Multifocal Cortical Neurodegeneration in Alzheimer’s Disease

  • Brent A. Vogt
  • Alex Martin
  • Kent E. Vrana
  • John R. Absher
  • Leslie J. Vogt
  • Patrick R. Hof
Part of the Cerebral Cortex book series (CECO, volume 14)

Abstract

Cortical atrophy is well known in Alzheimer’s disease (AD), however, there are different interpretations of its location and extent. Neurodegeneration and atrophy are relatively consistent in medial temporal areas, including hippocampal, entorhinal, and perirhinal cortices, and they follow a uniform pattern. This is not the only region of atrophy, however, since it occurs in prefrontal, parietotemporal, occipital, and cingulate cortices. Furthermore, although gross focal atrophy is not always present, focal neurodegeneration may occur with focal changes in glucose metabolism. The concept of multifocal cortical degeneration leads to the view of multiple structural and functional subsystem disruption in AD.

Keywords

Codon Dopamine Norepinephrine Neurol Gasoline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, M. S., Duffy, F. H., and McAnulty, G. B., 1990, Electrophysiologic comparisons between two groups of patients with Alzheimer’s disease, Arch. Neurol. 47:857–863.PubMedCrossRefGoogle Scholar
  2. Armstrong, R. A., and Myers, D., 1992, Principal components analysis of Alzheimer’s disease based on neuropathological data: A study of 79 patients, Neurosci. Res. Comm. 11:1–9.Google Scholar
  3. Armstrong, R. A., and Wood, L., 1994, The identification of pathological subtypes of Alzheimer’s disease using cluster analysis, Acta Neuropathol. 88:60–66.PubMedCrossRefGoogle Scholar
  4. Armstrong, R. A., Wood, L., Myers, D., and Smith, C. U. M., 1996, The use of multivariate methods in the identification of subtypes of Alzheimer’s disease: A comparison of principal components and cluster analysis, Dementia 7:215–220.PubMedGoogle Scholar
  5. Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., and Van Hoesen, G. W., 1991, The topographical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease, Cereb. Cortex 1:103–116.PubMedCrossRefGoogle Scholar
  6. Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T., and Hyman, B. T., 1992, Neurofibrillary tangles, but not senile plaques, parallel duration and severity of Alzheimer’s disease, Neurology 42:631–639.PubMedCrossRefGoogle Scholar
  7. Baleydier, C., and Mauguière, F., 1980, The duality of the cingulate gyrus in monkey: Neuroanatomical study and functional hypotheses, Brain 103:525–554.PubMedCrossRefGoogle Scholar
  8. Bálint, R., 1909, Seelenlähmung des “Schauens,” optische Ataxie, räumliche Störung der Aufmerksamkeit, Mschr. Psychiatr. Neurol. 25:51–81.CrossRefGoogle Scholar
  9. Becker, J. T., Huff, F. J., Nebes, R. D., Holland, A., and Boller, F., 1988, Neuropsychological function in Alzheimer’s disease: Pattern of impairment and rates of progression, Arch. Neurol. 45:263–268.PubMedCrossRefGoogle Scholar
  10. Behl, C., Davis, J. B., Lesley, R., and Schubert, D., 1994, Hydrogen peroxide mediates amyloid β protein toxicity, Cell 77:817–827.PubMedCrossRefGoogle Scholar
  11. Bennett, D. A., Cochran, E. J., Saper, C. B., Leverenz, J. B., Gilley, D. W., and Wilson, R. S., 1993, Pathological changes in frontal cortex from biopsy to autopsy in Alzheimer’s disease, Neurobiol. Aging 14:589–596.PubMedCrossRefGoogle Scholar
  12. Benson, D. F., Davis, R. J., and Snyder, D. B., 1988, Posterior cortical atrophy, Arch. Neurol. 45:789–793.PubMedCrossRefGoogle Scholar
  13. Bergmann, M., Kuchelmeister, K., Schmid, K. W., Kretzschmar, H. A., and Schröder, R., 1996, Different variants of frontotemporal dementia: A neuropathological and immunohistochemical study, Acta Neuropathol. 92:170–179.PubMedCrossRefGoogle Scholar
  14. Berthier, M. L., Leiguarda, R., Starkstein, S. E., Sevlever, G., and Taratuto, A. L., 1991, Alzheimer’s disease in a patient with posterior cortical atrophy, J. Neurol. Neurosurg. Psychiatry 54:1110–1111.PubMedCrossRefGoogle Scholar
  15. Bierer, L. M., Hof, P. R., Purohit, D. P., Carlin, L., Schmeidler, J., Davis, K. L., Perl, D. P., 1995, Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch. Neurol. 52:81–88.PubMedCrossRefGoogle Scholar
  16. Bird, T. D., Stranaham, S., Sumi, S. M., and Radkind, M., 1983, Alzheimer’s disease: Choline acetyltransferase activity in brain tissue from clinical and pathological subtypes, Ann. Neurol. 14:284–293.PubMedCrossRefGoogle Scholar
  17. Blacker, D., Haines, J. L., Rodes, L., Terwedow, R. H., Harrell, L. E., Perry, R. T., Bassett, S. S., Meyers, D., Albert, M. S., and Tanzi, R., 1997, ApoE-4 and age at onset of Alzheimer’s disease: The NIMH genetics initiative, Neurology 48:139–147.PubMedCrossRefGoogle Scholar
  18. Blass, J. P., Baker, A. C., Ko, L.-W., and Black, R. S., 1990, Induction of Alzheimer antigens by an uncoupler of oxidative phosphorylation, Arch. Neurol. 47:864–869.PubMedCrossRefGoogle Scholar
  19. Bondareff, W., Mountjoy, C. Q., and Roth, M., 1982, Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia, Neurology 32:164–168.PubMedCrossRefGoogle Scholar
  20. Bondareff, W., Mountjoy, C. Q., Roth, M., Rossor, M. N., Iversen, L. L., and Reynolds, G. P., 1987, Age and histopathologic heterogeneity in Alzheimer’s disease, Arch. Gen. Psychiatry 44:412–417.PubMedCrossRefGoogle Scholar
  21. Borchelt, D. R., Thinakaran, G., Eckman, C. B., Lee, M. K., Ratovitsky, T., Yager, D., Slunt, H. H., Wang, R., Seeger, M., Levey, A. I., Gandy, S. E., Copeland, N. G., Jenkins, N. A., Price, D. L., Younkin, S. G., and Sisodia, S. S., 1996, Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ 1-42/1-40 ratio in vitro and in vivo, Neuron 17:1005–1013PubMedCrossRefGoogle Scholar
  22. Bozner, P., Grishko, V., LeDoux, S. P., Wilson, G. L., Chyan, Y.-C., and Pappolla, M. A., 1997, The amyloid β protein induces oxidative damage of mitochondrial DNA, J. Neuropathol. Exp. Neurol. 56:1356–1362.PubMedCrossRefGoogle Scholar
  23. Braak, H., and Braak, E., 1991, Neuropathological stageing of Alzheimer-related changes, Acta Neuropathol. 82:239–259.PubMedCrossRefGoogle Scholar
  24. Braak, H., and Braak, E., 1993, Alzheimer neuropathology and limbic circuits, in: Neurobiology of Cingulate Cortex and Limbic Thalamus (B. A. Vogt and M. Gabriel, eds.), Birkhäuser, Boston, pp. 606–626.Google Scholar
  25. Braak, H., Braak, E., Yilazer, de Vos, R. A. I., Jansen, E. N. H., and Bohl, J., 1996, Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases, J. Neural. Transm. 103:455–490.PubMedCrossRefGoogle Scholar
  26. Brion, S., Plas, J., and Jeanneau, A., 1991, La maladie de Pick: Point de vue anatomo-clinique. Rev. Neurol. 147:693–704.PubMedGoogle Scholar
  27. Brun, A., 1993, Frontal lobe degeneration of non-Alzheimer type revisited, Dementia 4:126–131.PubMedGoogle Scholar
  28. Brun, A., and Englund, E., 1981, Regional pattern of degeneration in Alzheimer’s disease: Neuronal loss and histopathological grading, Histopathology 5:549–564.PubMedCrossRefGoogle Scholar
  29. Brun, A., Englund, B., Gustafson, L., Passant, U., Mann, D. M. A., Neary, D., and Snowden, J. S., 1994, Consensus statement: Clinical and neuropathological criteria for frontotemporal dementia, J. Neurol. Neurosurg. Psychiatry 57:416–418.CrossRefGoogle Scholar
  30. Butter, C. M., Trobe, J. D., Foster, N. L., and Berent, S., 1996, Visual-spatial deficits explain visual symptoms in Alzheimer’s disease, Am. J. Ophthalmol. 122:97–105.PubMedGoogle Scholar
  31. Cairns, N.J., Chadwick, A., Lantos, P. L., Levy, R., and Rossor, M. N., 1993, βA4 protein deposition in familial Alzheimer’s disease with the mutation in codon 717 of the βA4 amyloid precursor protein gene and sporadic Alzheimer’s disease, Neurosci. Lett. 149:137–147.PubMedCrossRefGoogle Scholar
  32. Campbell, M. J., and Morrison, J. H., 1989, Monoclonal antibody to neurofilament protein (SMI32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex, J. Comp. Neurol. 282:191–205.PubMedCrossRefGoogle Scholar
  33. Campbell, M. J., Hof, P. R., and Morrison, J. H., 1991, A subpopulation of primate corticocortical neurons is distinguished by somatodendritic distribution of neurofilament protein, Brain Res. 539:133–136.PubMedCrossRefGoogle Scholar
  34. Chu, D. C. M., Penney, J. B., and Young, A. B., 1987, Cortical GABAB and GABAA receptors in Alzheimer’s disease: A quantitative autoradiographic study, Neurology 37:1454–1459.PubMedCrossRefGoogle Scholar
  35. Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Lee, M., Davis, A., Motter, R., Perry, B., Yao, H., Stromme, R., Rommens, J., Schenk, D., St. George Hyslop, P., and Selkoe, D. J., 1997, Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice, Nature Med. 3:67–72.PubMedCrossRefGoogle Scholar
  36. Clark, R. F., Hutton, M., Fuldner, R. A., and Goate, A., 1995, The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset Alzheimer’s disease families, Nature Genet. 11:219–222.CrossRefGoogle Scholar
  37. Cogan, D. G., 1985, Visual disturbances with focal progressive dementing disease, Am. J. Ophthalmol 100:68–72.PubMedGoogle Scholar
  38. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haiones, J. L., and Pericak-Vance, M. A., 1993, Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families, Science 261:921–923.PubMedCrossRefGoogle Scholar
  39. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Conneally, K. E., Small, G. W., Roses, A. D., and Paricak-Vance, M. A., 1994, Apolipoprotein E type 2 allele decreases the risk of late-onset Alzheimer’s disease, Nature Genet. 7:180–184.PubMedCrossRefGoogle Scholar
  40. Corral-Debrinski, M., Horton, T., Lott, M. T., Shoffher, J. M., Beal, M. F., and Wallace, D. G., 1992, Mitochondrial DNA deletions in human brain: Regional variability and increase with advanced age, Nature Genet. 2:324–329.PubMedCrossRefGoogle Scholar
  41. Cronin-Golomb, A., Suguira, R., Corkin, S., and Growdon, J. H., 1993, Incomplete achromatopsia in Alzheimer’s disease, Neurobiol. Aging 14:471–477.PubMedCrossRefGoogle Scholar
  42. Crook, R., Verkkoniemi, A., Perez-Tur, J., et al., 1998, A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1, Nature Med. 4:452–455.PubMedCrossRefGoogle Scholar
  43. Cross, A. J., Crow, T. J., Perry, E. K., Blessed, G., and Tomlinson, B. E., 1981, Reduced dopamine-β-hydroxylase activity in Alzheimer’s disease, Br. Med. J. 282:93–94.CrossRefGoogle Scholar
  44. Crystal, M. A., Horoupian, D. S., Katzman, R., and Jotkowitz, S., 1982, Biopsy-proved Alzheimer’s disease presenting as a right parietal lobe syndrome, Ann. Neurol. 12:186–188.PubMedCrossRefGoogle Scholar
  45. Dawson, V. L., Bredt, D. S., Fotuhi, D. S., Hwang, P. M., and Snyder, S. H., 1991a, Nitric oxide synthase and neuronal NADPH-diaphorase are identical in brain and peripheral tissues, Proc. Natl. Acad. Sci. USA 88:7797–7801.PubMedCrossRefGoogle Scholar
  46. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., and Snyder, S. H., 1991b, Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures, Proc. Natl. Acad. Sci. USA 88:6368–6371.PubMedCrossRefGoogle Scholar
  47. De Boni, U., and McLachlan, D. R. C., 1985, Controlled induction of paired helical filaments of the Alzheimer type in cultured human neurons by glutamate and aspartate, J. Neurol. Sci. 68:105–118.PubMedCrossRefGoogle Scholar
  48. Doan, A., Thinakaran, G., Borchelt, D. R., Slunt, H. H., Ratovitsky, T., Selkoe, D. J., Seeger, M., Gandy, S. E., Price, D. L., and Sisodia, S. S., 1996, Protein topology of presenilin 1, Neuron 17:1023–1030.PubMedCrossRefGoogle Scholar
  49. DeYoe, E. A., Carman, G. J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., Miller, D., and Neitz, J., 1996, Mapping striate and extrastriate visual areas in human cerebral cortex, Proc. Natl. Acad. Sci. USA 93:2382–2386.PubMedCrossRefGoogle Scholar
  50. Estus, S., Tucker, M., van Rooyan, C., Wright, S., Brigham, E. F., Wogulis, M., and Rydel, R. E., 1997, Aggregated amyloid-β protein induces cortical neuronal apoptosis and concomitant apoptotic pattern of gene induction, J. Neurosci. 17:7736–7745.PubMedGoogle Scholar
  51. Feany, M. B., and Dickson, D. W., 1995, Widespread cytoskeletal pathology characterizes corticobasal degeneration, Am. J. Pathol. 146:1388–1396.PubMedGoogle Scholar
  52. Feany, M. B., Ksiezak-Reding, H., Liu, W. K., Vincent, I., Yen, S. H. C., and Dickson, D. W., 1995, Epitope expression and phosphorylation of tau protein in corticobasal degeneration: Differentiation from progressive supranuclear palsy, Acta Neuropathol. 90:37–43.PubMedCrossRefGoogle Scholar
  53. Fisher, N.J., Rourke, B. P., Bieliauskas, L., Giordani, B., Berent, S., and Foster, N., 1996, Neuropsychological subgroups of patients with Alzheimer’s disease, J. Clin. Exp. Neuropsychol. 18:349–370.PubMedCrossRefGoogle Scholar
  54. Fletcher, W. A., 1994, Ophthalmological aspects of Alzheimer’s disease, Curr. Opin. Ophthalmol. 5:38–44.PubMedCrossRefGoogle Scholar
  55. Fletcher, W. A., Sharpe, J. A., 1988, Smooth pursuit dysfunction in Alzheimer’s disease, Neurology 38:272–277.PubMedCrossRefGoogle Scholar
  56. Forloni, G., Chiesa, R., Smiroldo, S., Verga, L., Salmona, M., Tagliavini, F., Angeretti, N., 1993, Apoptosis mediated neurotoxicity induced by chronic application of β amyloid fragment 25-35, NeuroReport 4:523–526.PubMedCrossRefGoogle Scholar
  57. Foster, N. L., Chase, T. N., Fedio, P., Petronsas, N.J., Brooks, R. A., and DiChiro, G., 1983, Alzheimer’s disease: Focal cortical changes shown by positron emission tomography, Neurology 33:961–965.PubMedCrossRefGoogle Scholar
  58. Fox, N. C., Kennedy, A. M., and Harvey, R. J., et al., 1997, Clinicopathological features of familial Alzheimer’s disease associated with the M139V mutation in the presenilin 1 gene, Brain 120:491–501.PubMedCrossRefGoogle Scholar
  59. Freed, D. M., Corkin, S., Growdon, J. H., and Nissen, M. J., 1989, Selective attention in Alzheimer’s disease: Characterizing cognitive subgroups of patients, Neuropsychologia 27:325–339.PubMedCrossRefGoogle Scholar
  60. Furey-Kurkjian, M. L., Pietrini, P., Graff-Radford, N. R., Alexander, G. E., Freo, U., Szczepanik, J., and Schapiro, M. B., 1996, Visual variant of Alzheimer’s disease: Distinctive neuropsychological features, Neuropsychology 10:294–300.CrossRefGoogle Scholar
  61. Games, D., Adams, D., Alessandrini, R., Blackwell, C., Clemens, J., Hagopian, S., Lieberburg, I., McConiogue, L., Mucke, L., Schenk, D., Wadsworth, S., Wolozin, B., and Zhao, J., 1995, Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein, Nature 373:523–527.PubMedCrossRefGoogle Scholar
  62. Gearing, M., Mori, H., and Mirra, S. S., 1996, Aβ-peptide length and apolipoprotein E genotype in Alzheimer’s disease, Ann. Neurol. 39:395–399.PubMedCrossRefGoogle Scholar
  63. Giannakopoulos, P., Hof, P. R., Surini, M., Michel, J. P., and Bouras, C., 1993, Quantitative immunohistochemical analysis of the distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of nonagenarians and centagenarians, Acta Neuropathol. 85:602–610.PubMedCrossRefGoogle Scholar
  64. Giannakopoulos, P., Hof, P. R., and Bouras, C., 1995, Dementia lacking distinctive histopathology: Clinicopathological evaluation of 32 cases, Acta Neuropathol. 89:346–355.PubMedCrossRefGoogle Scholar
  65. Giannakopoulos, P., Duc, M., Gold, G., Hof, P. R., Michel, J.-P., Bouras, C., 1998, Pathologic correlates of apraxia in Alzheimer disease, Arch. Neurol. 55:689–695.PubMedCrossRefGoogle Scholar
  66. Gómez-Isla, T., Wasco, W., Pettingell, W. P., and Gurubhagavatula, S., et al., 1997, A novel presenilin-1 mutation: Increased β-amyloid and neurofibrillary changes, Ann. Neurol. 41:809–813.PubMedCrossRefGoogle Scholar
  67. Gómez-Isla, T., Price, J. L., McKeel, D. W., Jr., Morris, J. C., Growdon, J. H., and Hyman, B. T., 1996, Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease, J. Neurosci. 16:4491–4500.PubMedGoogle Scholar
  68. Gouras, G. K., Relkin, N. R., Sweeney, D., Munoz, D. G., Mackenzie, I. R., and Gandy, S., 1997, Increased apolipoprotein E ∈4 in epilepsy with senile plaques, Ann. Neurol. 41:402–404.PubMedCrossRefGoogle Scholar
  69. Grady, C. L., Haxby, J. V., Shapiro, M. B., Kumar, A., Ball, M. J., Heston, L., and Rapoport, S. I., 1990, Subgroups in dementia of the Alzheimer type identified using positron emission tomography, J. Neuropsychiat. 2:373–384.Google Scholar
  70. Graff-Radford, N. R., Boiling, J. P., Earnest, F., IV, Shuster, E. A., Caselli, R. J., and Brazis, P. W., 1993, Simultanagnosia as the initial sign of degenerative dementia, Mayo Clin. Proc. 68:955–964.PubMedGoogle Scholar
  71. Grünthal, E., 1928, Zür Hirnpathologischen Analyse der Alzheimerschen Krankheit, Psychiat.-Neurol. Wschr. 36:401–407.Google Scholar
  72. Guo, Q., Sopher, B. L., Furukawa, K., Pham, D. G., Robinson, N., Martin, G. M., and Mattson, M. P., 1997, Alzheimer’s presenilin mutation sensitizes neurons to apoptosis induced by trophic factor withdrawal and amyloid β-peptide: Involvement of calcium and oxyradicals, J. Neurosci. 17:4212–4222.PubMedGoogle Scholar
  73. Gustafson, L., 1993, Clinical picture of frontal lobe degeneration of non-Alzheimer type, Dementia 4:143–148.PubMedGoogle Scholar
  74. Gustafson, L., Brun, A., and Risberg, J., 1990, Frontal lobe degeneration of non-Alzheimer type, Adv. Neurol. 51:65–71.PubMedGoogle Scholar
  75. Haltia, M., Viitanen, M., Sulkava, R., and Ala-Hurula, V., et al., 1994, Chromosome 14-encoded Alzheimer’s disease: Genetic and clinicopathological description, Ann. Neurol. 36:362–367.PubMedCrossRefGoogle Scholar
  76. Halliday, G. M., McCann, H. L., Pamphlett, R., Brooks, W. S., Creasey, H., McCusker, E., Cotton, R. G. H., Broe, G. E., and Harper, C. G., 1992, Brain stem serotonin-synthesizing neurons in Alzheimer’s disease: A clinicopathological correlation, Acta Neuropathol. 84:638–650.PubMedCrossRefGoogle Scholar
  77. Hansen, L. A., DeTeresa, R., Davies, P., and Terry, R. D., 1988, Neocortical morphometry, lesion counts, and choline acetyltransferase levels in the age spectrum of Alzheimer’s disease, Neurology 38:48–54.PubMedCrossRefGoogle Scholar
  78. Hardy, J., 1996, New insights into the genetics of Alzheimer’s disease, Ann. Med. 28:255–258.PubMedCrossRefGoogle Scholar
  79. Hardy, J., 1997, Amyloid, the presenilins, and Alzheimer’s disease, Trends Neurosci. 20:154–159.PubMedCrossRefGoogle Scholar
  80. Harvey, R. J., Ellison, D., Hardy, J., Hutton, M., Roques, P. K., Collinge, J., Fox, N. C., and Rossor, M. N., 1998, Chromosome 14 familial Alzheimer’s disease: The clinical and neuropathological characteristics of a family with a leucine to serine substitution at codon 250 of the presenilin 1 gene, J. Neurol. Neurosurg. Psychiatry 64:44–49.PubMedCrossRefGoogle Scholar
  81. Hauw, J. J., Verny, M., Delaère, P., Cervera, P., He, Y., and Duyckaerts, C., 1990, Constant neurofibrillary changes in the neocortex of progressive supranuclear palsy: Basic differences with Alzheimer’s disease and aging, Neurosci. Lett. 119:182–186.PubMedCrossRefGoogle Scholar
  82. Haxby, J. V., Grady, C. L., and Koss, E., 1988, Heterogeneous anterior-posterior metabolic patterns in dementia of the Alzheimer type, Neurology 38:1053–1063.CrossRefGoogle Scholar
  83. Haxby, J. V., Duara, R., Grady, C. L., Culter, N. R., and Rapoport, S. I., 1985, Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease, J. Cereb. Blood Flow Metab. 5:193–200.PubMedCrossRefGoogle Scholar
  84. Hirano, A., and Zimmerman, H. M., 1962, Alzheimer’s neurofibrillary changes: A topographic study, Arch. Neurol. 7:227–242.PubMedCrossRefGoogle Scholar
  85. Hirono, N., Mori, E., Ishii, K., Ikejiri, Y., Imamura, T., Shimomura, T., Hashimoto, M., Yamashita, H., and Sasaki, M., 1998, Hypofunction in the posterior cingulate gyrus correlates with disorientation for time and place in Alzheimer’s disease, J. Neurol. Neurosurg. Psychiatry 64:552–554.PubMedCrossRefGoogle Scholar
  86. Hof, P. R., and Bouras, C., 1991, Object recognition deficit in Alzheimer’s disease: Possible disconnection of the occipito-temporal component of the visual system, Neurosci. Lett. 122:53–56.PubMedCrossRefGoogle Scholar
  87. Hof, P. R., and Morrison, J. H., 1991, Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer’s disease, Exp. Neurol. 111:293–301.PubMedCrossRefGoogle Scholar
  88. Hof, P. R., and Nimchinsky, E. A., 1992, Regional distribution of neurofilament and calcium-binding proteins in the cingulate cortex of the macaque monkey, Cereb. Cortex 2:456–467.PubMedCrossRefGoogle Scholar
  89. Hof, P. R., Bouras, C., Constantinidis, J., and Morrison, J. H., 1989, Bálint’s syndrome in Alzheimer’s disease: Specific disruption of the occipitoparietal visual pathway, Brain Res. 493:368–375.PubMedCrossRefGoogle Scholar
  90. Hof, P. R., Bouras, C., Constantinidis, J., and Morrison, J. H., 1990a, Selective disconnection of specific visual association pathways in cases of Alzheimer’s disease presenting with Bálint’s syndrome, J. Neuropathol. Exp. Neurol. 49:168–184.PubMedCrossRefGoogle Scholar
  91. Hof, P. R., Cox, K., and Morrison, J. H., 1990b, Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease. I. Superior frontal and inferior temporal cortex, J. Comp. Neurol. 301:44–54.PubMedCrossRefGoogle Scholar
  92. Hof, P. R., Delacourte, A., and Bouras, C., 1992c, Distribution of cortical neurofibrillary tangles in progressive supranuclear palsy: A quantitative analysis of six cases, Acta Neuropathol. 84:45–51.PubMedCrossRefGoogle Scholar
  93. Hof, P. R., Bierer, L. M., Perl, D. P., Delacourte, A., Buée, L., Bouras, C., and Morrison, J. H., 1992a, Evidence for early vulnerability of the medial and inferior aspects of the temporal lobe in an 82-year-old patient with preclinical signs of dementia, Arch. Neurol. 49:946–953.PubMedCrossRefGoogle Scholar
  94. Hof, P. R., Bouras, C., Buée, L., Delacourte, A., Perl, D. P., and Morrison, J. H., 1992b, Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer’s disease cases, Acta Neuropathol. 85:23–30.PubMedCrossRefGoogle Scholar
  95. Hof, P. R., Archin, N., Osmand, A. P., Dougherty, A. P., Wells, C., Bouras, C., and Morrison, J. H., 1993a, Posterior cortical atrophy in Alzheimer’s disease: Analysis of a new case and re-evaluation of a historical report, Acta Neuropathol. 86:215–223.PubMedCrossRefGoogle Scholar
  96. Hof, P. R., Nimchinsky, E. A., Celio, M. R., Bouras, C., and Morrison, J. H., 1993b, Cairetinin-immu-noreactive neocortical interneurons are unaffected in Alzheimer’s disease, Neurosci. Lett. 152:145–149.PubMedCrossRefGoogle Scholar
  97. Hof, P. R., Bouras, C., Perl, D. P., and Morrison, J. H., 1994, Quantitative neuropathologic analysis of Pick’s disease cases: Cortical distribution of Pick bodies and coexistence with Alzheimer’s disease, Acta Neuropathol. 87:115–124.PubMedCrossRefGoogle Scholar
  98. Hof, P. R., Nimchinsky, E. A., and Morrison, J. H., 1995, Neurochemical phenotype of corticocortical connections in the macaque monkey: Quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices, J. Comp. Neurol. 362:109–133.PubMedCrossRefGoogle Scholar
  99. Hof, P. R., Vogt, B. A., Bouras, C., and Morrison, J. H., 1997, Patterns of corticocortical disconnection in atypical forms of Alzheimer’s disease with prominent posterior cortical atrophy, Vision Res. 37:3609–3625.PubMedCrossRefGoogle Scholar
  100. Houlden, H., Collinge, J., and Kennedy, A., et al., 1993, ApoE genotype and Alzheimer’s disease, Lancet 342:737–738.CrossRefGoogle Scholar
  101. Hutton, M., Busfield, F., Wragg, M., Crook, R., Perez-Tur, J., Wright, IL, Lenden, C., Martinez, A., Houlden, H., Roberts, G., Roques, P., Rossor, M., Venter, J. C., Adams, M. D., Phillips, C. A., Fulder, R. A., Hardy, J., and Goate, A., 1996, Complete analysis of the presenilin 1 gene in early onset Alzheimer’s disease, NeuroReport 7:801–805.PubMedCrossRefGoogle Scholar
  102. Hyman, B. T., Marzloff, K., and Arriagada, P. V., 1993, The lack of accumulation of senile plaques or amyloid burden in Alzheimer’s disease suggests a dynamic balance between amyloid deposition and resolution, J. Neuropathol. Exp. Neurol. 52:594–600.PubMedCrossRefGoogle Scholar
  103. Hyman, B. T., West, H. L., Gomez-Isla, T., and Mui, S., 1995, Quantitative neuropathology in Alzheimer’s disease: Neuronal loss in high-order association cortex parallels dementia, in: Research Advances in Alzheimer’s Disease and Related Disorders (K. Iqbal, J. A. Mortimer, and H. M. Wisniewski, eds.), Wiley, New York, pp. 453–460.Google Scholar
  104. Jackson, M., Lowe, J., 1996, The new neuropathology of degenerative frontotemporal dementias, Acta Neuropathol 91:127–134.PubMedCrossRefGoogle Scholar
  105. Jakob, H., 1979, Die Picksche Krankheit: Eine neuropathologisch-anatomisch-klinische Studie, in: Monographien aus der Gesamtgebiet der Psychiatrie (H. Hippius, W. Jazarik, and C. Müller, eds.), Bd 23, Springer-Verlag, Berlin, pp. 1–110.Google Scholar
  106. Jordan, J., Galindo, M. F., Miller, R. J., Reardon, C. A., Getz, G. S., and La Du., M. J., 1998, Isoform-specific effect of apolipoprotein E on cell survival and β-amyloid-induced toxicity in rat hippocampal pyramidal neuronal cultures, J. Neurosci. 18:195–204.PubMedGoogle Scholar
  107. Jorm, A. F., 1985, Subtypes of Alzheimer’s dementia: A conceptual analysis and critical review, Psychol. Med. 15:543–553.PubMedCrossRefGoogle Scholar
  108. Kalaria, R. N., Andorn, A. C., Tabaton, M., Whitehouse, P. J., Harik, S. L., and Unnerstall, J. R., 1989, Adrenergic receptors in aging and Alzheimer’s disease: Increased β2-receptors in prefrontal cortex and hippocampus, J. Neurochem. 53:1772–1781.PubMedCrossRefGoogle Scholar
  109. Kaplan, E., Goodglass, H., and Weintraub, S., 1976, Boston Naming Test (experimental edition), Boston, Boston Veterans Administration Medical Center.Google Scholar
  110. Katz, B., and Rimmer, S., 1989, Ophthalmologic manifestations of Alzheimer’s disease, Surv. Ophthalmol. 34:31–34.PubMedCrossRefGoogle Scholar
  111. Kennedy, A. M., Newman, S. K., Frackowiak, R. S. J., Cunningham, V.J., Roques, P., Stevens, J., Neary, D., Bruton, C. J., Warrington, E. K., and Rossor, M. N., 1995, Chromosome 14 linked familial Alzheimer’s disease: A clinico-pathological study of a single pedigree, Brain 118:185–205.PubMedCrossRefGoogle Scholar
  112. Kiyosawa, M., Bosley, T. M., Chawluk, J., Jamieson, D., Schatz, N.J., Savino, P. J., Sergott, R. C., Reivich, M., and Alavi, A., 1989, Alzheimer’s disease with prominent visual symptoms, Ophthalmology 96:1077–1086.PubMedGoogle Scholar
  113. Kosaka, K., Yoshimura, M., Ikeda, K., and Budka, H., 1984, Diffuse type of Lewy body disease: Progressive dementia with abundant cortical Lewy bodies and senile changes of varying degree: A new disease? Clin. Neuropathol. 3:185–192.PubMedGoogle Scholar
  114. Kruman, I., Bruce-Keller, A. J., Bredesen, D., Waeg, G., and Mattson, M. P., 1997, Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis, J. Neurosci. 17:5089–5100.PubMedGoogle Scholar
  115. Kurylo, D. D., Corkin, S., Dolan, R. P., Rizzo, J. F., III, Parker, S. W., and Growdon, J. H., 1994, Broadband visual capacities are not selectively impaired in Alzheimer’s disease, Neurobiol. Aging 15:305–311.PubMedCrossRefGoogle Scholar
  116. LaFerla, F. M., Tinkle, B. T., Bieberich, C. J., Haudenschild, C. C., and Jay, G., 1995, The Alzheimer’s Aβ peptide induces neurodegeneration and apoptotic cell death in transgenic mice, Nature Genet. 9:21–29.PubMedCrossRefGoogle Scholar
  117. Lampe, T. H., Bird, T. D., Nochin, D., Nemens, E., Risse, S. C., Sumi, S. M., Koerler, R., Leaird, B., Wier, M., and Raskind, M. A., 1994, Phenotype of chromosome 14-linked familial Alzheimer’s disease in a large kindred, Ann Neurol. 36:368–378.PubMedCrossRefGoogle Scholar
  118. Lantos, P. L., Luthert, P. J., Hanger, D., Anderton, B. H., Mullan, M., and Rossor, M., 1992, Familial Alzheimer’s disease with the amyloid precursor protein position 717 mutation and sporadic Alzheimer’s disease have the same cytoskeletal pathology, Neurosci. Lett. 137:221–224.PubMedCrossRefGoogle Scholar
  119. Lennox, G., Lowe, J., Byrne, E. J., Landon, M., Mayer, R. J., and Godwin-Austen, R. B., 1989, Diffuse Lewy body disease, Lancet:323-324.Google Scholar
  120. Levine, D. N., Lee, J. M., and Fisher, C. M., 1993, The visual variant of Alzheimer’s disease: A clinicopathologic case study. Neurology 43:305–313.PubMedCrossRefGoogle Scholar
  121. Levy, M. H., Hart, W. M., Jr., Sonstein, F. M., and Ballinger, W. E., Jr., 1995, The incredible shrinking brain [with comments by A. Sadun], Surv. Ophthalmol. 39:315–322.PubMedCrossRefGoogle Scholar
  122. Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Crowley, A. C., Guenette, S. Y., Galas, D., Wijsman, E. M., and Tanzi, R. E., 1995, Candidate gene for the chromosome 1 familial Alzheimer’s disease locus, Science 269:973–977.PubMedCrossRefGoogle Scholar
  123. Li, X., Greenwald, I., 1996, Membrane topology of the C. elegans SEL-12 presenilin, Neuron 17:1015–1021.PubMedCrossRefGoogle Scholar
  124. Lippa, C. F., Smith, T. W., and Swearer, J. M., 1994, Alzheimer’s disease and Lewy body disease: A comparative clinicopathological study, Ann. Neurol. 35:81–88.PubMedCrossRefGoogle Scholar
  125. Loo, D. T., Copani, A., Pike, C. J., Edward, E. R., Walencewicz, A. J., and Cotman, C. W., 1993, Apoptosis is induced by β-amyloid in cultured central nervous system neurons, Proc. Natl. Acad. Sci. USA 90:7951–7955.PubMedCrossRefGoogle Scholar
  126. Loy, R., Heyer, D., Clagett-Dame, M., and DiStefano, P. S., 1990, Localization of NGF receptors in normal and Alzheimer’s basal forebrain with monoclonal antibodies against the truncated form of the receptor, J. Neurosci. Res. 27:651–664.PubMedCrossRefGoogle Scholar
  127. Maestre, G., Ottamen, R., and Stern, Y., et al., 1995, Apolipoprotein E and Alzheimer’s disease: Ethnic variation in genetic risk, Ann. Neurol. 37:254–259.PubMedCrossRefGoogle Scholar
  128. Mann, D. M. A., Yates, P. O., and Marcyniuk, B., 1985, Some morphometric observations on the cerebral cortex in presenile Alzheimer’s disease and Down’s syndrome in middle age, J. Neurol. Sci. 69:139–159.PubMedCrossRefGoogle Scholar
  129. Mann, D. M. A., Marcyniuk, B., Yates, P. O., Neary, D., and Snowden, J. S., 1988, The progression of the pathological changes of Alzheimer’s disease in frontal and temporal neocortex examined both at biopsy and at autopsy, Neuropathol. Appl. Neurobiol. 14:177–195.PubMedCrossRefGoogle Scholar
  130. Mann, D. M. A., Jones, D., Snowden, J. S., Neary, D., and Hardy, J., 1992a, Pathological changes in the brain of a patient with familial Alzheimer’s disease having a missense mutation at codon 717 in the amyloid precursor protein, Neurosci. Lett. 137:225–228.PubMedCrossRefGoogle Scholar
  131. Mann, D. M. A., and South, P. W., 1993, The topographic distribution of brain atrophy in frontal lobe dementia, Acta Neuropathol. 85:334–340.PubMedGoogle Scholar
  132. Mann, D. M. A., South, P. W., Snowdon, J. S., and Neary, D., 1993, Dementia of frontal lobe type: Neuropathology and immunohistochemistry, J. Neurol. Neurosurg. Psychiatry 56:605–614.PubMedCrossRefGoogle Scholar
  133. Mann, U., Lincoln, J., Yates, P. O., Stamp, J. E., and Toper, S., 1980, Changes in the monoamine containing neurons of the human CNS in senile dementia, Br. J. Psychiatry 136:533–541.PubMedCrossRefGoogle Scholar
  134. Mann, U., Mohr, E., Gearing, M., and Chase, T. N., 1992b, Heterogeneity in Alzheimer’s disease: Progression rate segregated by distinct neuropsychological and cerebral metabolic profiles, J. Neurol. Neurosurg. Psychiatry 55:956–959.PubMedCrossRefGoogle Scholar
  135. Martin, A., 1987, Representation of semantic and spatial knowledge in Alzheimer’s patients: Implications for models of preserved learning and amnesia, J. Clin. Exp. Neuropsychol. 9:191–224.PubMedCrossRefGoogle Scholar
  136. Martin, A., 1990, Neuropsychology of Alzheimer’s disease: The case for subgroups, in: Modular Deficits in Alzheimer-type Dementia (Schwartz, M. F., ed.), MIT Press, Cambridge, MA, pp. 145–175.Google Scholar
  137. Martin, A., Brouwers, P., Lalonde, F., Cox, C., Teleska, P., Fedio, P., Foster, N. L., and Chase, T. N., 1986, Toward a behavioral typology of Alzheimer’s patients, J. Clin. Exp. Neuropsychol. 8:594–610.PubMedCrossRefGoogle Scholar
  138. Matsunami, K. I., Kawashima, T., and Satake, H., 1989, Mode of [14C] 2-deoxy-D-glucose uptake into retrosplenial cortex and other memory-related structures of the monkey during a delayed response, Brain Res. Bull. 22:829–838.PubMedCrossRefGoogle Scholar
  139. Maury, C. P. J., Nurmiaho-Lassila, E.-L., and Liljestrom, M., 1997, Alzheimer’s disease-associated presenilins 1 and 2: Accelerated amyloid fibril formation of mutant 410 Cys→Tyr and 141 Asn→Ile peptides, Biochem. Biophys. Res. Comm. 235:249–252.PubMedCrossRefGoogle Scholar
  140. McCarthy, G., Spicer, M., Adrignolo, A., Luby, M., Gore, J., and Allison, T., 1995, Brain activation associated with visual motion studied by functional magnetic resonance imaging in humans, Hum. Brain Mapp. 2:234–243.CrossRefGoogle Scholar
  141. McKhann, G., Drachman, D., and Folstein, M., 1984, Clinical diagnosis of Alzheimer’s disease, Neurology 34:939–944.PubMedCrossRefGoogle Scholar
  142. Mendez, M. F., Mendez, M. A., Martin, R., Smyth, K. A., and Whitehouse, P. J., 1990a, Complex visual disturbances in Alzheimer’s disease, Neurology 40:439–443.PubMedCrossRefGoogle Scholar
  143. Mendez, M. F., Tomsak, R. L., and Remler, B., 1990b, Disorders of the visual system in Alzheimer’s disease, J. Clin. Neuro-ophthalmol 10:62–69.Google Scholar
  144. Mendez, M. F., Turner, J., Gilmore, G. C., Remler, B., and Tomsak, R. L., 1990c, Bálint’s syndrome in Alzheimer’s disease: Visuospatial functions, Int. J. Neurosci. 54:339–346.PubMedCrossRefGoogle Scholar
  145. Mendez, M. F., Selwood, A., Mastri, A. R., and Frey, W. H., II 1993, Pick’s disease versus Alzheimer’s disease: A comparison of clinical characteristics, Neurology 43:289–292.PubMedCrossRefGoogle Scholar
  146. Minoshima, S., Giordani, B., Berent, S., Frey, K. A., Foster, N. L., and Kuhl, D. E., 1997, Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease, Ann. Neurol. 42:85–94.PubMedCrossRefGoogle Scholar
  147. Mirra, S. S., Heyman, A., McKeel, J., Sumi, S. M., Crain, B. J., Brownlee, L. M., Hughes, J. P., Vogel, F. S., van Belle, G., and Berg, L., 1991, The consortium to establish a registry for Alzheimer’s disease (CERAD), Neurology 41:479–486.PubMedCrossRefGoogle Scholar
  148. Morel, F., 1945, Les aires striée, parastriée et péristriée dans les troubles de la fonction visuelle au cours de la maladie d’Alzheimer, Confin. Neurol. 6:238–242.CrossRefGoogle Scholar
  149. Mountjoy, C. Q., Roth, M., Evans, N. J. R., and Evans, H. M., 1983, Cortical neuronal counts in normal elderly controls and demented patients, Neurobiol. Aging 4:1–11.PubMedCrossRefGoogle Scholar
  150. Mufson, E. J., Bothwell, M., Hersh, L. B., and Kordower, J. H., 1989, Nerve growth factor receptor immunoreactive profiles in the normal aged human basal forebrain: Colocalization with cholinergic neurons, J. Comp. Neurol. 285:196–217.PubMedCrossRefGoogle Scholar
  151. Mullan, M., Tsuji, S., and Miki, T., et al., 1993, Clinical comparison of Alzheimer’s disease in pedigrees with the codon 717 Val to Ile mutation in the amyloid precursor protein gene, Neurobiol. Aging 14:407–419.PubMedCrossRefGoogle Scholar
  152. Murray, E. A., Davidson, M., Gaffan, D., Olton, D. S., and Suomi, S., 1989, Effects of fornix transection and cingulate cortical ablation on spatial memory in rhesus monkeys, Exp. Brain Res. 74:173–186.PubMedCrossRefGoogle Scholar
  153. Nagy, Z., Esiri, M. M., Jobst, K. A., Morris, J. H., King, E., McDonal, B., Litchfield, S., Smith, A., Barnetson, L., and Smith, A. D., 1995, Relative roles of plaques and tangles in the dementia of Alzheimer’s disease: Correlations using three sets of neuropathological criteria, Dementia 6:21–31.PubMedGoogle Scholar
  154. Nalbantoglu, J., Gilfix, B. M., Bertrand, P., Robitaille, Y., Gauthier, S., Rosenblatt, D. S., and Poirier, J., 1994, Predictive value of apolipoprotein E genotyping in Alzheimer’s disease: Results of an autopsy series and an analysis of several combined studies, Ann. Neurol. 36:889–895.PubMedCrossRefGoogle Scholar
  155. Neary, D., and Snowden, J. S., 1987, Perceptuospatial disorder in Alzheimer’s disease, Semin. Ophthalmol. 2:151–158.CrossRefGoogle Scholar
  156. Neary, D., Snowden, J. S., Mann, D. M. A., Bowen, D. M., Sims, N. R., Northen, B., Yates, P. O., and Davison, A. N., 1986, Alzheimer’s disease: A correlative study, J. Neurol. Neurosurg. Psychiatry 49:229–237.PubMedCrossRefGoogle Scholar
  157. Neary, D., Snowden, J. S., and Mann, D. M. A., 1993, The clinical pathological correlates of lobar atrophy, Dementia 4:154–159.PubMedGoogle Scholar
  158. Nielson, K. A., Cummings, B. J., and Cotman, C. W., 1996, Constructional apraxia in Alzheimer’s disease correlates with neuritic neuropathology in occipital cortex, Brain Res. 741:284–293.PubMedCrossRefGoogle Scholar
  159. Nimchinsky, E. A., Hof, P. R., Young, W. G., and Morrison, J. H., 1996, Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey, J. Comp. Neurol. 374:136–160.PubMedCrossRefGoogle Scholar
  160. Nimchinsky, E. A., Vogt, B. A., Morrison, J. H., and Hof, P. R., 1997, Neurofilament and calcium-binding proteins in the human cingulate cortex, J. Comp. Neurol., in press.Google Scholar
  161. Nissen, M. J., Corkin, S., Buonanno, F. S., Growdon, J. H., Wray, S. H., and Bauer, J., 1985, Spatial vision in Alzheimer’s disease: General findings and a case report, Arch. Neurol. 42:667–671.PubMedCrossRefGoogle Scholar
  162. Olson, C. R., Musil, S. Y., and Goldberg, M. E., 1993, Posterior cingulate cortex and visuospatial cognition: Properties of single neurons in the behaving monkey, in: Neurobiology of Cingulate Cortex and Limbic Thalamus (B. A. Vogt and M. Gabriel, eds.), Birkhäuser, Boston, pp. 366–380.Google Scholar
  163. Orban, G. A., Saunders, R. C., Vandenbussche, E., 1995, Lesions of the superior temporal cortical motion areas impair speed discrimination in the macaque monkey. Eur. J. Neurosci. 7:2261–2276.PubMedCrossRefGoogle Scholar
  164. Osterrieth, P., 1944, Le test de copie d’une figure complexe, Arch. Psychol. 30:206–356.Google Scholar
  165. Pandya, D. N., Van Hoesen, G. W., and Mesulam, M.-M., 1981, Efferent connections of the cingulate gyrus in the rhesus monkey, Brain Res. 42:319–330.Google Scholar
  166. Pearson, R. C. A., Esiri, M. M., Hiorns, R. W., Wilcock, G. K., and Powell, T. P. S., 1985, Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease, Proc. Natl. Acad. Sci. USA 82:4531–4534.PubMedCrossRefGoogle Scholar
  167. Pericak-Vance, M. A., Bass, M. P., Yamaoka, L. H., Scott, W. K., Terdow, H. A., Menold, M. M., Conneally, P. M., Small, G. W., Vance, J. M., Saunders, A. M., Roses, A. D., and Haines, J. L., 1997, Complete genomic screen in late-onset familial Alzheimer disease: Evidence for a new locus on chromosome 12, J. Am. Med. Assoc. 278:1237–1241.CrossRefGoogle Scholar
  168. Perry, R. H., Irving, D., Blessed, G., Fairbairn, A., and Perry, E. K., 1990, Senile dementia of Lewy body type: A clinically and neuropathologically distinct form of Lewy body dementia in the elderly, y. Neurol. Sci. 95:119–139.CrossRefGoogle Scholar
  169. Pickering-Brown, S. M., Siddons, M., Mann, D. M. A., Owen, F., Neary, D., and Snowden, J. S., 1995, Apolipoprotein E allelic frequencies in patients with lobar atrophy, Neurosci. Lett. 188:205–207.PubMedCrossRefGoogle Scholar
  170. Pietrini, P., Furey, M. L., Graff-Radford, N., Freo, U., Alexander, G. E., Grady, C. L., Dani, A., Mentis, M. J., and Shapiro, M. B., 1996, Preferential metabolic involvement of visual cortical areas in a subtype of Alzheimer’s disease: Clinical implications, Am. J. Psychiatry 153:1261–1268.PubMedGoogle Scholar
  171. Pitts, A. F., and Miller, M. W., 1995, Expression of nerve growth factor, p75, and trk in the somatosensory and motor cortices of mature rats: Evidence for local trophic support circuits, Somatosensory Motor Res. 12:329–342.CrossRefGoogle Scholar
  172. Procter, A. W., Lowe, S. L., Palmer, A. M., Francis, P. T., Esiri, M. M., Stratmann, G. C., Najlerahim, A., Patel, A. J., Hunt, A., and Bowen, D. M., 1988, Topographical distribution of neurochemical changes in Alzheimer’s disease, J. Neurol. Sci. 84:125–140.PubMedCrossRefGoogle Scholar
  173. Procter, A. W., Francis, P. T., Chen, P., Chessell, I. P., Dijk, S., Clarke, N. A., Webster, M.-T., and Bowen, D. M., 1995, The neurochemical pathology of Alzheimer’s disease, in: Neurobiology of Alzheimer’s Disease (D. Dawbarn and S. J. Allen, eds.), BIOS Scientific, London.Google Scholar
  174. Rebeck, G. W., Reiter, J. S., Strickland, D. K., and Hyman, B. T., 1993, Apolipoprotein E in sporadic Alzheimer’s disease: Allelic variation and receptor interactions, Neuron 11:575–580.PubMedCrossRefGoogle Scholar
  175. Reisine, T. D., Yamamura, H. I., Bird, E. D., Spokes, E., and Enna, S. J., 1978, Pre-and postsynaptic neurochemical alterations in Alzheimer’s disease, Brain Res. 159:477–481.PubMedCrossRefGoogle Scholar
  176. Roses, A. D., 1995, Apolipoprotein E genotyping in the differential diagnosis, not prediction, of Alzheimer’s disease, Ann. Neurol. 38:6–14.PubMedCrossRefGoogle Scholar
  177. Rossor, M. N., Garrett, N.J., Johnson, A. L., Mountjoy, C. Q., Roth, R., and Iversen, L. L., 1982, A postmortem study of cholinergic and GABA systems in senile dementia, Brain 105:313–330.PubMedCrossRefGoogle Scholar
  178. Rossor, M. N., Iversen, L. L., Reynolds, G. P., Mountjoy, C. Q., and Roth, M., 1984, Neurochemical characteristics of early and late onset types of Alzheimer’s disease, Br. Med. J. 288:961–964.CrossRefGoogle Scholar
  179. Royall, D. R., Mahurin, R. K., and Cornell, J., 1994, Bedside assessment of frontal degeneration: Distinguishing Alzheimer’s disease from non-Alzheimer’s cortical dementia, Exp. Aging Res. 20:95–103.PubMedCrossRefGoogle Scholar
  180. Sadun, A. A., Borchert, M., DeVita, E., Hinton, D. R., and Bassi, C. J., 1987, Assessment of visual impairment in patients with Alzheimer’s disease, Am. J. Ophthalmol. 104:113–120.PubMedGoogle Scholar
  181. Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T. D., Hardy, J., Hutton, M., Larson, E., Levy-Lahad, E., Peskind, E., Tanzi, R., Wasco, W., Lannfelt, L., Seiko, D., and Younkin, S., 1996, Secreted amyloid β-protein similar to that in senile plaques of Alzheimer’s disease is increased in vivo by the presinilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease, Nature Med. 2:864–870.PubMedCrossRefGoogle Scholar
  182. Schmechel, D. E., Saunders, A. M., Strittmater, W. J., Crain, B. J., Joo, S. H., Pericak-Vance, M. A., Goldgaber, D., and Roses, A. D., 1993, Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease, Proc. Natl. Acad. Sci. USA 90:9649–9653.PubMedCrossRefGoogle Scholar
  183. Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J., Rosen, B. R., and Tootell, R. B. H., 1995, Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging, Science 268:889–893.PubMedCrossRefGoogle Scholar
  184. Shkol’nik-Yarros, E. G., 1971, Neurons and Interneuronal Connections of the Central Visual System, Plenum, New York, pp. 94–101.CrossRefGoogle Scholar
  185. Shoffner, J. M., Brown, M. D., Torroni, A., Lott, M. T., Mirra, S. S., Beal, M. F., Watts, R. L., Hansen, L. A., Fayad, M., and Wallace, D. C., 1993, Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients, Genomics 17:171–184.PubMedCrossRefGoogle Scholar
  186. Sima, A. A. F., Clark, A. W., Sternberger, N. A., and Sternberger, L. A., 1986, Lewy body dementia without Alzheimer changes, Can. J. Neurol. Sci. 13:490–497.PubMedGoogle Scholar
  187. Sparks, D. L., Hunsaker, J. C., III, Scheff, S. W., Kryscio, R. J., Hensen, J. L., and Markesbery, W. R., 1990, Cortical senile plaques in coronary artery disease, aging, and Alzheimer’s disease, Neurobiol. Aging 11:601–607.PubMedCrossRefGoogle Scholar
  188. Sparks, D. L., Scheff, S. W., Liu, H., Landers, T., Danner, F., Coyne, C. M., and Hunsker, J. C., III 1996, Increased density of senile plaques, but not neurofibrillary tangles, in non-demented individuals with the apolipoprotein E4 allele: Comparison to confirmed Alzheimer’s disease patients, J. Neurol. Sci. 138:97–104.PubMedCrossRefGoogle Scholar
  189. Talbot, C., Lenden, C., and Craddock, N., et al., 1994, Protection against Alzheimer’s disease with apoE ∈2, Lancet 343:1432–1433.PubMedCrossRefGoogle Scholar
  190. Terry, R. D., Peck, A., DeTeresa, R., Schechter, R., and Horoupian, D. S., 1981, Some morphometric aspects of the brain in senile dementia of the Alzheimer type, Ann. Neurol. 10:184–192.PubMedCrossRefGoogle Scholar
  191. Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A., and Katzman, R., 1991, Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment, Ann. Neurol. 30:572–580.PubMedCrossRefGoogle Scholar
  192. Tissot, R., Constantinidis, J., and Richard, J., 1985, Pick’s disease, Handbk. Clin. Neurol. 46:233–246.Google Scholar
  193. Tomlinson, B. E., Irving, D., and Blessed, G., 1981, Cell loss in the locus ceruleus in senile dementia of Alzheimer type, J. Neurol. Sci. 49:419–428.PubMedCrossRefGoogle Scholar
  194. Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., Rosen, B. R., and Belliveau, J. W., 1995, Functional analysis of human area MT and related visual cortical areas using magnetic resonance imaging, J. Neurosci. 15:3215–3230.PubMedGoogle Scholar
  195. Tootell, R. B. H., and Taylor, J. B., 1995, Anatomical evidence for MT and additional cortical visual areas in humans, Cereb. Cortex 5:39–55.PubMedCrossRefGoogle Scholar
  196. Tyrrell, P. J., Warrington, E. K., Frackowiak, R. S. J., and Rossor, M. N., 1990, Heterogeneity in progressive aphasia due to focal cortical atrophy, Brain 113:1321–1336.PubMedCrossRefGoogle Scholar
  197. Ungerleider, L. G., and Mishkin, M., 1982, Two cortical visual systems, in: Analysis of Visual Behavior (D.J. Ingle, M. A. Goodale, and R. J. W. Mansfield, eds.), MIT Press, Cambridge, MA, pp. 549–586.Google Scholar
  198. Underleider, L. G., and Haxby, J. V., 1994, “What” and “where” in the human brain, Curr. Opin. Neurobiol. 4:157–165.CrossRefGoogle Scholar
  199. Valenstein, E., Bowers, D., Verfaellie, M., Heilman, K. M., Day, A., and Watson, R. T., 1987, Retrosplenial amnesia, Brain 110:1631–1646.PubMedCrossRefGoogle Scholar
  200. Van Broeckhoven, C., Backhovens, H., Cruts, M., Martin, J. J., Crook, R., Houlden, H., and Hardy, J., 1994, ApoE genotype does not modulate age of onset in families with chromosome 14 encoded Alzheimer’s disease, Neurosci. Lett. 169:179–180.PubMedCrossRefGoogle Scholar
  201. van Duijn, C. M., de Knijff, P., Cruts, M., Wehnert, A., Havekes, L. M., Hofman, A., and Van Broeckhoven, C., 1994, Apolipoprotein E4 allele in a population-based study of early-onset Alzheimer’s disease. Nature Genet. 7:74–78.PubMedCrossRefGoogle Scholar
  202. Van Hoesen, G. W., Hyman, B. T., and Damasio, A. R., 1991, Entorhinal cortex pathology in Alzheimer’s disease, Hippocampus 1:1–8.PubMedCrossRefGoogle Scholar
  203. Van Hoesen, G. W., Morecraft, R. J., and Vogt, B. A., 1993, Connections of the monkey cingulate cortex, in: Neurobiology of Cingulate Cortex and Limbic Thalamus (B. A. Vogt and M. Gabriel, eds.), Birkhäuser, Boston, pp. 249–284.Google Scholar
  204. Victoroff, J., Ross, W., Benson, D. F., Verity, M. A., and Vinters, H. V., 1994, Posterior cortical atrophy: Neuropathologic correlations, Arch. Neurol. 51:269–274.PubMedCrossRefGoogle Scholar
  205. Vogt, B. A., and Pandya, D. N., 1987, Cingulate cortex of the rhesus monkey. II. Cortical afferents, J. Comp. Neurol. 262:271–289.PubMedCrossRefGoogle Scholar
  206. Vogt, B. A., Van Hoesen, G. W., Vogt, L. J., 1990, Laminar distribution of neuron degeneration in posterior cingulate cortex in Alzheimer’s disease, Acta Neuropathol. 80:581–589.PubMedCrossRefGoogle Scholar
  207. Vogt, B. A., Crino, P. B., and Volicer, L., 1991, Laminar alterations in gamma-aminobutyric acidA, muscarinic and beta adrenoceptors, and neuron degeneration in cingulate cortex in Alzheimer’s disease, J. Neurochem. 57:282–290.PubMedCrossRefGoogle Scholar
  208. Vogt, B. A., Crino, P. B., and Vogt, L. J., 1992, Reorganization of cingulate cortex in Alzheimer’s disease: Neuron loss, neuritic plaques, and muscarinic receptor binding, Cereb. Cortex 2:526–535.PubMedCrossRefGoogle Scholar
  209. Vogt, B. A., Vogt, L. J., Nimchinsky, E. A., and Hof, P. R., 1997, Primate cingulate cortex chemoarchitecture and its disruption in Alzheimer’s disease, in: Handbook of Chemical Neuroanatomy, Vol. 13: The Primate Nervous System, Part 1 (F. E. Bloom, A. Bjorklund, and T. Hökfelt, eds.), Elsevier, Amsterdam, pp. 455–528.Google Scholar
  210. Vogt, B. A., Vogt, L. J., Vrana, K. E., Gioia, L., Meadows, R. S., Challa, V. R., Hof, P. R., and Van Hoesen, G. W., 1998, Multivariate analysis of laminar patterns of neurodegeneration in posterior cingulate cortex in Alzheimer’s disease, Exp. Neurol, in press.Google Scholar
  211. Watson, J. D. G., Myers, R., Frackowiak, R. S. J., Hajnal, J. V., Woods, R. P., Mazziotta, J. C., Shipp, S., and Zeki, S., 1993, Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging, Cereb. Cortex 3:79–94.PubMedCrossRefGoogle Scholar
  212. Wilcock, G. K., Esiri, M. M., Bowen, D. M., and Smith, C. C. T., 1982, Alzheimer’s disease: Correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities, J. Neurol. Sci. 57:407–417.PubMedCrossRefGoogle Scholar
  213. Yankner, B. A., 1995, Mechanisms of neuronal degeneration in Alzheimer’s disease, Neuron 16:921–932.CrossRefGoogle Scholar
  214. Yoshimura, N., 1989, Topography of Pick body distribution in Pick’s disease: A contribution to understanding the relationship between Pick’s and Alzheimer’s diseases, Clin. Neuropathol. 8:1–6.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Brent A. Vogt
    • 1
    • 2
  • Alex Martin
    • 3
  • Kent E. Vrana
    • 1
    • 2
  • John R. Absher
    • 1
    • 2
  • Leslie J. Vogt
    • 1
    • 2
  • Patrick R. Hof
    • 4
  1. 1.Cingulum Neuro-Sciences InstituteWinston-SalemUSA
  2. 2.Departments of Physiology, Pharmacology, and NeurologyWake Forest University School of MedicineWinston-SalemUSA
  3. 3.National Institute of Mental HealthBethesdaUSA
  4. 4.Kastor Neurobiology of Aging Laboratories, Fishberg Research Center for Neurobiology and Department of Geriatrics and Adult Development, and Department of OpthalmologyMount Sinai School of MedicineNew YorkUSA

Personalised recommendations