Skip to main content

HIV Gene Therapy Using Hairpin Ribozymes in Hematopoietic Stem/Progenitor Cells

  • Chapter
Blood Cell Biochemistry

Part of the book series: Blood Cell Biochemistry ((BLBI,volume 8))

  • 108 Accesses

Abstract

Ribozymes are a class of small metalloenzymes composed entirely of RNA which cleave specific RNA sequences (Christoffersen and Marr, 1995; Kiehntopf et al., 1995; Pyle, 1993). Different natural ribozymal structures have been isolated from such diverse sources as tetrahymena, tobacco ringspot virus, plant viroids, virusoids, and satellite viruses; and hepatitis delta virus (Michel et al., 1989; Pyle, 1993). According to their molecular structures, the natural ribozymes are classified into at least six different groups: Group I introns (Cech, 1987), Group II introns (Michel et al., 1989), the Ml RNA subunit of the ribonucleoprotein enzyme RNase P (Guerrier-Takada, et al., 1983), hammerhead (Uhlenbeck, 1987), hairpin (Hampel and Tritz, 1989), and hepatitis δ RNA (Sharmeen et al., 1988; Wu et al., 1989). Members of the first three classes are typically larger (>200 nucleotides) and cleave RNA to produce a 3′ hydroxyl group (Cech, 1992; Michel et al., 1989). The latter three classes are typically smaller (30–80 nucleotides), cleave RNA by transesterification, and produce a 2′-, 3′-cyclic phosphate and a 5′ hydroxyl terminus (Cech, 1992). Definitive triplet RNA sequences are required to bind and cleave hammerhead and hairpin ribozymes. The hammerhead ribozyme recognizes an NUX-triplet, where N is any nucleotide and X represents A, C, or U, and cleaves at 3′ to the N residue (Ruffner et al., 1990). The hairpin ribozyme recognizes a GNZ-triplet, where Z is either U or C, and cleaves 5′ to the G residue (Chowrira el al., 1991). A GUC triplet is required for efficient trans cleavage of the hairpin ribozyme (Ojwang et al., 1992). Because of their relatively small sizes and minimal substrate sequence requirements, both hairpin and hammerhead ribozymes can be engineered to bind to specific RNA molecules by attaching sequences complementary to the nucleotides near the cleavage site of the target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, Y. P., Agrawal, R. S., Sinclair, A. M., Young, D., Maruyama, M., Levine, F., and Ho, A. D., 1996, Cell cycle kinetics and VSV-G pseudotyped retro virus mediated gene transfer in blood-derived CD34+ cells, Exp. Hematol. 24:738–747.

    PubMed  CAS  Google Scholar 

  • Aubin, R. A., Weinfeld, M., Mirzayans, R., and Paterson, M. C., 1994, Polybrene/DMSO-assisted gene transfer, Mol. Biotechnol. 1:9–48.

    Google Scholar 

  • Baum, C. M., Weissman, I. L., Tsukamoto, A. S., Buckle, A. M., and Peault, B., 1992, Isolation of a candidate human hematopoietic stem-cell population, Proc. Natl. Acad. Sci. USA 89:2804.

    PubMed  CAS  Google Scholar 

  • Bender, J. G., Unverzagt, K. L., Walker, D. E., Lee, W., Van Epps, D. E., Smith, D. H., Stewart, C. C., and To, L. B., 1991, Identification and comparison of CD34-positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry, Blood 77:2591–2596.

    PubMed  CAS  Google Scholar 

  • Berenson, R. J., Bensinger, W. I., Hill, R. S., Andrews, R. G., Garcia-Lopez, J., Kalamasz, D. F., Still, B. J., Spitzer, G., Buckner, C. D., Bernstein, I. D., and Thomas, E. D., 1991, Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma, Blood 77:1717.

    PubMed  CAS  Google Scholar 

  • Brandt, J., Baird, N., Lu, L., Srour, E., and Hoffman, R., 1993, Characterization of a human hematopoietic progenitor cell capable of forming blast cell containing colonies in vitro, J. Clin. Invest. 82:1017.

    Google Scholar 

  • Brenner, M. K., Rill, D. R., Holladay, M. S., Heslop, H. E., Moen, R. C., Buschle, M., Krance, R. A., Santana, V. M., Anderson, W. F., and Ihle, J. N., 1993, Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients, Lancet 342:1134–1137.

    PubMed  CAS  Google Scholar 

  • Briddell, R., Zilm, K., Kern, B., Stoney, G., Harding, F., Recktenwald, D., Miltenyi, S., and McNiece, I., 1995, Depletion of t-lymphocyte subsets in peripheral blood apheresis harvests from normal donors by purification of cells expressing the CD34 antigen, Blood 86(10)(Suppl. 1):223a.

    Google Scholar 

  • Broxmeyer, H. E., Cooper, S., Etienne-Julan, M., Wang, X. S., Ponnazahagan, S., Braun, S., Lu, L., and Srivastava, A., 1995, Cord blood transplantation and the potential for gene therapy. Gene transduction using a recombinant adeno-associated viral vector, Ann. N.Y. Acad. Sci. 770:105–115.

    PubMed  CAS  Google Scholar 

  • Cech, T. R., 1987, The chemistry of self-splicing RNA and RNA enzymes, Science 236:1532–1539.

    PubMed  CAS  Google Scholar 

  • Cech, T. R., 1992, Ribozyme engineering, Curr. Opinion Struct. Biol. 2:605–609.

    CAS  Google Scholar 

  • Chatterjee, S., Lu, D., Podsakoff, G., and Wong, K. K. Jr., 1995, Strategies for efficient gene transfer into hematopoietic cells; the use of adeno-associated virus vectors in gene therapy, Ann. N.Y. Acad. Sci. 770:79–90.

    PubMed  CAS  Google Scholar 

  • Chowrira, B. M., Berzal, H.A., and Burke, J. M., 1991, Novel guanosine requirement for catalysis by the hairpin ribozyme, Nature 354:320–322.

    PubMed  CAS  Google Scholar 

  • Christoffersen, R. E., and Marr, J. J., 1995, Ribozymes as human therapeutic agents, J. Med. Chem. 38(12):2023–2037.

    PubMed  CAS  Google Scholar 

  • Chuck, A. S., and Palsson, B. O., 1996, Consistent and high rates of gene transfer can be obtained using flow-through transduction over a wide range of retroviral titers, Hum. Gene Ther. 7:743–750.

    PubMed  CAS  Google Scholar 

  • Civin, C. I., Strauss, L. C., Brovall, C., Fackler, M. J., Schwartz, J. F., and Shaper, J. H., 1984, Antigenic analysis of hematopoiesis III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells, J. Immunol. 133:157–165.

    PubMed  CAS  Google Scholar 

  • Contu, L., La Nasa, G., Arras, M., Pizzati, A., Vacca, A., Carcassi, C., Ledda, A., Boero, R., Orru, S., Pintus, A., Schivo, L., Faa, G., Costa, V., and Pitzus, F., 1993, Allogeneic bone marrow transplantation combined with multiple anti-HIV-1 treatment in a case of AIDS, Bone Marrow Transplant. 12(6):669–671.

    PubMed  CAS  Google Scholar 

  • Cornetta, K., and Anderson, W. F., 1989, Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene transfer: Implications for human gene therapy, J. Virol. Methods 23:1187–1194.

    Google Scholar 

  • Corringham, R. E. T., 1995, Rapid and sustained allogeneic transplantation using immunoselected CD34+-selected peripheral blood progenitor cells mobilized by recombinant granulocyte-and granulocyte-macrophage colony-stimulating factors (letter), Blood 86:2052–2054.

    PubMed  CAS  Google Scholar 

  • Cotten, M., and Birnstiel, M. L., 1989, Ribozyme mediated destruction of RNA in vivo, EMBO J. 8:3861–3866.

    PubMed  CAS  Google Scholar 

  • Davis, B. R., Schwartz, D. H., Marx, J. C., Johnson, C. E., Berry, J. M., Lyding, J., Merigan, T. C., and Zander, A., 1991, Absent or rare human immunodeficiency virus infection of bone marrow stem/ progenitor cells in vivo, J. Virol. 65(4):1985–1990.

    PubMed  CAS  Google Scholar 

  • Davison, F. D., Kaczmarski, R. S., Pozniak, A., Mufti, G. J., and Sutherland, S., 1994, Quantification of HIV by PCR in monocytes and lymphocytes in patients receiving antiviral treatment and low dose recombinant human granulocyte macrophage colony stimulating factor, J. Clin. Path. 47(9):855–857.

    PubMed  CAS  Google Scholar 

  • De Luca, A., Teofill, L., Antinori, A., Iovino, M. S., Mencarini, P., Visconti, E., Tamburrini, E., Leone, G., and Ortona, L., 1993, Haemopoietic CD34+ progenitor cells are not infected by HIV-1 in vivo but show impaired clonogenesis, Br. J. Haematol. 85:20–24.

    PubMed  Google Scholar 

  • Dunbar, C. E., Cottier Fox, M., O’Shaugnessy, J. A., Doren, S., Carter, C., Berenson, R., Brown, S., Moen, R. C., Greenblatt, J., Stewart, F. M., Leitman, S. F., Wilson, W. H., Cowan, K., Young, N. S., and Nienhuis, A. W., 1995, Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation, Blood 85(11):3048–3057.

    PubMed  CAS  Google Scholar 

  • Fink, J. K., Correll, P. H., Perry, L. K., Brady, R. O., and Karlsson, S., 1990, Correction of gluco-cerebrosidase deficiency after retroviral-mediated gene transfer into hematopoietic progenitor cells from patients with Gaucher disease, Proc. Natl. Acad. Sci. USA 87:2334.

    PubMed  CAS  Google Scholar 

  • Folks, T. M., Kessler, S. W., Orenstein, J. M., Justement, J. S., Jaffe, E., and Fauci, A. S., 1988, Infection and replication of HIV-1 in purified progenitor cells of normal human bone marrow, Science 242:919–922.

    PubMed  CAS  Google Scholar 

  • Ganser, A., Ottman, O. C., von Briesen, H., Volkers, B., Rubsamen-Waigmann, H., and Hoelzer, D., 1990, Changes in the haematopoietic progenitor cell compartment in the acquired immunodeficiency syndrome, Res. Virol. 141:185.

    PubMed  CAS  Google Scholar 

  • Gervaix, A., Schwarz, L., Law, P., Ho, A. D., Loonex, D., Lane, T. A., and Wong-Staal, F., 1997, Gene therapy targeting peripheral blood CD34+ hematopoietic stem cells of HIV-infected individuals, Human Gene Therapy 8:2229–2238.

    PubMed  CAS  Google Scholar 

  • Goodman, S., Xiao, X., Donahue, R. E., Moulton, A., Miller, J., Walsh, C., Young, N. S., Samulski, R. J., and Nienhuis, A. W., 1994, Recombinant adeno-associated virus-mediated gene transfer into hematopoietic progenitor cells, Blood 84(5):1492–1500.

    PubMed  CAS  Google Scholar 

  • Guerrier-Takada, C., Cardiner, K., Marsh, T., Pace, N., and Altman, S., 1983, The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme, Cell 35:849–857.

    PubMed  CAS  Google Scholar 

  • Haas, R., Ho, A. D., Bredthauer, U., Cayeux, S., Egerer, G., Knauf, W., and Hunstein, W., 1990, Successful autologous transplantation of blood stem cells mobilized with recombinant human granulocyte-macrophage colony-stimulating factor, Exp. Hematol. 18:94.

    PubMed  CAS  Google Scholar 

  • Hampel, A., and Tritz, R., 1989, RNA catalytic properties of the minimum (-) sTRSV sequence, Biochemistry 28:4929–4933.

    PubMed  CAS  Google Scholar 

  • Hanania, E. G., Kavanagh, J., Giles, R. E., Kudelka, A., Rahman, Z., Holmes, F., Hortobagyi, G., Hamer, J., Calvert, L., Finnegan, M. B., Mante, R., Ellerson, D., Geisler, D., Wang, T., Su, Y., Zu, Z., Chen, N., Berenson, R., Heimfeld, S., Claxton, D., Mechetner, E., Holzmayer, T., Mehra, R., Cote, R., Champlin, R., and Deisseroth, A. B., 1995, Rapid neutrophil recovery in autologous transplants using cells that have been exposed to multiple drug resistance (MDR-1) retroviral vector, Blood 86(10)(Suppl. 1):462a.

    Google Scholar 

  • Hatzfeld, A., Batard, P., Panterne, B., Taieb, F., and Hatzfeld, J., 1996, Increased stable retroviral gene transfer in early hematopoietic progenitors released from quiescence, Hum. Gene Ther. 7:207–213.

    PubMed  CAS  Google Scholar 

  • Ho, A. D., Glück, S., Germond, C., Sinoff, C., Dietz, G., Maruyama, M., and Corringham, R. E. T., 1993, Optimal timing for collections of blood progenitor cells following induction chemotherapy and granulocyte-macrophage colony-stimulating factor for autologous transplantation in advanced breast cancer, Leukemia 17(11):1738–1746.

    Google Scholar 

  • Ho, A. D., Young, D., Maruyama, M., Corringham, R. E. T., Mason, J. R., Thompson, P., Grenier, K., Law, P., Terstappen, L. W. M. M., and Lane, T., 1996, Pluripotent and lineage-committed CD34+ subsets in leukapheresis products mobilized by G-CSF, GM-CSF versus a combination of both, Exp. Hematol. in press.

    Google Scholar 

  • Hoogerbrugge, P. M., van Beusechem, V. W., Fischer, A., Debree, M., le Deist, F., Perignon, J. L., Morgan, G, Gaspar, G., Fairbanks, L. D., Skeoch, C. H., Moseley, A., Harvey, M., Levinsky, R. J., and Valerio, D., 1996, Bone marrow gene transfer in three patients with adenosine deaminase deficiency, Gene Ther. 3:179–183.

    PubMed  CAS  Google Scholar 

  • Huang, S., and Terstappen, L. W. M. M., 1992, Formation of hematopoietic microenvironment and hematopoietic stem cells from single human bone marrow stem cells, Nature 360:745–749.

    PubMed  CAS  Google Scholar 

  • Huang, S., and Terstappen, L. W., 1994a, Formation of haematopoietic microenvironment and hematopoietic stem cells from single human bone marrow stem cells [retraction of Huang, S., and Terstappen, L. W. M. M., 1992, Nature, 360(6406):745-749], Nature 368:664.

    PubMed  CAS  Google Scholar 

  • Huang, S., and Terstappen, L. W. M. M., 1994b, “Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38” hematopoietic stem cells, Blood 83:1515–1526.

    PubMed  CAS  Google Scholar 

  • Huhn, R. D., Yurkow, E. J., Tushinski, R., Clarke, L., Sturgill, M. G., Hoffman, R., Sheay, W., Cody, R., Philipp, C., Resta, D., and George, M., 1996, Recombinant human interleukin-3 (rhIL-3) enhances the mobilization of peripheral blood progenitor cells by recombinant human granulocyte colonystimulating factor (rhG-CSF) in normal volunteers, Exp. Hematol. 24:839–847.

    PubMed  CAS  Google Scholar 

  • Ishizawa, L., Hangoc, G., Van De Ven, C., Cairo, M., Burgess, J., Mansour, V., Gee, A., Hardwick, A., Traycoff, C., Srour, E., Hoffman, R., and Law, P., 1993, Immunomagnetic separation of CD34+ cells from human bone marrow, cord blood, and mobilized peripheral blood, J. Hematother. 2:333–338.

    PubMed  CAS  Google Scholar 

  • Jennings, P. A., and Molley, R. L., 1987, Inhibition of SV40 replicon function by engineered antisense RNA transcribed by RNA polymerase III, EMBO J. 6:3043–3047.

    PubMed  CAS  Google Scholar 

  • Kaczmarski, R. S., Davison, F., Blair, E., Sutherland, S., Moxham, J., McManus, T., and Mufti, G. J., 1992, Detection of HIV in haemopoietic progenitors, Br. J. Haematol. 82(4):764–769.

    PubMed  CAS  Google Scholar 

  • Kaplan, L. D., Kahn, J. O., Crowe, S., Northfelt, D., Neville, P., Grossberg, H., Abrams, D. I., Tracey, J., Mills, J., and Volberding, P. A., 1991, Clinical and virologic effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients receiving chemotherapy for human immunodeficiency virus-associated non-Hodgkin’s lymphoma: Results of a randomized trial, J. Clin. Oncol. 9(6):929–940.

    PubMed  CAS  Google Scholar 

  • Kawashima, I., Zanjani, E. D., Graca, A.-P., Flake, A. W., Zeng, H. Q., and Ogawa, M., 1996, CD34+ human marrow cells that express low levels of kit protein are enriched for long-term marrowengrafting cells, Blood 87:4136–4142.

    PubMed  CAS  Google Scholar 

  • Kessinger, A., Armitage, J. O., and Landmark, J. D., 1988, Autologous peripheral hematopoietic stem cell transplantation restores hematopoietic function following marrow ablative therapy, Blood 71:723.

    PubMed  CAS  Google Scholar 

  • Kiehntopf, M., Esquivel, E. L., Brach, M. A., and Herrmann, F., 1995, Ribozymes: Biology, biochemistry, and implications for clinical medicine, J. Mol. Med. 73:65–71.

    PubMed  CAS  Google Scholar 

  • Kimura, S., Matsuda, J., Ikematsu, S., Miyazono, K., Ito, A., Nakahata, T., Minamitani, M., Shimada, K., Shiokawa, Y., and Takaku, F., 1990, Efficacy of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with AIDS, AIDS 4:1251–1255.

    PubMed  CAS  Google Scholar 

  • Kitano, K., Abboud, C. N., Ryan, D. H., Quan, S. G., Baldwin, G. C., and Golde, D. W., 1991, Macrophage-active colony-stimulating factors enhance human immunodeficiency virus type 1 infection in bone marrow stem cells, Blood 77(8):1699–1705.

    PubMed  CAS  Google Scholar 

  • Knaän-Shanzer, S., Valerio, D., and van Beusechem, V. W., 1996, Cell cycle state, response to hemopoietic growth factors and retroviral vector-mediated transduction of human hemopoietic stem cells, Gene Ther. 3:323–333.

    PubMed  Google Scholar 

  • Kohn, D. B., Weinberg, K. I., Nolta, J. A., Heiss, L. N., Lenarsky, C., Crooks, G. M., Hanley, M. E., Annett, G., Brooks, J. S., el-Koureiy, A., Lawrence, K., Wells, S., Moen, R. C., Bastian, J., Williams-Herman, D. E., Elder, M., Wara, D., Bowen, T., Hershfield, M. S., Mullen, C. A., Blaese, R. M., and Parkman, R., 1995, Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency, Nat. Med. 1(10):1017–1023.

    PubMed  CAS  Google Scholar 

  • Korbling, M., Przepiorka, D., Huh, Y. O., Engel, H., van Besien, K., Giralt, S., Andersson, B., Kleine, H. D., Seong, D., Deisseroth, A. B., Andreeff, M., and Champlin, R., 1995, Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: Potential advantage of blood over marrow allografts, Blood 85:1659.

    PubMed  CAS  Google Scholar 

  • Kotani, H., Newton, P. B. III, Zhang, S., Chiang, Y. L., Otto, E., Weaver, L., Blaese, R. M., Anderson, W. F., and McGarrity, G. J., 1994, Improved methods of retroviral vector transduction and production for gene therapy, Hum. Gene Ther. 5:19–28.

    PubMed  CAS  Google Scholar 

  • Koyangi, Y., O’Brien, W. A., Zhao, J. Q., Golde, D. W., Gassen, J. C., and Chen, I. S., 1988, Cytokines alter production of HIV-1 from primary mononuclear phagocytes, Science 241:1673–1675.

    Google Scholar 

  • Krause, D. S., Fackler, M. J., Civin, C. I., and May, W. S., 1996, CD34: Structure, biology, and clinical utility, Blood 87(1):1–13.

    PubMed  CAS  Google Scholar 

  • Krown, S. E., Paredes, J., Bundow, D., Polsky, B., Gold, J. W., and Flomenberg, N., 1992, Interferonalpha, zidovudine, and granulocyte-macrophage colony-stimulating factor: A phase I AIDS Clinical Trials Group study in patients with Kaposi’s sarcoma associated with AIDS, J. Clin. Oncol. 10(8):1344–1351.

    PubMed  CAS  Google Scholar 

  • Kuhn, L., and Stein, Z. A., 1995, Mother to infant HIV transmission: Timing, risk factors and prevention, Paediatr. Perinat. Epidemiol. 9(1):1.

    PubMed  CAS  Google Scholar 

  • Lane, T. A., Law, P., Maruyama, M., Young, D., Burgess, J., Mullen, M., Mealiffe, M., Terstappen, L. W. M. M., Hardwick, A., Moubayed, M., Oldham, F., Corringham, R. E. T., and Ho, A. D., 1995, Harvesting and enrichment of hematopoietic progenitor cells mobilized into the peripheral blood of normal donors by granulocyte-macrophage colony-stimulating factor (GM-CSF) or G-CSF: Potential role in allogeneic marrow transplantation, Blood 85:275.

    PubMed  CAS  Google Scholar 

  • Lapidot, T., Pflumio, F., Doedens, M., Murdoch, B., Williams, D. E., and Dick, J. E., 1992, Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice, Science 255:1137–1141.

    PubMed  CAS  Google Scholar 

  • Law, P., Ishizawa, L., Burgess, J., Mansour, V., Hangoc, G., Lazarus, H., Ho, A. D., Bender, J., Smith, S., Shilling, M., and Gee, A. P., 1992, High purity immunomagnetic selection of CD34+ cells from fresh and frozen mobilized peripheral blood stem cell (M-PBSC) collections, Blood 80(10)(Suppl. 1):261a.

    Google Scholar 

  • Leary, A. G., and Ogawa, M., 1987, Blast cell colony assay for umbilical cord blood and adult bone marrow progenitors, Blood 69:953.

    PubMed  CAS  Google Scholar 

  • Leavitt, M. C., Yu, M., Yamada, O., Kraus, G., Looney, D., Poeschla, E., and Wong-Staal, F., 1994, Transfer of an anti-HIV-1 ribozyme gene into primary human lymphocytes, Hum. Gene Ther. 5:1115–1120.

    PubMed  CAS  Google Scholar 

  • Li, Y., Gervaix, A., Larg, D., Law, P., Spector, S., Ho, A. D., and Wong-Staal, F., 1998, Gene therapy targeting cord blood derived CD34+ cells from HIV-exposed infants: preclinical studies, Gene Therapy 5:233–239.

    PubMed  CAS  Google Scholar 

  • Lu, L., Xiao, M., Clapp, D. W., Li, Z-H., and Broxmeyer, H. E., 1993, High efficiency retroviral mediated gene transduction into single isolated immature and replatable CD34+ hematopoietic stem/progenitor cells from human umbilical cord blood, J. Exp. Med. 178:2089–2096.

    PubMed  CAS  Google Scholar 

  • Lu, M., Maruyama, M., and Zhang, N., 1994, High efficiency retroviral-mediated gene transduction into CD34+ cells purified from peripheral blood, Hum. Gene Ther. 5:203–208.

    PubMed  CAS  Google Scholar 

  • Manders, S. M., Kostman, J. R., Mendez, L., and Russin, V. L., 1995, Thalidomide-resistant HIV-associated aphthae successfully treated with granulocyte colony-stimulating factor, J. Am. Acad. Dermatol. 33(2 Pt 2):380–382.

    PubMed  CAS  Google Scholar 

  • Michel, F., Umesono, K., and Ozeki, H., 1989, Comparative and functional anatomy of group II catalytic introns—a review, Gene 82:5–30.

    PubMed  CAS  Google Scholar 

  • Miller, D. G., Actam, M. A., and Miller, A. D., 1992, Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection, Mol. Cell. Biol. 10:4239–4242.

    Google Scholar 

  • Miller, J. L., Donahue, R. E., Sellers, S. E., Samulski, R. J., Young, N. S., and Nienhuis, A. W., 1994, Recombinant adeno-associated virus (rAAV)-mediated expression of a human γ-globin gene in human progenitor-derived erythroid cells, Proc. Natl. Acad. Sci. USA 91:10183–10187.

    PubMed  CAS  Google Scholar 

  • Miltenyi, S., Müller, W., Weichel, W., and Radbruch, A., 1990, High gradient magnetic cell separation with MACS, Cytometry 11:231–238.

    PubMed  CAS  Google Scholar 

  • Molina, J. M., Scadden, D. T., Sakaguchi, M., Fuller, B., Woon, A., and Groopman, J. E., 1990, Lack of evidence for infection of or effect on growth of hematopoietic progenitor cells after in vivo or in vitro exposure to human immunodeficiency virus, Blood 76(12):2476–2482.

    PubMed  CAS  Google Scholar 

  • Moritz, T., Patel, V. P., and Williams, D. A., 1994, Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors, J. Clin. Invest. 93:1451–1457.

    PubMed  CAS  Google Scholar 

  • Murray, L., Chen, B., Galy, A., Chen, S., Tushinski, R., Uchida, N., Negrin, R., Tricot, G., Jagannath, S., Vesole, D., Barlogie, B., Hoffman, R., and Tsuiamoto, A., 1995, Enrichment of human hematopoietic stem cell activity in the CD34+Thy-1+Lin- subpopulation from mobilized peripheral blood, Blood 85:368.

    PubMed  CAS  Google Scholar 

  • Nolta, J. A., Yu, X. J., Bahner, I., and Kohn, D. B., 1992, Retroviral-mediated transfer of the human glucocerebrosidase gene into cultured Gaucher bone marrow, J. Clin. Invest. 90:342.

    PubMed  CAS  Google Scholar 

  • Nolta, J. A., Smogorzewska, E. M., and Kohn, D. B., 1995, Analysis of optimal conditions for retroviralmediated transduction of primitive human hematopoietic cells, Blood 86(1):101–110.

    PubMed  CAS  Google Scholar 

  • Ojwang, J. O., Hampel, A., Looney, D. J., Wong-Staal, F., and Rappaport, J., 1992, Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme, Proc. Natl. Acad. Sci. USA 89(22):10802–10806.

    PubMed  CAS  Google Scholar 

  • Okarma, T., Lebkowski, J., Schain, L., Harvey, M., Tricot, G., Srour, E., Meyers, W. G., Burnett, A., Sniecinski, I., and O’Reilly, R. J., 1992, The AIS cellector: A new technology for stem cell purification, In Advances in Bone Marrow Purging and Processing, (D. A. Worthington-White, A. P. Gee, and S. Gross, eds.), Wiley-Liss, New York, pp. 475–486.

    Google Scholar 

  • Papadimitriou, C. A., Roots, A., Koenigsmann, M., Koenigsmann, M., Mücke, C., Oelmann, E., Oberberg, D., Reufi, B., Thiel, E., and Berdel, W. E., 1995, Immunomagnetic selection of CD34+ cells from fresh peripheral blood mononuclear cell preparations using two different separation techniques, J. Hematol. 4:539–544.

    CAS  Google Scholar 

  • Paul, R. W., Morris, D., Hess, B. W., Dunn, J., and Overell, R. W., 1993, Increased viral titer through concentration of viral harvests from retroviral packaging cell lines, Hum. Gene Ther. 4:609–615.

    PubMed  CAS  Google Scholar 

  • Perno, C. F., Cooney, D. A., Gao, W. Y., Hao, Z., Johns, D. G., Foli, A., Hartman, N. R., Calio, R., Broder, S., and Yarchoan, R., 1992, Effects of bone marrow stimulatory cytokines on human immunodeficiency virus replication and the antiviral activity of dideoxynucleosides in cultures of monocyte/macrophages, Blood 80:995–1003.

    PubMed  CAS  Google Scholar 

  • Ponchio, L., Conneally, E., and Eaves, C., 1995, Quantitation of the quiescent fraction of long-term culture-initiating cells in normal human blood and marrow and the kinetics of their growth factor-stimulated entry into S-phase in vitro, Blood 86(9):3314–3321.

    PubMed  CAS  Google Scholar 

  • Porter, C. D., Parkar, M. H., Collins, M. K. L., Levinsky, R. J., and Kinnon, C., 1996, Efficient retroviral transduction of human bone marrow progenitor and long-term culture-initiating cells: Partial reconstitution of cells from patients with X-linked chronic granulomatous disease by gp91-phox expression, Blood 87:3722–3730.

    PubMed  CAS  Google Scholar 

  • Pyle, A. M., 1993, Ribozymes: A distinct class of metalloenzymes, Science 261:708–714.

    Google Scholar 

  • Ruffner, D. E., Stormo, G. D., and Uhlenbeck, O. C., 1990, Sequence requirements of the hammerhead RNA self-cleavage reaction, Biochemistry 29:10695–10702.

    PubMed  CAS  Google Scholar 

  • Saeland, S., Duvert, V., Caux, D., Pandrau, D., Favre, C., Valle, A., Durand, I., Charbord, P., deVries, J., and Banchereau, J., 1992, Distribution of surface-membrane bound molecules on bone marrow and cord blood CD34+ hematopoietic cells, Exp. Hematol. 20:24.

    PubMed  CAS  Google Scholar 

  • Sato, N., Caux, C., Kitzamura, T., Watanabe, Y., Arai, K., Banchereau, J., and Miyajima, A., 1993, Expression and factor-dependent modulation of the interleukin-3 receptor subunits on human hematopoietic cells, Blood 82(3):752–761.

    PubMed  CAS  Google Scholar 

  • Sekhsaria, S., Gallin, J. I., Linton, G. F., Mallory, R. M., Mulligan, R. C., and Malech, H. L., 1993, Peripheral blood progenitors as a target for genetic correction of p47phox-deficient chronic granulomatous disease, Proc. Natl. Acad. Sci. USA 90:7446.

    PubMed  CAS  Google Scholar 

  • Shah, A. J., Smogorzewska, E. M., Hannum, C., and Crooks, G. M., 1996, Flt3 ligand induces proliferation of quiescent human bone marrow CD34+CD38- cells and maintains progenitor cells in vitro, Blood 87(9):3563–3570.

    PubMed  CAS  Google Scholar 

  • Sharmeen, L., Kuo, M. Y. P., Dinter-Gottlieb, G., and Taylor, J., 1988, Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage, J. Virol. 62:2674–2679.

    PubMed  CAS  Google Scholar 

  • Shaughnessy, E., Lu, D., Chatterjee, S., and Wong, K. K., 1996, Parvoviral vectors for the gene therapy of cancer, Semin. Oncol. 23(1):159–171.

    PubMed  CAS  Google Scholar 

  • Shpall, E. J., Jones, R. B., Bearman, S. I., Franklin, W. A., Archer, P. G., Curiel, T., Bitter, M., Clamman, H. N., Stemmer, S. M., Purdy, M., Myers, S. E., Hami, L., Taffs, S., Heimfeld, S., Hallagan, J., and Berenson, R. J., 1994, Transplantation of enriched CD34-positive autologous marrow into breast cancer patients following high-dose chemotherapy: Influence of CD34-positive peripheral-blood progenitors and growth factors on engraftment, J. Clin. Oncol. 12:28.

    PubMed  CAS  Google Scholar 

  • Siena, S., Bregni, M., Brando, B., Ravagnani, F., Bonadonna, G., and Gianni, A. M., 1989, Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide treated patients: Enhancement by intravenous recombinant human granulocyte-macrophage colony stimulating factor, Blood 74:1905.

    PubMed  CAS  Google Scholar 

  • Sloand, E., Kumar, P. N., and Pierce, P. F., 1993, Chemotherapy for patients with pulmonary Kaposi’s sarcoma: Benefit of filgrastim (G-CSF) in supporting dose administration, South. Med. J. 86(11):1219–1224.

    PubMed  CAS  Google Scholar 

  • Smith, K. T., Shepherd, A. J., Boyd, J. E., and Lees, G. M., 1996, Gene delivery systems for use in gene therapy: An overview of quality assurance and safety issues, Gene Ther. 3:190–200.

    PubMed  CAS  Google Scholar 

  • Srour, E. F., Leemhuis, T., Brandt, J. E., van Besien, K., and Hoffman, R., 1991a, Simultaneous use of rhodamine 123, phycoerythrin, Texas red, and allophycocyanin for the isolation of human hematopoietic progenitor cells, Cytometry 12:179.

    PubMed  CAS  Google Scholar 

  • Srour, E. F., Brandt, J. E., Briddell, R. A., Leemhuis, T., van Besien, K., and Hoffman, R., 1991b, Human CD34+HLA-DR- bone marrow cells contain progenitor cells capable of self-renewal, multilineage differentiation, and long-term in vitro hematopoiesis, Blood Cells 17:287.

    PubMed  CAS  Google Scholar 

  • Stanley, S. K., Kessler, S. W., Justement, J. S., Schnittman, S. M., Greenhouse, J. J., Brown, C. C., Musongela, L., Musey, K., Kapita, B., and Fauci, A. S., 1992, CD34+ bone marrow cells are infected with HIV in a subset of seropositive individuals, J. Immunol. 149:689–697.

    PubMed  CAS  Google Scholar 

  • Strauss, L. C., Rowley, S. D., LaRussa, V. F., Sharkis, S. J., Stuart, R. K., and Civin, C. I., 1986, Antigenic analysis of hematopoiesis V: Characterization of My-10 antigen expression by normal lymphohematopoietic progenitor cells, Exp. Hematol. 14:878–886.

    PubMed  CAS  Google Scholar 

  • Strauss, L. C., Trischmann, T. M., Rowley, S. D., Wiley, J. M., and Civin, C. L., 1991, Selection of normal human hematopoietic stem cells for bone marrow transplantation using immunomagnetic microspheres and CD34 antibody, Am. J. Pediatr. Hematol./Oncol. 2:211.

    Google Scholar 

  • Sullenger, B. A., and Cech, T. R., 1993, Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA, Science 262:1566–1569.

    PubMed  CAS  Google Scholar 

  • Sutherland, D. R., and Keating, A., 1992, The CD34 antigen: Structure, biology, and potential clinical applications, J. Hematol. 1:115–129.

    CAS  Google Scholar 

  • Terstappen, L. W. M. M., Huang, S., Safford, M., Lansdorp, P. M., and Loken, M. R., 1991, Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+/CD38-progenitor cells, Blood 77:1218–1227.

    PubMed  CAS  Google Scholar 

  • To, L. B., Haylock, D. N., Kimber, R. J., and Juttner, C. A., 1984, High levels of circulating haematopoietic stem cells in very early remission from acute non-lymphoblastic leukaemia and their collection and cryopreservation, Br. J. Haematol. 58:399.

    PubMed  CAS  Google Scholar 

  • Torbett, B. E., Conners, K., Shao, L. E., Mosier, D. E., and Yu, J., 1995, High level multilineage engraftment of human hematopoietic cells is maintained in NOC/SCID mice, Blood 86(10)(Suppl. 1):112a.

    Google Scholar 

  • Torlontano, G., Di Bartolomeo, P., Di Girolamo, G., Angrilli, F., Verani, P., Maggiorella, M. T., Dragani, A., Iacone, A., Papalinetti, G., Olioso, P., Cosentino, L., and Dantonio, D., 1992, AIDS-related complex treated by antiviral drugs and allogeneic bone marrow transplantation following conditioning protocol with busulphan, cyclophosphamide, and cyclosporin, Haematologica 77(3):287–290.

    PubMed  CAS  Google Scholar 

  • Traycoff, C. M., Abboud, M. R., Laver, J., Brandt, J. E., Hoffman, R., Law, P., Ishizawa, L., and Srour, E. F., 1994, Evaluation of the in vitro behavior of phenotypically defined populations of umbilical cord blood hematopoietic progenitor cells, Exp. Hematol 22:215–222.

    PubMed  CAS  Google Scholar 

  • Tricot, G., Gazitt, Y., Jagannath, S., Vesole, D., Reading, C., Juttner, C., Hoffman, R., and Barlogie, B., 1995, CD34+THY+LIN- peripheral blood stem cells (PBSC) effect timely trilineage engraftment in multiple myeloma (MM), Blood 86(10)(Suppl. 1):293a.

    Google Scholar 

  • Tseng-Law, J., Curtis, J., Kobori, J., and Deans, R., 1995, Peptide epitopes of anti-CD34 monoclonal antibodies which function as release reagents for CD34+ cell selection Blood 86(10)(Suppl. 1):490a.

    Google Scholar 

  • Uhlenbeck, O. C., 1987, A small catalytic oliogoribonucleotide, Nature 328:596-500.

    Google Scholar 

  • Vecchiarelli, A., Monari, C., Baldelli, F., Pietrella, D., Retini, C., Tascini, C., Francisci, D., and Bistoni, F., 1995, Beneficial effect of recombinant human granulocyte colony-stimulating factor on fungicidal activity of polymorphonuclear leukocytes from patients with AIDS, J. Infect. Dis. 171(6):1448–1454.

    PubMed  CAS  Google Scholar 

  • von Laer, D., Hufert, F. T., Fenner, T. E., Schwander, S., Dietrich, M., Schmitz, H., and Kern, P., 1990, CD34+ hematopoietic progenitor cells are not a major reservoir of the human immunodeficiency virus, Blood 76(7):1281–1286.

    Google Scholar 

  • Wang, X. S., Yoder, M. C., Zhou, S. Z., and Srivastava, A., 1995, Parvovirus B19 promoter at map unit 6 confers autonomous replication competence and erythroid specificity to adeno-associated virus 2 in primary human hematopoietic progenitor cells, Proc. Natl. Acad. of Sci. USA 92(26):12416–12420.

    CAS  Google Scholar 

  • Wu, H. N., Lin, Y. J., Lin, F. P., Makino, S., Chang, M. F., and Lai, M. M. C., 1989, Human hepatitis delta virus RNA subfragments contain an autocleavage activity, Proc. Natl. Acad. Sci. USA 86:1831–1835.

    PubMed  CAS  Google Scholar 

  • Yamada, O., Yu, M., Yee, J. K., Kraus, G., Looney, D. J., and Wong-Staal, F., 1994a, Intracellular immunization of human T-cells with a hairpin ribozyme against human immunodeficiency virus type 1, Gene Ther. 1:39–45.

    Google Scholar 

  • Yamada, O., Kraus, G., Leavitt, M. C., Yu, M., and Wong-Staal, F., 1994b, Activity and cleavage site specificity of an anti-HIV-1 hairpin ribozyme in human T-cells, Virology 205:121–126.

    PubMed  CAS  Google Scholar 

  • Yamada, O., Kraus, G., Luznik, L., Yu, M., and Wong-Staal, F., 1996, A chimeric HIV-1 minimal RRE/ ribozyme molecule exhibits dual antiviral function and inhibits cell-cell transmission of HIV-1, J. Virol. 70:1596–1901.

    PubMed  CAS  Google Scholar 

  • Young, J. C., Varma, A., DiGiusto, D., and Backer, M. P., 1996, Retention of quiescent hematopoietic cells with high proliferative potential during ex vivo stem cell culture, Blood 87:545–556.

    PubMed  CAS  Google Scholar 

  • Yu, M., Ojwang, J., Yamada, O., Hampel, A., Rapapport, J., Looney, D., and Wong-Staal, F., 1993, A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. USA 90:6340–6344.

    PubMed  CAS  Google Scholar 

  • Yu, M., Leavitt, M. C., Maruyama, M., Yamada, O., Young, D., Ho, A. D., and Wong-Staal, F., 1995, Intracellular immunization of human fetal cord blood stem/progenitor cells with a ribozyme against human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. USA 92:699–703.

    PubMed  CAS  Google Scholar 

  • Zanjani, E. D., Pallavicini, M. G., Ascensao, J. L., Flake, A. W., Langlois, R. G., Reitsma, M., MacKintosh, F. R., Stutes, D., Harrison, M. R., and Tavassoli, M., 1992, Engraftment and long-term expression of human fetal hemopoietic stem cells in sheep following transplantation in utero, J. Clin. Invest. 89:1178.

    PubMed  CAS  Google Scholar 

  • Zhou, S. Z., Cooper, S., Kang, L. Y., Ruggieri, L., Heimfeld, S., Srivastava, A., and Broxmeyer, H. E., 1994, Adeno-associated virus 2-mediated high efficiency gene transfer into immature and mature subsets of hematopoietic progenitor cells in human umbilical cord blood, J. Exp. Med. 179:1867–1875.

    PubMed  CAS  Google Scholar 

  • Zhou, S. Z., Li, Q., Stamatoyannoupoulas, G., and Srivastava, A., 1996, Adeno-associated virus 2-mediated transduction and erythroid cell-specific expression of a human β-globin gene, Gene Ther. 3:223–229.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, X., Wong-Staal, F., Ho, A.D., Law, P. (1999). HIV Gene Therapy Using Hairpin Ribozymes in Hematopoietic Stem/Progenitor Cells. In: Fairbairn, L.J., Testa, N.G. (eds) Blood Cell Biochemistry. Blood Cell Biochemistry, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4889-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4889-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7218-9

  • Online ISBN: 978-1-4615-4889-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics