1904.

    Article  PubMed  CAS  Google Scholar 

  • Jagadeesh, B., Wheat, H. S., Kontsevich, L. L., Tyler, C. W., and Ferster, D., 1977, Direction selectivity of synaptic potentials in simple cells of the cat visual cortex, J. Neurophysiol. 78:2772–2789.

    Google Scholar 

  • Jones, J. P., and Palmer, L. A., 1987a, An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex, J. Neurophysiol. 58:1233–1258.

    PubMed  CAS  Google Scholar 

  • Jones, J. P., and Palmer, L. A., 1987b, The two-dimensional spatial structure of simple receptive fields in cat striate cortex, J. Neurophysiol. 58:1187–1211.

    PubMed  CAS  Google Scholar 

  • Jones, J. P., Stepnoski, A., and Palmer, L. A., 1987, The two-dimensional spectra] structure of simple receptive fields in cat striate cortex, J. Neurphysiol. 58:1212–1232.

    CAS  Google Scholar 

  • Kaji, S., and Kawabata, N., 1985, Neural interactions of two moving patterns in the direction and orientation domain in the complex cells of cat’s visual cortex, Vis. Res. 25:749–753.

    Article  PubMed  CAS  Google Scholar 

  • Kapadia, M. K., Ito, M., Gilbert, C. D., and Westheimer, G., 1995, Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys, Neuron 15:843–856.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, E., Purpura, K., and Shapley, R., 1987, Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus, J. Physiol. (Lond.) 391:267–288.

    CAS  Google Scholar 

  • Kisvárday, Z., and Eysel, U. T., 1993, Functional and structural topography of horizontal inhibitory connections in cat visual cortex, Eur.J. Neurosci. 5:1558–1572.

    Article  PubMed  Google Scholar 

  • Kisvárday, Z. F., Beaulieu, C., and Eysel, U. T., 1993, Network of GABA-ergic large basket cells in cat visual cortex (area 18): Implication for lateral disinhibition, J. Comp. Neurol. 327:398–415.

    Article  PubMed  Google Scholar 

  • Koch, C., and Poggio, T., 1987, Biophysics of computation: Neurons, synapses and membranes, in: Synaptic Function (G. M. Edelman, W. E. Gall, and M. W. Cowan, eds.), Wiley, New York, pp. 637–698.

    Google Scholar 

  • Koch, C., and Segev, I., eds., 1989, Methods in Neuronal Modeling, MIT Press, Cambridge, MA.

    Google Scholar 

  • Kulikowski, J. J., and Bishop, P. O., 1981a, Fourier analysis and spatial representation in the visual cortex, Experimentia 37:160–163.

    Article  CAS  Google Scholar 

  • Kulikowski, J. J., and Bishop, P. O., 1981b, Linear analysis of the responses of simple cells in the cat visual cortex, Exp. Brain Res. 44:386–400.

    PubMed  CAS  Google Scholar 

  • Lahica, E. A., Beck, P. D., and Casagrande, V. A., 1992, Parallel pathways in macaque monkey striate cortex: Anatomically defined columns in layer III, Proc. Natl. Acad. Sci. USA 89:3566–3570.

    Article  Google Scholar 

  • Lee, B. B., Pokorny, J., Smith, V. C., and Kremers, J., 1994, Responses to pulses and sinusoids in macaque ganglion cells, Vis. Res. 34:3081–3096.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, J. B., and Lund, J. S., 1996, Contrast dependence of modulatory surround effects in macaque striate neurons, Inv Ophthalmol. Vis. Sci. (Suppl.) 37:S482.

    Google Scholar 

  • Li, C., and Creutzfeldt, O., 1984, The representation of contrast and other stimulus parameters by single neurons in area 17 of the cat, Pflugers Arch. 401:304–314.

    Article  PubMed  CAS  Google Scholar 

  • Li, C., and Li, W., 1994, Extensive integration beyond the classical receptive field of cat’s striate cortical neurons—Classification and tuning properties, Vis. Res. 34:2337–2356.

    Article  PubMed  CAS  Google Scholar 

  • Lisberger, S. G., and Sejnowski, T. J., 1992, Motor learning in a recurrent network model based on the vestibulo-ocular reflex, Nature 360:159–161.

    Article  PubMed  CAS  Google Scholar 

  • Maffei, L., and Fiorentini, A., 1973, The visual cortex as a spatial frequency analyzer, Vis. Res. 13:1255–1267.

    Article  PubMed  CAS  Google Scholar 

  • Maffei, L., and Fiorentini, A., 1976, The unresponsive regions of visual cortical receptive fields, Vis. Res. 13:1255–1267.

    Article  Google Scholar 

  • Maffei, L., Morrone, C., Pirchio, M., and Sandini, G., 1979, Responses of visual cortical cells to periodic and nonperiodic stimuli, J. Physiol. (Lond.) 296:27–47.

    CAS  Google Scholar 

  • Malpeli, J. G., Schiller, P. H., and Colby, C. L., 1981, Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae, J. Neurophysiol. 46:1102–1119.

    PubMed  CAS  Google Scholar 

  • Markram, H., and Tsodyks, M., 1996, Redistribution of synaptic efficacy between neocortical pyramidal neurons, Nature 382:807–910.

    Article  PubMed  CAS  Google Scholar 

  • Marr, D., 1970, A theory for cerebral neocortex, Proc. R. Soc. B 176:161–234.

    Article  CAS  Google Scholar 

  • Marr, D., 1982, Vision, Freeman, San Francisco.

    Google Scholar 

  • Mastronarde, D., 1987, Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptivefield properties and classification of cells, J. Neurophysiol. 57:357–380.

    PubMed  CAS  Google Scholar 

  • Maunsell, J. H. R., and Gibson, J. R., 1992, Visual response latencies of striate cortex of the macaque monkey, J. Neurophysiol. 68:1332–1344.

    PubMed  CAS  Google Scholar 

  • McLean, J., and Palmer, L. A., 1988, Contribution of linear mechanisms to direction selectivity of simple cells in area 17 and 18 of the cat, Presented at Annual Spring Meeting of the Association for Research in Vision and Ophthalmology, Sarasota, Florida, May 1988.

    Google Scholar 

  • McLean, J., and Palmer, L. A., 1989, Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of the cat, Vis. Res. 29:675–679.

    Article  PubMed  CAS  Google Scholar 

  • McLean, J., Raab, S., and Palmer, L. A., 1994, Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat, Vis. Neurosci. 11:295–306.

    Article  PubMed  CAS  Google Scholar 

  • Morrone, M. C., Burr, D. C., and Maffei, L., 1982, Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence, Proc. R. Soc. Land. B 216:335–354.

    Article  CAS  Google Scholar 

  • Movshon, J. A., and Lennie, P., 1979, Pattern-selective adaptation in visual cortical neurones, Nature 278:850–852.

    Article  PubMed  CAS  Google Scholar 

  • Movshon, J. A., Thompson, I. D., and Tolhurst, D. J., 1978a, Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex, J. Physiol. (Lond.) 283:101–120.

    CAS  Google Scholar 

  • Movshon, J. A., Thompson, I. D., and Tolhurst, D. J., 1978b, Spatial summation in the receptive fields of simple cells in the cat’s striate cortex, J. Physiol. (Lond.) 283:53–77.

    CAS  Google Scholar 

  • Movshon, J. A., Hawken, M. J., Kiorpes, L., Skoczenski, A. M., Tang, C., and O’Keefe, L. P., 1994, Visual noise masking in macaque LGN neurons, Inv. Ophthalinol. Vis. Sd. (Suppl), 35:1662.

    Google Scholar 

  • Nealey, T. A., and Maunsell, J. H., 1994, Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex, J. Neurosci. 14:2069–2079.

    PubMed  CAS  Google Scholar 

  • Nelson, J. I., and Frost, B., 1985, Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex, Exp. Brain Res. 6:54–61.

    Google Scholar 

  • Nelson, S., Toth, L., Sheth, B., and Sur, M., 1994, Orientation selectivity of cortical neurons during intracellular blockade of inhibition, Science 265:774–777.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, S. B., 1991, Temporal interactions in the cat visual system I. Orientation-selective suppression in visual cortex, J. Neurosci. 11:344–356.

    PubMed  CAS  Google Scholar 

  • Nestares, O., and Heeger, D. J., 1997, Modeling the apparent frequency-specific suppression in simple cell responses, Vis. Res. 37:1535–1543.

    Article  PubMed  CAS  Google Scholar 

  • Ohzawa, I., and Freeman, R. D., 1986, The binocular organization of simple cells in the cat’s visual cortex, J. Neurophysiol. 56:221–242.

    PubMed  CAS  Google Scholar 

  • Palmer, L. A., and Davis, T. L., 1981, Receptive-field structure in cat striate cortex, J. Neurophysiol 46:260–276.

    PubMed  CAS  Google Scholar 

  • Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T., and Norcia, A. M., 1998, Collinear stimuli regulate visual responses depending on cell’s contrast threshold, Nature 391:580–584.

    Article  PubMed  CAS  Google Scholar 

  • Pollen, D., and Ronner, S., 1982, Spatial computation performed by simple and complex cells in the visual cortex of the cat, Vis. Res. 22:101–118.

    Article  PubMed  CAS  Google Scholar 

  • Pollen, D. A., Gaska, J. P., and Jacobson, L. D., 1988, Responses of simple and complex cells to compound sine-wave gratings, Vis. Res. 28:25–39.

    PubMed  CAS  Google Scholar 

  • Reid, R. C., and Alonso, J. M., 1995, Specificity of monosynaptic connections from thalamus to visual cortex, Nature 378:281–284.

    Article  PubMed  CAS  Google Scholar 

  • Reid, R. C., Soodak, R. E., and Shapley, R. M., 1987, Linear mechanisms of direction selectivity in simple cells of cat striate cortex, Proc. Natl. Acad. Sd. USA 84:8740–8744.

    Article  CAS  Google Scholar 

  • Reid, R. C., Soodak, R. E., and Shapley, R. M., 1991, Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex, J. Neurophysiol. 66:505–529.

    PubMed  CAS  Google Scholar 

  • Reid, R. C., Victor, J. D., and Shapley, R. M., 1992, Broadband temporal stimuli decrease the integration time of neuron in cat striate cortex, Vis. Neurosci. 9:39–45.

    Article  PubMed  CAS  Google Scholar 

  • Robson, J. G., 1988, Linear and nonlinear operations in the visual system, Inv. Ophthalmol Vis. Sci. (Suppl) 29:117.

    Google Scholar 

  • Rose, D., 1977, On the arithmetical operation performed by inhibitory synapses onto the neuronal soma, Exp. Brain Res. 28:221–223.

    Article  PubMed  CAS  Google Scholar 

  • Salin, P. A., and Prince, D. A., 1996a, Electrophysiological mapping of GABA-A receptor-mediated inhibition in adult rat somatosensory cortex, J. Neurophysiol. 75:1589–1599.

    PubMed  CAS  Google Scholar 

  • Salin, P. A., and Prince, D. A., 1996b, Spontaneous GABA-A receptor-mediated inhibitory currents in adult rat somatosensory cortex, J. Neurophysiol. 75:1573–1588.

    PubMed  CAS  Google Scholar 

  • Saul, A. B., and Cynader, M. S., 1989a, Adaptation in single units in visual cortex: The tuning of aftereffects in the spatial domain, Vis. Neurosci. 2:593–607.

    Article  PubMed  CAS  Google Scholar 

  • Saul, A. B., and Cynader, M. S., 1989b, Adaptation in single units in visual cortex: The tuning of aftereffects in the spatial domain, Vis. Neurosci. 2:609–620.

    Article  PubMed  CAS  Google Scholar 

  • Saul, A. B., and Humphrey, A. L., 1990, Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus, J. Neurophysiol. 64:206–224.

    PubMed  CAS  Google Scholar 

  • Saul, A. B., and Humphrey, A. L., 1992, Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat, J. Neurophysiol. 68:1190–1208.

    PubMed  CAS  Google Scholar 

  • Schiller, P. H., Finlay, B. L., and Volman, S. F., 1976, Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields, J. Neurophysiol. 39:1288–1319.

    PubMed  CAS  Google Scholar 

  • Schumer, R. A., and Movshon, J. A., 1984, Length summation in simple cells of cat striate cortex, Vis. Res. 24:565–571.

    Article  PubMed  CAS  Google Scholar 

  • Sclar, G., and Freeman, R. D., 1982, Orientation selectivity in the cat’s striate cortex is invariant with stimulus contrast, Exp. Brain Res. 46:457–461.

    Article  PubMed  CAS  Google Scholar 

  • Sclar, G., Maunsell, J. H. R., and Lennie, P., 1990, Coding of image contrast in central visual pathways of the macaque monkey, Vis. Res. 30:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Sengpiel, F., and Blakemore, C., 1994, Interocular control of neuronal responsiveness in cat visual cortex, Nature 368:847–850.

    Article  PubMed  CAS  Google Scholar 

  • Sengpiel, F., Blakemore, C., and Harrad, R., 1995, Interocular suppression in the primary visual cortex: A possible neural basis of binocular rivalry, Vis. Res. 35:179–196.

    Article  PubMed  CAS  Google Scholar 

  • Shapley, R. M., and Enroth-Cugell, C., 1984, Visual adaptation and retinal gain controls, Prog. Retinal Res. 3:263–346.

    Article  Google Scholar 

  • Shapley, R. M., and Victor, J. D., 1978, The effect of contrast on the transfer properties of cat retinal ganglion cells, J. Physiol. 285:275–298.

    PubMed  CAS  Google Scholar 

  • Shapley, R., Reid, R. C., and Soodak, R., 1991, Spatiotemporal receptive fields and direction selectivity, Computational Models of Visual Processing (M. S. Landy and J. A. Movshon, eds.), MIT Press, Cambridge, MA, pp. 109–118.

    Google Scholar 

  • Sherman, S. M., Schumer, R. A., and Movshon, J. A., 1984, Functional cell classes in the macaque’s LGN, Soc. Neurosci. Abstr. 10:296.

    Google Scholar 

  • Sillito, A. M., 1975, The contribution of inhibitory mechanisms to the receptive field properties of neurones in the cat’s striate cortex, J. Physiol. (Lond.) 250:304–330.

    Google Scholar 

  • Sillito, A. M., 1977, Inhibitory processes underlying the directional specificity of simple, complex, and hypercomplex cells in the cat’s visual cortex, J. Physiol. (Lond.) 271:699–720.

    CAS  Google Scholar 

  • Sillito, A. M., 1984, Functional considerations of the operation of GABAergic inhibitory processes in the visual cortex, in: Cerebral Cortex, Vol. 2. Functional Properties of Cortical Cells, (E. G.Jones and A. Peters, eds.), Plenum Press, New York, pp. 91–117.

    Google Scholar 

  • Sillito, A. M., Kemp, J. A., Milson, J. A., and Berardi, N., 1980, A re-evaluation of the mechanisms underlying simple cell orientation selectivity, Brain Res. 194:517–520.

    Article  PubMed  CAS  Google Scholar 

  • Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., and Davis, J., 1995, Visual cortical mechanisms detecting focal orientation discontinuities, Nature 378:492–496.

    Article  PubMed  CAS  Google Scholar 

  • Simoncelli, E. P., and Heeger, D. J., 1998, A model of neuronal responses in visual area MT, Vis. Res. 38:743–761.

    Article  PubMed  CAS  Google Scholar 

  • Skottun, B. C., Bradley, A., Sclar, G., Ohzawa, I., and Freeman, R., 1987, The effects of contrast on visual orientation and spatial frequency discrimination: A comparison of single cells and behavior, J. Neurophysiol. 57, 773–786.

    PubMed  CAS  Google Scholar 

  • Somers, D. C., Nelson, S. B., and Sur, M., 1995, An emergent model of orientation selectivity in cat visual cortical simple cells, J. Neurosci. 15:5448–5465.

    PubMed  CAS  Google Scholar 

  • Sperling, G., and Sondhi, M. M., 1968, Model for visual luminance discrimination and flicker detection, J. Opt. Soc. Am. A 58:1133–1145.

    Article  CAS  Google Scholar 

  • Stafstrom, C. E., Schwindt, P. C., and Crill, W. E., 1984, Repetitive firing in layer V neurons from cat neocortex in vitro, J. Neurophysiol. 52:264–277.

    PubMed  CAS  Google Scholar 

  • Suarez, H. H., Koch, C., and Douglas, R. J., 1995, Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit, J. Neurosci. 15:6700–6719.

    PubMed  CAS  Google Scholar 

  • Tadmor, Y., and Tolhurst, D. J., 1989, The effect of threshold on die relationship between the receptivefield profile and the spatial-frequency tuning curve in simple cells of the cat’s striate cortex, Vis. Neurosci. 3:445–454.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., 1983, Cross-correlation analysis of geniculostriate neuronal relationships in cats, J. Neurophysiol. 49:1303–1318.

    PubMed  CAS  Google Scholar 

  • Tolhurst, D.J., and Dean, A. F., 1987, Spatial summation by simple cells in the striate cortex of the cat, Exp. Brain Res. 66:607–620.

    Article  PubMed  CAS  Google Scholar 

  • Tolhurst, D. J., and Dean, A. F., 1990, The effects of contrast on the linearity of spatial summation of simple cell in the cat’s striate cortex, Exp. Brain Res. 79:582–588.

    Article  PubMed  CAS  Google Scholar 

  • Tolhurst, D. J., and Dean, A. F., 1991, Evaluation of a linear model of directional selectivity in simple cells of the cat’s striate cortex, Vis. Neurosci. 6:421–428.

    Article  PubMed  CAS  Google Scholar 

  • Tolhurst, D. J., and Heeger, D. J., 1997a, Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex, Vis. Neurosci. 14:293–310.

    Article  PubMed  CAS  Google Scholar 

  • Tolhurst, D. J., and Heeger, D. J., 1997b, Contrast normalization and a linear model for the directional selectivity of simple cells in cat striate cortex, Vis. Neurosci. 14:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Toyama, K., Kimura, M., Shiida, X., and Takeda, T., 1977a, Convergence of retinal inputs onto visual cortical cells: II. A study of the cells disynaptically excited from the lateral geniculate body, Brain Res. 137:221–231.

    Article  PubMed  CAS  Google Scholar 

  • Toyama, K., Maikawa, K., and Tanaka, T., 1977b, Convergence of retinal inputs onto visual cortical cells: I. A study of the cells monosynaptically excited from the lateral geniculate body, Brain Res. 137:207–220.

    Article  PubMed  CAS  Google Scholar 

  • Tranchina, D., Gordon, J., and Shapley, R. M., 1984, Retinal light adaptation—Evidence for a feedback mechanism, Nature 310:314–316.

    Article  PubMed  CAS  Google Scholar 

  • Troy, J. B., 1983, Spatial contrast sensitivities of X and Y type neurones in the cat’s dorsal lateral geniculate nucleus, J. Physiol. (Lond.) 344:399–417.

    CAS  Google Scholar 

  • van Essen, D., DeYoe, E. A., Olavarria, J. F., Knierim, J. J., Sagi, D., Fox, J. M., and Julesz, B., 1989, Neural responses to static and moving texture patterns in visual cortex of the macaque monkey, in: Neural Mechanisms of Visual Perception (D. M.-K. Lam and C. D. Gilbert, eds.), Portfolio, Woodlands, TX, pp. 137–156.

    Google Scholar 

  • van Santen, J. P. H., and Sperling, G., 1985, Elaborated Reichardt detectors, J. Opt. Soc. Am. A 2:300–321.

    Article  PubMed  Google Scholar 

  • Victor, J., 1987, The dynamics of the cat retinal X cell centre, J. Physiol. (Lond.) 386:219–246.

    CAS  Google Scholar 

  • Victor, J., 1988, The dynamics of the cat retinal Y cell subunit, J. Physiol. (Lond.) 405:289–320.

    CAS  Google Scholar 

  • Walker, G. A., Ohzawa, I., and Freeman, R. D., 1996, interocular transfer of cross-orientation suppression in the cat’s visual cortex, Inv Ophthalmol. Vis. Sci. (Suppl.) 37:S484.

    Google Scholar 

  • Watanabe, S., Konishi, M., and Creutzfeldt, O. D., 1966, Postsynaptic potentials in the cat’s visual cortex following electrical stimulation of afferent pathways, Exp. Brain Res. 1:272–283.

    PubMed  CAS  Google Scholar 

  • Watson, A. B., and Ahumada, A. J., 1985, Model of human visual-motion sensing, J. Opt. Soc. Am. 2:322–341.

    Article  CAS  Google Scholar 

  • Yoshioka, X, Levitt, J. B., and Lund, J., 1994, Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections, Vis. Neurosci. 11:467–489.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carandini, M., Heeger, D.J., Anthony Movshon, J. (1999). Linearity and Gain Control in V1 Simple Cells. In: Ulinski, P.S., Jones, E.G., Peters, A. (eds) Models of Cortical Circuits. Cerebral Cortex, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4903-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4903-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7223-3

  • Online ISBN: 978-1-4615-4903-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics