Clinical Impact of Antibiotic Resistance

  • Stephen A. Lerner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 456)

Abstract

The development of antimicrobial agents for clinical use has brought unquestionable benefits to individuals and to society. Infections that formerly were frequently fatal have become routinely curable. Furthermore, the availability of effective antibiotic therapy has facilitated the employment by physicians of potent immunosuppressive therapy in the control and treatment of other conditions such as cancer and transplant rejection, since resulting infections may be treated and are often suppressed or cured.

Keywords

Penicillin Bacillus Glycoside Ampicillin Cephalosporin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alangaden, G.J. and Lerner, S.A., 1997, The clinical use of fluoroquinolones for the treatment of mycobacterial diseases, Clin. Infect. Dis 25:1213.PubMedCrossRefGoogle Scholar
  2. Austrian, R., 1994, Confronting drug-resistant pneumococci, Ann. Intern. Med 121:807.PubMedGoogle Scholar
  3. Bifani, P.J., Plikaytis, B.B., Kapur, V., et al., 1996, Origin and interstate spread of a New York City multidrug-re-sistant Mycobacterium tuberculosis clone family, J. Amer. Med. Assoc 275:452.CrossRefGoogle Scholar
  4. Bush, K., Jacoby, G.A., and Medeiros, A.A., 1995, A functional classification scheme for β-lactamases and its correlation with molecular structure, Antimicrob. Agents Chemother 39:1211.PubMedCrossRefGoogle Scholar
  5. Butler, J. C., Hofmann, J.H., Cetron, M.S., Elliott, J.A., Facklam, R.R., and Breiman, R.F., 1996, The continued emergence of drug-resistant Streptococcus pneumoniae in the United States: an update from the Centers for Disease Control and Prevention’s Pneumococcal Sentinel Surveillance System, J. Infect. Dis 174:986.PubMedCrossRefGoogle Scholar
  6. Canetti, G., 1965, Present aspects of bacterial resistance in tuberculosis, Am. Rev. Resp. Dis 92:687.PubMedGoogle Scholar
  7. Centers for Disease Control and Prevention, 1989–1993, 1993, Nosocomial enterococci resistant to vancomycin, Morb. Mortal. Wkly. Rep 42:597.Google Scholar
  8. Centers for Disease Control and Prevention, 1995, Recommendations for preventing the spread of vancomycin resistance. Recommendations of the Hospital Infection Control Practices Advisory Committee (HICPAC), Morb. Mortal. Wkly. Rep 44:1.Google Scholar
  9. Centers for Disease Control and Prevention, 1997a, Reduced susceptibility of Staphylococcus aureus to vancomycin-Japan, 1996, Morb. Mortal. Wkly. Rep 46:624.Google Scholar
  10. Centers for Disease Control and Prevention, 1997b, Interim guidelines for prevention and control of staphylococcal infection associated with reduced susceptibility to vancomycin, Morb. Mortal. Wkly. Rep 46:626.Google Scholar
  11. Centers for Disease Control and Prevention, 1997c, Staphylococcus aureus with reduced susceptibility to vancomycin — United States, 1997, Morb. Mortal. Wkly. Rep 46:765.Google Scholar
  12. Chow, J.W., Fine, M.J., Shlaes, D.M., et al., 1991, Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy, Ann. Intern. Med 115:585.PubMedGoogle Scholar
  13. Cohn, M.L., Middlebrook, G., and Russell, W.F., Jr., 1959, Combined drug treatment of tuberculosis. I. Prevention of emergence of mutant populations of tubercle bacilli resistant to both streptomycin and isoniazid in vitro, J. Clin. Invest 38:1349.PubMedCrossRefGoogle Scholar
  14. Crofton, J. and Mitchison, D.A., 1948, Streptomycin resistance in pulmonary tuberculosis, Br. Med. J 2:1009.PubMedCrossRefGoogle Scholar
  15. Daum, R.S., Gupta, S., Sabbagh, R., and Milewski, W.M., 1992, Characterization of Staphylococcus aureus isolates with decreased susceptibility to vancomycin and teicoplanin: isolation and purification of a constitu-tively produced protein associated with decreased susceptibility, J. Infect. Dis 166:1066.PubMedCrossRefGoogle Scholar
  16. Dooley, S.W., Jarvis, W.R., Martone, W.J., and Snider, D.E., Jr., 1992, Multidrug-resistant tuberculosis, Ann. Intern. Med 117:257.PubMedGoogle Scholar
  17. Edlin, B.R., Tokars, J.I., Grieco, M.H., et al., 1992, An outbreak of multidrug-resistant tuberculosis among hospitalized patients with the acquired immunodeficiency syndrome, N. Engl. J. Med 326:1514.PubMedCrossRefGoogle Scholar
  18. Fischl, M.A., Uttamchandani, R.B., Daikos, G.L., et al., 1992, An outbreak of tuberculosis caused by multiple-drug-resistant tubercle bacilli among patients with HIV infection, Ann. Intern. Med 117:177.PubMedGoogle Scholar
  19. Frieden, T.R., Sherman, L.F., Maw, K.L., et al., 1996, A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes, J. Am. Med. Assoc 276:1220.CrossRefGoogle Scholar
  20. Frieden, T.R., Sterling, T., Pablos-Méndez, A., et al., 1993, The emergence of drug-resistant tuberculosis in New York City, N. Engl. J. Med 328:521.PubMedCrossRefGoogle Scholar
  21. Garrett, D.O., Jochimsen, E., Murfitt, K., et al, 1997, The impending apocalypse: the emergence of vancomycin resistance in Staphylococcus spp. (Abstr. S1), Infect. Control Hosp. Epidemiol 18:P32.CrossRefGoogle Scholar
  22. Herman, D.J. and Gerding, D.N., 1991, Antimicrobial resistance among enterococci, Antimicrob. Agents Chemother. 35:1.PubMedCrossRefGoogle Scholar
  23. Itokazu, G.S., Quinn, J.P., Bell-Dixon, C., et al, 1996, Antimicrobial resistance rates among aerobic gram-negative bacilli recovered from patients in intensive care units: evaluation of a national postmarketing surveillance program, Clin. Infect. Dis 23:779.PubMedCrossRefGoogle Scholar
  24. Jacoby, G.A., 1997, Extended-spectrum β-lactamases and other enzymes providing resistance to oxyimino-β-lac-tams, Infect. Dis. Clin. N. Am 11:875.CrossRefGoogle Scholar
  25. Jacoby G.A. and Archer, G.L., 1991, New mechanisms of bacterial resistance to antimicrobial agents, J. Infect. Dis 324:601.Google Scholar
  26. Levine, D.P., Fromm, B.S., and Reddy, B.R., 1991, Slow response to vancomycin or vancomycin plus rifampin in methicillin resistant Staphylococcus aureus endocarditis, Ann. Intern. Med 115:674.PubMedGoogle Scholar
  27. Levy, S.B., 1998, Multidrug resistance — a sign of the times, N. Engl. J. Med 338:1376.PubMedCrossRefGoogle Scholar
  28. Medeiros, A.A., 1997, Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics, Clin. Infect. Dis 24(Suppl 1):S19.PubMedCrossRefGoogle Scholar
  29. Michel, M. and Gutmann, L., 1997, Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci: therapeutic realities and possibilities, Lancet 349:1901.PubMedCrossRefGoogle Scholar
  30. Monno, L., Angarano, G., Carbonara, S., et al., 1991, Emergence of drug-resistant Mycobacterium tuberculosis in HIV-infected patients, Lancet 337:852.PubMedCrossRefGoogle Scholar
  31. Murray, B.E., 1997, Vancomycin-resistant enterococci, Am. J. Med 101:284.CrossRefGoogle Scholar
  32. Noble, W.C., Virani, Z., and Cree, R.G., 1992, Co-transfer of vancomycin and other resistance genes from Entero-coccus faecalis NCTC 12201 to Staphylococcus aureus, FEMS Microbiol. Lett 72:195.PubMedCrossRefGoogle Scholar
  33. Pablos-Méndez, A., Sterling, T.R., and Frieden, T.R., 1996, The relationship between delayed or incomplete treatment and all-cause mortality in patients with tuberculosis, J. Am. Med. Assoc 276:1223.CrossRefGoogle Scholar
  34. Pablos-Méndez, A., Raviglione, M.C., Laszlo, A., et al., 1998, Global surveillance for antituberculosis-drug resistance, N. Engl. J. Med 338:1641.PubMedCrossRefGoogle Scholar
  35. Sanders, C.C. and Sanders, W.E., Jr, 1986, Type I beta-lactamase of gram-negative bacteria: interactions with beta-lactam antibiotics, J. Infect. Dis 154:792.PubMedCrossRefGoogle Scholar
  36. Salomon, N., Perlman, D.C., Friedmann, P., et al., 1995, Predictors and outcome of multidrug-resistant tuberculosis, Clin. Infect. Dis 21:1245.PubMedCrossRefGoogle Scholar
  37. Schwalbe, R.S., Ritz, W.J., Verma, P.R., et al., 1990, Selection for vancomycin resistance in clinical isolates of Staphylococcus haemolyticus, J. Infect. Dis 161:45.PubMedCrossRefGoogle Scholar
  38. Schwalbe, R.S., Stapleton, J.T., and Gilligan, P.H., 1987, Emergence of vancomycin resistance in coagulase-nega-tive staphylococci, N. Engl. J. Med 316:927.PubMedCrossRefGoogle Scholar
  39. Simor, A.E., Louie, M., Canadian Bacterial Surveillance Network, and Low, D.E., 1996, Canadian national survey of prevalence of antimicrobial resistance among clinical isolates of Streptococcus pneumoniae, Antimicrob. Agents Chemother 40:2190.PubMedGoogle Scholar
  40. Telzak, E.E., Sepkowitz, K., Alpert, P., et al., 1995, Multidrug-resistant tuberculosis in patients without HIV infection, N. Engl. J. Med 333:907.PubMedCrossRefGoogle Scholar
  41. Turett, G.S., Telzak, E.E., Torian, L.V., et al., 1995, Improved outcomes for patients with multidrug-resistant tuberculosis, Clin. Infect. Dis 21:1238.PubMedCrossRefGoogle Scholar
  42. Vakulenko, S.B., Geryk, B., Kotra, L.P., Mobashery, S., and Lerner, S.A., 1998, Selection and characterization of β-lactam-β-lactamase inactivator-resistant mutants following PCR mutagenesis of the TEM-1 β-lactamase gene, Antimicrob. Agents Chemother 42:in press.Google Scholar
  43. Voss, A., Milatovic, D., Wallrauch-Schwarz, C., Rosdahl, V.T., and Braveny, I., 1994, Methicillin-resistant Staphylococcus aureus in Europe, Eur. J. Clin. Microbiol. Infect. Dis 13:50.PubMedCrossRefGoogle Scholar
  44. Wells, V.D., Wong, E.S., Murray, B.E., et al., 1992, Infections due to beta-lactamase-producing, high-level gen-tamicin-resistant Enterococcus faecalis, Ann. Intern. Med 116:285.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Stephen A. Lerner
    • 1
  1. 1.Division of Infectious Diseases, Department of Medicine, Department of Biochemistry and Molecular BiologyWayne State University School of MedicineDetroitUSA

Personalised recommendations