Functional Implications of Active Currents in the Dendrites of Pyramidal Neurons

  • Paul A. Rhodes
Part of the Cerebral Cortex book series (CECO, volume 13)

Abstract

The original analyses of the transformation of synaptic inputs into voltage deflections at the soma were based largely on studies of motoneurons (Coombs et al., 1957a, b) and suggested that motoneuron dendrites were electrically passive. The view was that synaptic inputs summed algebraically, with excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) offsetting each other, and an output signal emitted if and only if the net summed voltage reached at a spike initiation zone at the axon hillock exceeded a threshold. The notion that the input-output transform accomplished by neurons was based upon the simple summation of inputs at a single integration point was so strongly embedded that when Eccles et al. (1958) found evidence for active dendritic spikes in axotomized motoneurons, they regarded the nonlinear boosting and multiple regions of integration implied by these events to be undesirable (further discussion in Sections 2 and 4 below).

Keywords

Fatigue Attenuation Lime Norepinephrine Neurol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alzheimer, C, Schwindt, P. C., and Crill, W. E., 1993, Postnatal development of a persistent Na+ current in pyramidal neurons from rat sensorimotor cortex, J. Neurophysiol. 69:290–292.PubMedGoogle Scholar
  2. Amitai, Y, Friedman, A., Connors, B. W., and Gutnick, M. J., 1993, Regenerative electrical activity in apical dendrites of pyramidal cells in neocortex, Cerebral Cortex 3:26–38.PubMedGoogle Scholar
  3. Anderson, P., Storm, J., and Wheal, H., 1987, Thresholds of action potentials evoked by synapses on the dendrites of pyramidal cells in the rat hippocampus in vitro, J. Physiol. 383:509–526.PubMedGoogle Scholar
  4. Andreason, M., and Lambert, J. D. C., 1995, Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus, J. Physiol. 483:421–441.Google Scholar
  5. Bekkers, J. M., and Stevens, C. F., 1989, Dual modes of excitatory synaptic transmission in the brain, in: Excitatory Synaptic Transmission in Brain pp. 39–50.Google Scholar
  6. Benardo, L. S., Masukawa, L. M., and Prince, D. A., 1982, Electrophysiology of isolated pyramidal dendrites, J. Neurosci. 2:1614–1622.PubMedGoogle Scholar
  7. Bernander, O., Koch, C., and Douglas, R. J., 1994, Amplification and linearization of distal synaptic input to cortical pyramidal cells, J. Neurophys. 72:2743–2753.Google Scholar
  8. Bliss, T. V., and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. 233:331–356.Google Scholar
  9. Budde, T., White, J. A., and Kay, A. R., 1994, Hyperpolarization-activated Na+-Ja+ current (Ih) in neocortical neurons is blocked by external proteolysis and internal TEA, J. Neurophysiol. 72:2737–2742.PubMedGoogle Scholar
  10. Cantrell, A. R., Ma, J. Y., Scheuer, T., and Catterall, W. A., 1996, Muscarinic modulation of sodium current by activation of protein kinase C in rat hippocampal neurons, Neuron 16:1019–1026.PubMedGoogle Scholar
  11. Catterall, W. A., 1997, Modulation of sodium and calcium channels by protein phosphorylation and G proteins, in: Signal Transducion in Health and Disease (J. Corbin and S. Francis, eds.), Lippincott-Raven, Philadelphia, pp. 159–181.Google Scholar
  12. Cauller, L. J., and Connors, B. W., 1992, Functions of very distal dendrites: Experimental and computational studies of layer I synapses on neocortical pyramidal cells, in: Single Neuron Computation (T. McKenna, J. Davis, and S. F. Zornetzer, eds.), Academic Press, Boston, pp. 199–230.Google Scholar
  13. Cauller, L. J., and Connors, B. W., 1994, Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex, J. Neurosci. 14:751–762.PubMedGoogle Scholar
  14. Chagnac-Amitai, Y, Luhmann, H. J., and Prince, D. A., 1990, Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features, J. Camp. Neurol. 296:598–613.Google Scholar
  15. Christie, B. R., Eliot, L. S., Ito, K., Miyakawa, H., and Johnston, D., 1995, Different Ca channels in the soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca influx, J. Neurophysiol. 73:2553–2557.PubMedGoogle Scholar
  16. Colbert, C. M., and Johnston, D., 1996a, Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons, J. Neurosci. 16:6676–6686.PubMedGoogle Scholar
  17. Colbert, C. M., and Johnston, D., 1996b, A decrease in Na+ current contributes to loss of action potential amplitude in dendritic spike trains, Soc. Neurosci. Abstr. 22:791.Google Scholar
  18. Connor, J. A., and Stevens, C. F., 1971, Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone somata, J. Physiol. 213:31–53.PubMedGoogle Scholar
  19. Connors, B. W., Gutnick, M. J., and Prince, D. A., 1982, Electrophysiological properties of neocortical neurons in vitro, J. Neurophysiol. 48:1301–1320.Google Scholar
  20. Cooley,J. W., and Dodge, F. A., 1966, Digital computer solutions for excitation and propagation of the nerve impulse, Biophys. J. 6:583–600.PubMedGoogle Scholar
  21. Coombs, J. S., Curtis, D. R., and Eccles, J. C., 1957a, The interpretation of spike potentials of motoneurones, J. Physiol. 139:198–231.PubMedGoogle Scholar
  22. Coombs, J. S., Curtis, D. R., and Eccles, J. C., 1957b, The generation of impulses in motoneurones, J. Physiol. 139:232–249.PubMedGoogle Scholar
  23. Cummins, T. R., Xia, Y., and Haddad, G. G., 1994, Functional properties of rat and human neocortical voltage-sensitive sodium currents, J. Neurophysiol. 71:1052–1064.PubMedGoogle Scholar
  24. Deisz, R. A., Fortin, G., and Zieglgansberger, W., 1991, Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons, J. Neurophysiol. 65:371–382.PubMedGoogle Scholar
  25. Deschênes, M., 1981, Dendritic spikes induced in fast pyramidal tract neurons by thalamic stimulation, Exp. Brain Res. 43:304–308.PubMedGoogle Scholar
  26. De Schutter, E., and Bower, J. M., 1994a, An active membrane model of the cerebellar Purkinje cell I. Simulation of current clamps in slice, J. Neurophysiol. 71:375–400.PubMedGoogle Scholar
  27. De Schutter, E., and Bower, J. M., 1994b, An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses, J. Neurophysiol. 71:401–419.PubMedGoogle Scholar
  28. Deuchars, J., West, D. C., and Thomson, A. M., 1994, Relationships between morphology and physiology of pyramid-pyramid single axon connections in rat neocortex in vitro, J. Physiol. 478:423–435.PubMedGoogle Scholar
  29. Dodge, F. A., and Cooley, J. W., 1973, Action potential of the motoneuron, IBM J. Res. Dev. 219–229.Google Scholar
  30. Eccles, J. C., Libet, B., and Young, R. R., 1958, The behaviour of chromatolysed motoneurons studied by intracellular recording, J. Physiol. 143:11–40.PubMedGoogle Scholar
  31. Fleidervish, I. A., Friedman, A., and Gutnick, M. J., 1996, Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices, J. Physiol. 493:83–97.PubMedGoogle Scholar
  32. Friedman, A., and Gutnick, M. J., 1989, Intracellular calcium and control of burst generation in neurons of guinea pig neocortex in vitro, Eur.J. Neurosci. 1:374–381.PubMedGoogle Scholar
  33. Gamble, E., and Koch, C., 1987, The dynamics of free calcium in dendritic spines in response to repetitive input, Science 236:1311–1315.PubMedGoogle Scholar
  34. Gillessen, T., and Alzheimer, C., 1997, Amplification of EPSPs by low Ni2+-and amiloride-sensitive Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons, J. Neurophysiol. 77:1639–1643.PubMedGoogle Scholar
  35. Gustafsson, B., Wigstrom, H., Abraham, W. C., and Huang, Y.-Y., 1987, Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials, J. Neurosci. 7:774–780.PubMedGoogle Scholar
  36. Hamill, O. P., Huguenard, J. R., and Prince, D. A., 1991, Patch clamp studies of voltage-gated currents in identified neurons of the rat cerebral cortex, Cerebral Cortex 1:48–61.PubMedGoogle Scholar
  37. Hebb, D. O., 1949, The Organization of Behavior, Wiley, New York.Google Scholar
  38. Herreras, O., 1990, Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ, J. Neurophys. 64:1429–1441.Google Scholar
  39. Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer, Sunderland, MA.Google Scholar
  40. Hirsch, J. A., and Gilbert, C. D., 1991, Synaptic physiology of horizontal connections in the cat’s visual cortex, J. Neurosci. 11:1800–1809.PubMedGoogle Scholar
  41. Hoffman, D., Magee, J., and Johnston, D., 1996, Characterization of voltage-gated K+ channels in the soma and dendrites of hippocampal CA1 pyramidal neurons, Soc. Neurosci. Abstr. 22:793.Google Scholar
  42. Holmes, W. R., and Levy, W. B., 1990, Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes, J. Neurophys. 63:1148–1168.Google Scholar
  43. Holmes, W. R., and Woody, C. D., 1989, Effects of uniform and non-uniform synaptic ‘activation distributions’ on the cable properties of modeled cortical pyramidal neurons, Brain Res. 505:12–22.PubMedGoogle Scholar
  44. Huguenard, J. R., Hamill, O. P., and Prince, D. A., 1989, Sodium channels in dendrites of rat cortical pyramidal neurons, Proc. Nail. Acad. Sci. USA 86:2473–2477.Google Scholar
  45. Isom, L. L., Scheuer, T., Brownstein, A. B., Ragsdale, D. S., Murphy, B. J., and Catterall, W. A., 1995, Functional co-expression of the βl and type IIA α subunits of sodium channels in a mammalian cell line, J. Biol. Chem. 7:3306–3312.Google Scholar
  46. Jaffe, D. B. Johnston, D., Lasser-Ross, N., Lisman,J. E., Miyakawa, H., and Ross, W. N., 1992, The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons, Nature 357:244–246.PubMedGoogle Scholar
  47. Jaffe, D. B., Fisher, S. A., and Brown, T. H., 1994, Confocal laser scanning microscopy reveals voltage-gated calcium signals within hippocampal dendritic spines, J. Neurobiol. 25:220–233.PubMedGoogle Scholar
  48. Jahr, C. E., and Stevens, C. F., 1990, Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics, J. Neurosci. 10:3178–3182.PubMedGoogle Scholar
  49. Jenson, M. S., Azouz, R., and Yaari, Y., 1996, Spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells, J. Physiol. (London) 492:199–210.Google Scholar
  50. Johnston, D., Magee, J. C., Colbert, C. M., and Christie, B. R., 1996, Active properties of neuronal dendrites, Annu. Rev. Neurosci. 19:165–186.PubMedGoogle Scholar
  51. Kim, H. G., and Connors, B. W., 1993, Apical dendrites of the neocortex: Correlation between sodium-and calcium-dependent spiking and pyramidal cell morphology, J. Neurosci. 13:5301–5311.PubMedGoogle Scholar
  52. Klee, R., Ficker, R., and Heinemann, U., 1995, Comparison of voltage-gated potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3, J. Neurophysiol. 74:1982–1995.PubMedGoogle Scholar
  53. Kuno, M., and Llinás, R., 1970a, Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat, J. Physiol. 210:807–821.PubMedGoogle Scholar
  54. Kuno, M., and Llinás, R., 1970b, Alterations of synaptic action in chromatolysed motoneurones of the cat, J. Physiol. 210:823–838.PubMedGoogle Scholar
  55. Larkman, A. U., 1991a, Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns, J. Camp. Neurol. 306:332–343.Google Scholar
  56. Larkman, A. U., 1991b, Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions, J. Comp. Neurol. 306:307–319.PubMedGoogle Scholar
  57. Larkman, A. U., and Mason, A. J. R., 1990, Correlations between morphology and electrophysiology of pyramidal neurones in slices of rat visual cortex. I. Establishment of cell classes, J. Neurosci. 10:1407–1414.PubMedGoogle Scholar
  58. Lasser-Ross, N., and Ross, W. N., 1992, Imaging voltage and synaptically activated sodium transients in cerebellar Purkinje cells, Proc. R. Soc. Land. B 247:35–39.Google Scholar
  59. Levy, W. B., and Steward, O., 1983, Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus, Neurosdence 8:791–797.Google Scholar
  60. Lipowsky, R., Gilleson, T., and Alzheimer, C., 1996, Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells, J. Neurophysiol. 76:2181–2191.PubMedGoogle Scholar
  61. Llinás, R., 1975, Electroresponsive properties of dendrites in central neurons, in: Advances in Neurology, Vol. 12 (G. W. Kreutzberg, ed.), Raven Press, New York, pp. 1–13.Google Scholar
  62. Llinás, R., 1988, The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function, Science 242:1654–1664.PubMedGoogle Scholar
  63. Llinás, R., and Nicholson, C., 1971, Electrophysiological properties of dendrites and somata in alligator Purkinje cells, J. Neurophysiol. 34:532–551.PubMedGoogle Scholar
  64. Llinás, R., and Sugimori, M., 1979, Calcium conductances in Purkinje cell dendrites: Their role in development and integration, Prog. Brain Res. 51:323–334.PubMedGoogle Scholar
  65. Llinás, R., and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. 305:197–213.PubMedGoogle Scholar
  66. Llinás, R., Nicholson, C., Freeman, J. A., and Hillman, D. E., 1968, Dendritic spikes and their inhibition in alligator Purkinje cells, Science 160:1133–1135.Google Scholar
  67. Llinás, R., Nicholson, C., and Precht, W., 1969, Preferred centripetal conduction of dendritic spikes in alligator Purkinje cells, Science 163:184–187.PubMedGoogle Scholar
  68. Madison, D. V., and Nicoll, R. A., 1982, Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus, Nature 299:636–638.PubMedGoogle Scholar
  69. Madison, D. V., and Nicoll, R. A., 1984, Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro, J. Physiol. 354:319–331.PubMedGoogle Scholar
  70. Magee, J. C., and Johnston, D., 1995a, Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons, Science 2688:301–304.Google Scholar
  71. Magee, J. C., and Johnston, D., 1995b, Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons, J. Physiol. 487:67–90.PubMedGoogle Scholar
  72. Magee, J. C., Christofi, G., Miyakawa, H., Christie, B., Lasser-Ross, N., and Johnston, D., 1995, Sub-threshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons, J. Neurophysiol. 4:1335–1342.Google Scholar
  73. Mainen, Z. F., Joerges, J., Huguenard, J. R., and Sejnowski, T. J., 1995, A model of spike initiation in neocortical pyramidal neurons, Neuron 15:1427–1439.PubMedGoogle Scholar
  74. Malenka, R. C., Kauer, J. A., Zucker, R. S., and Nicoll, R. A., 1988, Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission, Science 242:81–84.PubMedGoogle Scholar
  75. Markram, H., and Sakmann, B., 1994, Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage activated channels, Proc. Natl. Acad. Sci. USA 91:5207–5277.PubMedGoogle Scholar
  76. Markram, H., Helm, P. J., and Sakmann, B., 1995, Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons, J. Physiol. 45:1–20.Google Scholar
  77. Mason, A. J. R., and Larkman, A. U., 1990, Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex, J. Neurosci. 10:1415–1428.PubMedGoogle Scholar
  78. McCormick, D. A., and Pape, H.-C., 1990, Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones, J. Physiol. 431:291–318.PubMedGoogle Scholar
  79. McCormick, D. A., Connors, B. W., Lighthall, J. W., and Prince, D. A., 1985, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, J. Neurophysiol. 54:782–806.PubMedGoogle Scholar
  80. Mel, B. W., 1992, NMDA-based pattern discrimination in a modeled cortical neuron, Neural Computation 4:502–517.Google Scholar
  81. Mel, B. W., 1993, Synaptic integration in an excitable dendritic tree, J. Neurophysiol. 70:1086–1101.PubMedGoogle Scholar
  82. Mel, B. W., 1994, Information processing in dendritic trees, Neural Computation 6:1031–1085.Google Scholar
  83. Mel, B. W., Niebuhr, E., Croft, D. W., and Gabbiani, F., 1995, Why neurons make bad coincidence detectors but good periodicity detectors, Soc. Neurosci. Abstr. 21:1506.Google Scholar
  84. Miller, J. P., Rall, W., and Rinzel, J., 1985, Synaptic amplification by active membrane in spines, Brain Res. 325:325–330.PubMedGoogle Scholar
  85. Miller, K. D., Keller, J. P., and Stryker, M. P., 1989, Ocular dominance column development: Analysis and simulation, Science 245:605–615.PubMedGoogle Scholar
  86. Millonas, M. M, and Ulinski, P. S., 1996, Integrative properties of voltage-gated conductances on the dendrites of cortical pyramidal cells, Soc. Neurosci. Abstr. 22:1214.Google Scholar
  87. Millonas, M. M., and Ulinski, P. S., n.d., Dendritic origin of fast prepotentials in pyramidal cells from turtle visual cortex.Google Scholar
  88. Nettleton, J. S., and Spain, W. J., 1996, Post-synaptic conductances cause non-linear summation of AMPA-mediated EPSP’s in rat neocortical layer V pyramidal neurons, Soc. Neurosci. Abstr. 22:796.Google Scholar
  89. Nicoll, A., Larkman, A., and Blakemore, C., 1993, Modulation of EPSP shape and efficacy by intrinsic membrane conductances in rat neocortical pyramidal neurons in vitro, J. Physiol. 468:693–710.PubMedGoogle Scholar
  90. Pellionisz, A., and Llinás, R., 1977, A computer model of cerebellar Purkinje cells, Neuroscience, 2:37–48.PubMedGoogle Scholar
  91. Perkel, D. H., Mulloney, B., and Budelli, R. W., 1981, Quantitative methods for predicting neuronal behavior, Neuroscience 6:823–837.PubMedGoogle Scholar
  92. Pinsky, P. F., and Rinzel, J., 1994, Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons, J. Comp. Neurosci. 1:39–60.Google Scholar
  93. Poolos, N. P., and Kocsis, J. D., 1990, Dendritic action potentials activated by NMDA receptor-mediated EPSP’s in CA1 hippocampal pyramidal, cells, Brain Res. 524:342–346.Google Scholar
  94. Purpura, D. P., Shofer, R. J., and Scarff, T., 1965, Properties of synaptic activities and spike potentials of neurons in immature neocortex, J. Neurophysiol. 28:925–942.PubMedGoogle Scholar
  95. Rall, W., 1959, Branching dendritic trees and motoneuron membrane resistivity, Exp. Neurol. 1:497–527.Google Scholar
  96. Rall, W., 1962, Theory of physiological properties of dendrites, Ann. NY. Acad. Sci. 96:1071–1092.PubMedGoogle Scholar
  97. Rall, W., 1964, Theoretical significance of dendritic trees for neuronal input-output relations, in: Neural Theory and Modeling (R. F. Reiss, ed.), Stanford University Press, Stanford, CA, pp. 73–97.Google Scholar
  98. Rall, W., and Segev, I., 1988, Dendritic spine synapses, excitable spine clusters, and plasticity, in: Cellular Mechanisms of Conditioning and Behavioral Plasticity (C. D. Woody, D. L. Alkon, and J. L. McGaugh, eds.), Plenum Press, New York, pp. 221–236.Google Scholar
  99. Rapp, M., Yarom, Y., and Segev, I., 1996, Modeling back propagating action potentials in weakly excitable dendrites of neocortical pyramidal cells, Proc. Natl. Acad. Sci. USA 93:11985–11990.PubMedGoogle Scholar
  100. Regehr, W. G., Connor, J. A., and Tank, D. W., 1989, Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation, Nature 341:533–536.PubMedGoogle Scholar
  101. Reuveni, I., Friedman, A., Amitai, Y., and Gutrick, M. J., 1993, Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: Evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites, J. Neurosci. 13:4609–4621.PubMedGoogle Scholar
  102. Rhodes, P. A., 1990, A computational study indicates cross-modal association arises naturally in neocortex via feedback projections, Soc. Neurosci. Abstr. 16:286.Google Scholar
  103. Rhodes, P. A., 1992, The long open time of the NMDA channel facilitates the self-organization of invariant object responses in cortex, Soc. Neurosci. Abstr. 18:740.Google Scholar
  104. Rhodes, P. A., 1994, Dendritic Na+ channels interact with somatic firing to shape neocortical circuit formation: A compartment model study, Soc. Neurosci. Abstr. 20:715.Google Scholar
  105. Rhodes, P. A., n.d., Dendritic sodium channels are required for somatic firing to invade the dendrites: Effects on NMDA conductance at distal synapses.Google Scholar
  106. Rhodes, P. A., and Gray, C. M., 1993, Effects of electrically active dendrites and NMDA-type synaptic conductances, Soc. Neurosci. Abstr. 19:242.Google Scholar
  107. Rhodes, P. A., and Gray, C. M., 1994, Simulations of intrinsically bursting neocortical pyramidal neurons, Neural Computation 6:1086–1110.Google Scholar
  108. Rhodes, P. A., and Thomson, A. M., 1996, Effects of dendritic membrane currents on the shape of EPSP’s in pyramidal neurons, Soc. Neurosci. Abstr. 22:791.Google Scholar
  109. Rhodes, P. A., Yuste, R., and Tank, D. W., 1995, Ca2+ and Na+ channels throughout the basal dendrites of regular spiking neocortical pyramidal neurons: Implications of bursting with EGTA, Soc. Neurosci. Abstr. 21:1996.Google Scholar
  110. Richardson, T. L., Turner, R. W., and Miller, J. J., 1987, Action potential discharge in hippocampal CA1 pyramidal neurons: Current source-density analysis, J. Neurophysiol. 58:981–996.PubMedGoogle Scholar
  111. Rinzel, J., and Rall, W., 1974, Transient response in a dendritic neuron model for current injected in one branch, Biophys. J. 14:759–790.PubMedGoogle Scholar
  112. Rockland, K. S., and Pandya, D., 1979, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179:3–20.PubMedGoogle Scholar
  113. Rockland, K., and Virga, A., 1989, Terminal arbors of individual “feedback” axons projecting from area V2 to VI in the macaque monkey: A study using immunohistochemistry of anterogradely transported, Phaseolus vulgaris-leucoagglutinin, J. Comp. Neurol. 285:54–72.Google Scholar
  114. Sah, P., and Bekkers, J. M., 1996, Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: Implications for the integration of long-term potentiation, J. Neurosci. 16:4537–4542.PubMedGoogle Scholar
  115. Schiller, J., Helmchen, F., and Sakmann, B., 1995, Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurons, J. Physiol. 487:583–600.PubMedGoogle Scholar
  116. Schwartz, E. I., Desimone, R., Albright, T. D., and Gross, C. C., 1983, Shape recognition and inferior temporal neurons, Proc. Natl. Acad. Sci. USA 80:5776–5778.PubMedGoogle Scholar
  117. Schwartzkroin, P. A., 1997, Further characteristics of hippocampal CA1 cells in vitro, Br. Research 128:53–68.Google Scholar
  118. Schwindt, P. C., and Crill, W. E., 1995, Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons, J. Neurophysiol. 74:2220–2224.PubMedGoogle Scholar
  119. Schwindt, P. C., Spain, W. J., Foehring, R. C., Stafstrom, C. E., Chubb, M. C., and Crill, W. E., 1988a, Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro, J. Neurophysiol. 59:424–449.PubMedGoogle Scholar
  120. Schwindt, P. C., Spain, W. J., Foehring, R. C., Chubb, M. C., and Crill, W. E., 1988b, Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes, J. Neurophysiol. 59:450–467.PubMedGoogle Scholar
  121. Segev, I., Fleshman, J. W., and Burke, R. E., 1989, Compartment models of complex neurons, in: Methods in Computational Neuroscience (I. Segev and C. Kock, eds.), MIT Press, Cambridge, MA, pp. 63–96.Google Scholar
  122. Segev, I., Rinzel, J., and Sheperd, G. M., 1995, The Theoretical Foundation of Dendritic Function, MIT Press, Cambridge, MA.Google Scholar
  123. Shepherd, G. M., and Brayton, R. K., 1987, Logic operations are properties of computer-simulated interactions between excitable dendritic spines, Neuroscience 21:151–165.PubMedGoogle Scholar
  124. Shepherd, G. M., Brayton, R. K., Miller, J. P., Segev, I., Rinzel, J., and Rall, W., 1985, Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines, Proc. Natl. Acad. Sci. USA 82:2192–2195.PubMedGoogle Scholar
  125. Shepherd, G. M., Woolf, T. B., and Carnevale, N. T., 1991, Comparisons between active properties of distal dendritic branches and spines: Implications for neuronal computations, J. Cognit. Neurosci. 1:273–286.Google Scholar
  126. Softkey, W., 1993, Sub-millisecond coincidence detection in active dendritic trees, Neuroscience 58:13–41.Google Scholar
  127. Spencer, W. A., and Kandel, E. R., 1961, Electrophysiology of hippocampal neurons. IV. Fast prepotentials, J. Neurophysiol. 24:272–285.Google Scholar
  128. Spruston, N., and Stuart, G. 1996, Voltage attenuation and intracellular resistivity in neocortical pyramidal neurons, Soc. Neurosci. Abstr. 22:792.Google Scholar
  129. Spruston, N., Schiller, Y., Stuart, G., and Sakmann, B., 1995a, Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites, Science 268:297–300.PubMedGoogle Scholar
  130. Spruston, N., Stuart, G., and Sakmann, B., 1995b, How do voltage-activated channels shape EPSP’s in hippocampal CA1 neurons, Soc. Neurosci. Abstr. 21:584.Google Scholar
  131. Stratford, K.J., Mason, A. J. R., Larkman, A. U., Major, G. M., and Jack, J. J. B., 1989, The modeling of pyramidal neurones in the visual cortex, in: The Computing Neuron (R. M. Durbin, R. C. Miall, and G. J. Mitchison, eds.), Addison-Wesley, Reading, MA, pp. 296–321.Google Scholar
  132. Stuart, G. J., and Sakmann, B., 1994, Active propagation of somatic action potentials into neocortical pyramidal cell dendrites, Nature 367:69–72.PubMedGoogle Scholar
  133. Stuart, G. J., and Sakmann, B., 1995, Amplification of EPSP’s by axosomatic sodium channels in neocortical pyramidal neurons, Neuron 15:1065–1076.PubMedGoogle Scholar
  134. Sutor, B., and Hablitz, J. J., 1989a, EPSP’s in rat neocortical neurons in vitro. I. Electrophysiological evidence for two distinct EPSP’s, J. Neurophysiol. 61:621–634.PubMedGoogle Scholar
  135. Sutor, B., and Hablitz, J. J., 1989b, EPSP’s in rat neocortical neurons in vitro. II. Involvement of N-methyl-D-aspartate receptors in the generation of EPSP’s, J. Neurophysiol. 61:607–620.PubMedGoogle Scholar
  136. Talbot, M.J., and Sayer, R. J., 1996, QX-314 inhibits calcium currents in hippocampal CA1 pyramidal neurons, J. Neurophysiol. 76:2120–2124.PubMedGoogle Scholar
  137. Thomson, A. M., 1986, A magnesium sensitive postsynaptic potential in rat cerebral cortex resembles neuronal responses to N-methylaspartate, J. Physiol. 370:531–549.PubMedGoogle Scholar
  138. Thomson, A. M., Girdlestone, D., and West, D. C., 1988, Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices, J. Neurophysiol. 60:1896–1907.PubMedGoogle Scholar
  139. Thomson, A. M., and Deuchars, J., 1995, Divers pre-and post-synaptic properties of fast excitatory synapses, in: Excitaiory Amino Adds and Synaptic Function (H. V. Wheal, and A. M. Thomson, eds.), Academic Press, London, pp. 146–170.Google Scholar
  140. Thomson, A. M., and West, D. C., 1993, Fluctuations in pyramid-pyrammid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex, Neuroscience 54:329–346.PubMedGoogle Scholar
  141. Thomson, A. M., Deuchars, J., and West, D. C., 1993, Large, deep layer pyramid-pyrammid single exon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically, J. Neurophysiol. 70:2354–2369.PubMedGoogle Scholar
  142. Traub, R. D., and Jeffrys, J. G., 1994, Simulations of epileptiform activity in the hippocampal CA3 region in vilro, Hippocampus 4:281–285.PubMedGoogle Scholar
  143. Traub, R. D., and Llinás, R., 1977, The spatial distribution of ionic conductances in normal and axotomized motoneurons, Neuroscience 2:829–849.Google Scholar
  144. Traub, R. D., and Llinás, R., 1979, Hippocampal pyramidal cells: Significance of dendritic ionic conductances for neuronal function and epileptogenesis, J. Neurophysiol. 42:476–496.PubMedGoogle Scholar
  145. Traub, R. D., Wong, R. K. S., Miles, R., and Michelson, H., 1991, Model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances, J. Neurophysiol. 66:635–650.PubMedGoogle Scholar
  146. Tsubokawa, H., and Ross, W. N., 1996, Pharmacological modulation of spike propagation in the apical dendrites of hippocampal pyramidal cells, Soc. Neurosci. Abstr. 22:791.Google Scholar
  147. Turner, R. W., Meyers, D. E. R., and Barker, J. L., 1989, Localization of tetrodotoxin-sensitive field potentials of CA1 pyramidal cells in rat hippocampus, J. Neurophysiol. 62:1375–1387.PubMedGoogle Scholar
  148. Turner, R. W., Meyers, D. E. R., Richardson, T. L., and Barker, J. L., 1991, The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons, J. Neurosci. 11:2270–2280.PubMedGoogle Scholar
  149. Turner, R. W., Meyers, D. E. R., and Barker, J. L., 1993, Fast pre-potential generation in rat hippocampal CA1 pyramidal neurons, Neuroscience 53:949–959.PubMedGoogle Scholar
  150. Urban, N. N., and Barrionuevo, G., 1996, The monosynaptic perforant path input to CA3 pyramidal neurons: II. The role of voltage-dependent conductances in propagation of EPSP’s, Soc. Neurosci. Abstr. 22:791.Google Scholar
  151. Vogt, B. A., 1990, The role of layer 1 in cortical function, in: Cerebral Cortex, Vol. 8 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 49–80.Google Scholar
  152. Wang, Z., and McCormick, D. A., 1993, Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S,3R-ACPD, J. Neurosci. 13:2199–2216.PubMedGoogle Scholar
  153. Westenbröek, R. E., Hell, J. W., Warner, C., Dubel, S. J., Snutch, T. P., and Catterall, W. A., 1992, Biochemical properties and subcellular distribution of an N-type calcium channel al subunit, Neuron 9:1099–1115.PubMedGoogle Scholar
  154. Wilson, C. J., 1995, Dynamic modification of dendritic cable properties and synaptic transmission by voltage-gated potassium channels, J. Comp. Neurosci. 2:91–115.Google Scholar
  155. Wong, R. K. S., and Prince, D. A., 1978, Participation of calcium spikes during intrinsic burst firing in hippocampal neurons, Brain Res. 159:385–390.PubMedGoogle Scholar
  156. Wong, R. K. S., and Stewart, M., 1992, Different firing patterns generated in dendrites and somata of CA1 pyramidal neurones in guinea-pig hippocampus, J. Physiol. 457:675–687.PubMedGoogle Scholar
  157. Wong, R. K. S., Prince, D. A., and Basbaum, A. I., 1979, Intradendritic recordings from hippocampal neurons, Proc. Nail. Acad. Sci. USA 76:986–990.Google Scholar
  158. Yuste, R., and Denk, W., 1995, Dendritic spines as basic functional units of neuronal integration, Nature 375:682–684.PubMedGoogle Scholar
  159. Yuste, R., and Tank, D. W., 1996, Dendritic integration in mammalian neurons, a century after Cajal, Neuron 16:701–716.PubMedGoogle Scholar
  160. Yuste, R., Gutnick, M. J., Saar, D., Delaney, K. D., and Tank, D. W., 1994, Calcium accumulations in dendrites from neocortical neurons: An apical band and evidence for functional compartments, Neuron 13:23–43.PubMedGoogle Scholar
  161. Zador, A., Koch, C., and Brown, T. H., 1990, Biophysical model of a Hebbian synapse, Proc. Nail. Acad. Sci. USA 87:6718–6722.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Paul A. Rhodes
    • 1
  1. 1.Mathematical Research Branch, NIDDKNational Institutes of HealthBe-thesdaUSA

Personalised recommendations