Neurotransmitter Receptor Changes in the Hippocampus and Cerebral Cortex in Normal Aging

  • Douglas L. Rosene
  • Timothy J. Nicholson
Part of the Cerebral Cortex book series (CECO, volume 14)

Abstract

As humans grow older, they all experience changes in their basic physiological systems. Although some of these changes can be debilitating or fatal, the quality of life during aging depends to a great extent on the functional status of the central nervous system. Over the past three decades, increasingly well-controlled and well-documented studies in humans and experimental animals have shown a variety of cognitive changes, including impairments in both memory and executive system function. In contrast to age-related dementias like Alzheimer’s disease, these impairments are relatively mild, though they increase in severity with age and can become quite troublesome (see Moss and Albert, this volume). It seems likely that these changes in cognitive function result from changes localized in the cerebral cortex (including the hippocampal formation and other parts of the limbic system) or related parts of the forebrain (thalamus, basal ganglia, amygdala, basal fore-brain). Investigations of the forebrain in both aged humans and experimental animals have uncovered a variety of age-related biological changes, including the appearance of amyloid plaques (e.g. Selkoe et al., 1987), loss of neurons (e.g. Brody, 1955; Brizzee et al., 1980), loss of myelin (e.g., Kemper, 1994), loss of synapses (e.g. Geinisman et al., 1992), decreases in neurotransmitter levels (e.g. Wenk et al., 1989), loss of neurotransmitter receptors (e.g. Wagster et al., 1990), alterations in mitochondrial energy metabolism (e.g. Wallace, 1995), and changes in neuro-physiological responsivity (e.g. Barnes, 1994; Tanila et al., 1997).

Keywords

Dementia Nicotine Neurol NMDA Choline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaral, D. G., 1993, Morphological analysis of the brains of behaviorally characterized aged nonhuman primates, Neurobiol. Aging 14:671–672.PubMedCrossRefGoogle Scholar
  2. Anke, M. M., Kulkulka, K. M., McAvoy, K. J., and Rolcosz, N. C., 1992, Regional distribution and kinetics of three sites on the GABAA receptor: Lack of effect of portacaval shunting, J. Cereb. Blood Flow Metab. 12:334–346.CrossRefGoogle Scholar
  3. Araujo, D. M., Lapchak, P. A., Meaney, M. J., Collier, B., and Quirion, R., 1990, Effects of aging on nicotinic and muscarinic autoreceptor function in the rat brain: Relationship to presynaptic cholinergic markers and binding sites, J. Neurosci. 10:3069–3078.PubMedGoogle Scholar
  4. Aubert, I., Rowe, W., Meaney, M. J., Gauthier, S., and Quirion, R., 1995, Cholinergic markers in aged cognitively impaired Long-Evans rats, Neuroscience 67:277–292.PubMedCrossRefGoogle Scholar
  5. Barnes, C. A., 1994, Normal aging: Regionally specific changes in hippocampal synaptic transmission, Trends Neurosci. 17(1):13–18.PubMedCrossRefGoogle Scholar
  6. Bartus, R. T., Dean, R. L., and Fleming, D. L., 1979, Aging in the rhesus monkey: Effects on visual discrimination learning and reversal learning, J. Gerontol. 34:209–219.PubMedGoogle Scholar
  7. Bartus, R. T., Dean, R. L., Beer, B., and Lippa, A. S., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science 217:408–417.PubMedCrossRefGoogle Scholar
  8. Biegon, A., Hanau, M., Greenberger, V., and Segal, M., 1989, Aging and brain cholinergic muscarinic receptor subtypes: An autoradiographic study in the rat, Neurobiol. Aging 10:305–310.PubMedCrossRefGoogle Scholar
  9. Bhatnagar, M., Cintra, A., Chadi, G., Lindberg, J., Oitzl, M., De Kloet, E. R., Moller, A., Agnati, L. F., and Fuxe, K., 1997, Neurochemical changes in the hippocampus of the brown Norway rat during aging, Neurobiol. Aging 18:319–327.PubMedCrossRefGoogle Scholar
  10. Blake, M. J., Appel, N. M., Joseph, J. A., Stagg, C. A., Anson, M., De Souza, E. B., and Roth, G. S., 1991, Muscarinic acetylcholine receptor subtype mRNA expression and ligand binding in the aged rat forebrain, Neurobiol. Aging 12:193–199.PubMedCrossRefGoogle Scholar
  11. Biggio, G., and Costa, E., 1988, Chloride channels and their modulation by neurotransmitters and drugs, in: Advances in Biochemical Psychopharmacology, Vol. 45, Raven, New York.Google Scholar
  12. Birtsch, C., Wevers, A., Traber, J., Maelicke, A., Bloch, W., and Schroder, H., 1997, Expression of α4-1 and α5 nicotinic cholinoceptor mRNA in the aging rat cerebral cortex, Neurobiol. Aging 18:335–342.PubMedCrossRefGoogle Scholar
  13. Brizzee, K. R., Ordy, J. M., and Bartus, R., 1980, Localization of cellular changes within multimodal sensory regions in aged monkey brain: Possible implications for age-related cognitive loss, Neurobiol. Aging 1:45–52.PubMedCrossRefGoogle Scholar
  14. Brody, H., 1955, Organization of cerebral cortex. III. A study of aging in the human cerebral cortex, J. Comp. Neurol. 102:511–556.PubMedCrossRefGoogle Scholar
  15. Collingridge, G. L., and Bliss, T. V. P., 1987, NMDA receptors: their role in long-term potentiation, Trends Neurosci. 10:288–293.CrossRefGoogle Scholar
  16. Corda, M. G., Giorgi, O., Longoni, B., Ongini, E., Pesce, G., Cruciani, R., and Biggio, G., 1989, Functional coupling of GABAA receptors and benzodiazepine recognition site subtypes in the spinal cord of the rat, Eur. J. Pharmacol. 169:205–213.PubMedCrossRefGoogle Scholar
  17. Costa, E., and Guidotti, A., 1979, Molecular mechanism in the receptor action of benzodiazepines, Annu. Rev. Pharmacol. Toxicol. 19:531–545.PubMedCrossRefGoogle Scholar
  18. Flood, D. G., and Coleman, P. D., 1988, Neuron numbers and sizes in aging brain: Comparisons of human, monkey, and rodent data, Neurobiol. Aging 9:453–463.PubMedCrossRefGoogle Scholar
  19. Flynn, D. D., and Mash, D. C., 1986, Characterization of L-[3H]nicotine binding in human cerebral cortex: Comparison between Alzheimer’s disease and the normal, J. Neurochem. 47:1948–1954.PubMedCrossRefGoogle Scholar
  20. Gazzaley, A. H., Siegel, S. J., Kordower, J. H., Mufson, E. J., and Morrison, J. H., 1996, Circuit-specific alterations of N-methyl-D-aspartate receptor subunit 1 in the dentate gyrus of aged monkeys, Proc. Natl. Acad. Sci. USA 93:3121–3125.PubMedCrossRefGoogle Scholar
  21. Gazzaley, A. H., Thakker, M. M., Hof, P. R., and Morrison, J. H., 1997, Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys, Neurobiol. Aging 18:549–554.PubMedCrossRefGoogle Scholar
  22. Geinisman, Y., DeToledo-Morrell, L., Morrell, F., Persina, I. S., and Rossi, M., 1992, Age-related loss of axospinous synapses formed by two afferent systems in the rat dentate gyrus as revealed by the unbiased sterological dissector technique, Hippocampus 2:432–444.Google Scholar
  23. Gutierrez, A., Khan, Z. U., Morris, S. J., and De Blas, A. L., 1994, Age-related decrease of GABAA receptor subunits and glutamic acid decarboxylase in the rat inferior colliculus, J. Neurosci. 14:7469–7477.PubMedGoogle Scholar
  24. Hammer, R., Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V., and Holme, E. C., 1980, Pirenzepine distinguishes between different subclasses of muscarinic receptors, Nature 283:90–92.PubMedCrossRefGoogle Scholar
  25. Haug, H., 1985, Are neurons of the human cerebral cortex really lost during aging? A morphometric examination, in: Senile Dementia of the Alzheimer Type (J. Traber and W. H. Gispen, eds.), Springer-Verlag, Berlin, pp. 150–163.CrossRefGoogle Scholar
  26. Hyman, B. T., Van Hoesen, G. W., and Damasio, A. R., 1984, Cell-specific pathology isolates the hippocampal formation in Alzheimer’s disease, Science 223:121–122.CrossRefGoogle Scholar
  27. Keen, M., and MacDermot, J., 1993, Analysis of receptors by radioligand binding, in: Receptor Autoradiography Principles and Practice, (J. Wharton and J. M. Polak, eds.), Oxford University Press, London, pp. 23–55.Google Scholar
  28. Joseph, J. A., Cutler, R., and Roth, G. S., 1993, Changes in G protein-mediated signal transduction in aging and Alzheimer’s disease, Ann. NY Acad. Sci. 695:42–45.PubMedCrossRefGoogle Scholar
  29. Kemper, T. L., Moss, M. B., Rosene, D. L., and Killiany, R. J., 1997, Age-related neuronal loss in the nucleus centralis superior of the rhesus monkey, Acta Neuropathol. 94:124–130.PubMedCrossRefGoogle Scholar
  30. Kemper, T. L., 1994, Neuroanatomical and neuropathological changes during aging and dementia, in: Clinical Neurology and Aging (M. L. Albert and J. E. Knoefel, eds.), Oxford University Press, New York, pp. 3–67.Google Scholar
  31. Leuba, G., and Kraftsik, R., 1994, Changes in volume, surface estimate, three-dimensional shape and total number of neurons of the human primary visual cortex from midgestation until old age, Anat. Embryol. 190:351–366.PubMedCrossRefGoogle Scholar
  32. Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., and Rakic, P., 1989, Quantitative autoradiographic mapping of serotonin 5-HT1 and 5-HT2 receptors and uptake sites in the neocortex of the rhesus monkey, J. Comp. Neurol. 280:27–42.PubMedCrossRefGoogle Scholar
  33. Magnusson, K. R., 1995, Differential effects of aging on binding sites of activated NMDA receptor complex in mice, Mech. Aging Develop. 84:227–243.CrossRefGoogle Scholar
  34. Milbrandt, J. C., Albin, R. L., Turgeon, S. M., and Caspary, D. M., 1996, GABAA receptor binding in the aging rat inferior colliculus, Neuroscience 73:449–458.PubMedCrossRefGoogle Scholar
  35. Milbrandt, J. C., Hunter, C., and Caspary, D. M., 1997, Alterations of GABAA receptor subunit mRNA levels in the aging Fischer 344 rat inferior colliculus, J. Comp. Neurol. 379:455–465.PubMedCrossRefGoogle Scholar
  36. Monaghan, D. T., Nguyen, L., and Cotman, C. W., 1986, The distribution of [3H]kainate binding sites in primate hippocampus is similar to the distribution of both Ca2+-sensitive and Ca2 +-insensitive [3H]kainate binding sites in rat hippocampus, Neurochem. Res. 11:1073–1082.PubMedCrossRefGoogle Scholar
  37. Morrison, J. H., and Hof, P. R., 1997, Life and death of neurons in the aging brain, Science 278:412–419.PubMedCrossRefGoogle Scholar
  38. Peters, A., Morrison, J. H., Rosene, D. L., and Hyman, B. T., 1998, Are neurons lost from the cerebral cortex during normal aging? Cereb. Cortex, 8:295–300.PubMedCrossRefGoogle Scholar
  39. Peters, A., Rosene, D. L., Moss, M. B., Kemper, T. L., Abraham, C. R., Tigges, J., and Albert, M. S., 1996, Neurobiological bases of age-related cognitive decline in the rhesus monkey, J. Neuropathol. Exp. Neurol. 55:861–874.PubMedGoogle Scholar
  40. Rabow, L. E., Russek, S. J., and Farb, D. H., 1995, From ion currents to genomic analysis: Recent advances in GABAA receptor research, Synapse 21:189–274.PubMedCrossRefGoogle Scholar
  41. Rapp, P. R., and Gallagher, M., 1996, Preserved neuron number in the hippocampus of aged rats with spatial learning deficits, Proc. Natl. Acad Sci. USA 93:9926–9930.PubMedCrossRefGoogle Scholar
  42. Rosene, D. L., 1993, Comparing age-related changes in the basal forebrain and hippocampus of the rhesus monkey, Neurobiol. Aging 14:669–670.PubMedCrossRefGoogle Scholar
  43. Rosenthal, H. E., 1967, A graphic method for the determination and presentation of binding parameters in a complex system, Anal. Biochem. 20:525–532.PubMedCrossRefGoogle Scholar
  44. Ruano, D., Cano, J., Machado, A., and Vitorica, J., 1991, Pharmacological characterization of GABAA/-benzodiazepine receptor in rat hippocampus during aging, J. Pharmacol. Exp. Ther. 256:902–908.PubMedGoogle Scholar
  45. Ruano, D., Machado, A., and Vitorica, J., 1993, Absence of modifications of the pharmacological properties of the GABAA receptor complex during aging, as assessed in 3-and 24-month-old rat cerebral cortex, Eur. J. Pharmacol. 246:81–87.PubMedCrossRefGoogle Scholar
  46. Sandberg, K., and J. T. Coyle 1985, Characterization of [3H]hemicholinium-3 binding associated with neuronal choline uptake sites in rat brain membranes, Brain Res. 348:321–330.PubMedCrossRefGoogle Scholar
  47. Selkoe, D. J., Bell, D. S., Podlisny, M. B., Price, D. L., and Cork, L. C., 1987, Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease, Science 235:873–877.PubMedCrossRefGoogle Scholar
  48. Shimada, A., Mukhin, A., Ingram, D. K., and London, E. D., 1997, N-methyl-D-aspartate receptor binding in brains of rats at different ages, Neurobiol. Aging 18:329–333.PubMedCrossRefGoogle Scholar
  49. Smith, T. D., Gallagher, M., and Leslie, F. M., 1995, Cholinergic binding sites in rat brain: Analysis by age and cognitive status, Neurobiol. Aging 16:161–173.PubMedCrossRefGoogle Scholar
  50. Stroessner-Johnson, H. M., Rapp, P. R., and Amaral, D. G., 1992, Cholinergic cell loss and hypertrophy in the medial septal nucleus of the behaviorally characterized aged rhesus monkey, J. Neurosci. 12:1936–1944.PubMedGoogle Scholar
  51. Subramaniam, S., and McGonigle, P., 1991, Quantitative autoradiographic characterization of the binding of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) in rat brain: Regional effects of polyamines, J. Pharm. Exp. then 256:811–819.Google Scholar
  52. Tanila, H., Sipila, P., Shapiro, M., and Eichenbaum, H., 1997, Brain Aging: Impaired coding of novel environmental cues, J. Neurosci. 17:5167–5174.PubMedGoogle Scholar
  53. Tigges, J., Gordon, T. P., McClure, H. M., Hall, E. C., Peters, A., 1988, Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center, Am. J. Primatol. 15:263–273.CrossRefGoogle Scholar
  54. Tigges, J., Herndon, J. G., and Peters, A., 1990, Neuronal population of area 4 during the life span of the rhesus monkey, Neurobiol. Aging 11:201–208.PubMedCrossRefGoogle Scholar
  55. Vannucchi, M. G., and Goldman-Rakic, P. S., 1991, Age-dependent decrease in the affinity of muscarinic M1 receptors in neocortex of rhesus monkeys, Proc. Natl. Acad. Sci. USA 88:11475–11479.PubMedCrossRefGoogle Scholar
  56. Vogt, B. A., and Burns, D. L., 1988, Experimental localization of muscarinic receptor subtypes to cingulate cortical afferents and neurons, J. Neurosci. 8:643–652.PubMedGoogle Scholar
  57. Voytko, M. L., Sukhov, R. R., Walker, L. C., Breckler, S. J., Price, D. L., Koliatsos, V. E., 1995, Neuronal number and size are preserved in the nucleus basalis of aged rhesus monkeys, Dementia 6:131–141.PubMedGoogle Scholar
  58. Wagster, M. V., Whitehouse, P. J., Walker, L. C., Kellar, K. J., and Price, D. L., 1990, Laminar organization of age-related loss of cholinergic receptors in temporal neocortex of rhesus monkey, J. Neurosci. 51:2879–2885.Google Scholar
  59. Wallace, D. C., 1995, Mitochondrial DNA mutations, in: Human Disease and Aging: Molecular Aspects of Aging (K. Esser and G. M. Martin, eds.), Wiley, New York, pp. 163–177.Google Scholar
  60. Wang, S.-Z., Shu, S.-Z., Joseph, J. A., and El Fakahany, E. E., 1992, Comparison of the level of mRNA encoding m1 and m2 muscarinic receptors in brains of young and aged arts, Neurosci. Lett. 145:149–152.PubMedCrossRefGoogle Scholar
  61. Wenk, G. L., Pierce, D. J., Struble, R. G., Price, D. L., and Cork, L. C., 1989, Age-related changes in multiple neurotransmitter systems in the monkey brain, Neurobiol. Aging 10:11–19.PubMedCrossRefGoogle Scholar
  62. West, M. J., 1993, New stereological methods for counting neurons, Neurobiol. Aging 14:275–285.PubMedCrossRefGoogle Scholar
  63. Young, S. W., III, and Kuhar, M. J., 1979a, A new method for receptor autoradiography: [3H]opioid receptors in rat brain, Brain Res. 179:255–270.PubMedCrossRefGoogle Scholar
  64. Young, S. W., III, and Kuhar, M. J., 1979b, Autoradiographic localization of benzodiazepine receptors in the brains of humans and animals, Nature 280:393–395.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Douglas L. Rosene
    • 1
    • 2
  • Timothy J. Nicholson
    • 1
  1. 1.Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUSA
  2. 2.Yerkes Regional Primate Research CenterEmory UniversityAtlantaUSA

Personalised recommendations