Skip to main content

Theory of Eigenfunction Scarring

  • Chapter
Supersymmetry and Trace Formulae

Part of the book series: NATO ASI Series ((NSSB,volume 370))

  • 599 Accesses

Abstract

Random matrix theory (RMT) serves as a very useful backdrop for the discussion of classical chaos and its effects on quantum mechanics. Two important suggestions began this fruitful association: the conjecture by Bohigas, Giannoni, and Schmit1 associated RMT phenomenology with quantum eigenstates of classically chaotic systems. Berry’s conjecture2 stated that quantum eigenstates of classically chaotic systems should locally look like random superpositions of plane waves of the same (local) wavevector magnitude k, producing Gaussian random fluctuations in position space. These two closely related ideas turn out to be the clay out of which the truth is molded. Much research has centered on modifications to the extreme uniformity of RMT, modifications imposed by known constraints on the quantum dynamics. In fact there is no Hamiltonian system whose eigenstates are known to hold to the rigors of true Gaussian randomness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Bohigas, M.-J. Giannoni, and C. Schmit, J. Physique Lett. 45, L–1015 (1984).

    Article  Google Scholar 

  2. M. V. Berry, in Chaotic Behaviour of Deterministic Systems, ed. by G. Iooss, R. Helleman, and R. Stora (North-Holland 1983) p. 171.

    Google Scholar 

  3. E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  4. P. O’Connor, J. N. Gehlen, and E. J. Heller, Phys. Rev. Lett. 58, 1296 (1987).

    Article  ADS  Google Scholar 

  5. S. Sridhar, Phys. Rev. Lett 67, 785 (1991).

    Article  ADS  Google Scholar 

  6. J. Stein and H.-J. Stöckman, Phys. Rev. Lett. 68, 2867 (1992).

    Article  ADS  Google Scholar 

  7. T. M. Fromhold, P. B. Wilkinson, F. W. Sheard, L. Eaves, J. Miao, and G. Edwards, Phys. Rev. Lett. 75, 1142 (1995); P. B. Wilkinson, T. M. Promhold, L. Eaves, F. W. Sheard, N. Miura, and T. Takamasu, Nature 380, 608 (1996).

    Article  ADS  Google Scholar 

  8. D. Wintgen and A. Honig, Phys. Rev. Lett. 63, 1467 (1989).

    Article  ADS  Google Scholar 

  9. K. Muller and D. Wintgen, J. Phys. B 27, 2693 (1994).

    Article  ADS  Google Scholar 

  10. E. B. Bogomolny, Physica D 31, 169 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. M. V. Berry, Les Houches Lecture Notes, Summer School on Chaos and Quantum Physics, M-J. Giannoni, A. Voros, and J. Zinn-Justin, eds., Elsevier Science Publishers B. V. (1991); M. V. Berry, Proc. Roy. Soc. A 243, 219 (1989).

    Google Scholar 

  12. R. Aurich and F. Steiner, Chaos, Solitons and Fractals 5, 229 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. O. Agam and N. Brenner, J. Phys. A 28, 1345 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. O. Agam and S. Fishman, Phys. Rev. Lett. 73, 806 (1994); O. Agam and S. Fishman, J. Phys. A 26, 2113 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. S. Fishman, B. Georgeot, and R. E. Prange, J. Phys. A 29, 919 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. E. J. Heller, Wavepacket Dynamics and Quantum Chaology in Chaos and Quantum Physics, Eds. M. J. Giannoni, A. Voros, and J. Zinn-Justin, Elsevier Science Publishers, Amsterdam (1990).

    Google Scholar 

  17. A. I. Schnirelman, Usp. Mat. Nauk. 29, 181 (1974); Y. Colin de Verdiere, Commun. Math. Phys. 102, 497 (1985); S. Zelditch, Duke Math. J. 55, 919 (1987).

    Google Scholar 

  18. L. Kaplan and E. J. Heller, Linear and Nonlinear Theory of Eigenfunction Scars, Ann. Phys. (N. Y.), in press.

    Google Scholar 

  19. P. W. O’Connor and E. J. Heller, Phys. Rev. Lett. 61, 2288 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  20. B. Li, Phys. Rev. E 55, 5376 (1997).

    Article  ADS  Google Scholar 

  21. E. J. Heller, J. Chem. Phys. 72, 1337 (1980); E. J. Heller and M. J. Davis, J. Phys. Chem. 86, 2118 (1982); E. B. Stechel and E. J. Heller, Ann. Rev. Phys. Chem. 35, 563 (1984); E. J. Heller, Phys. Rev. A35, 1360 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  22. L. Kaplan and E. J. Heller, Phys. Rev. Lett. 76, 1453 (1996); F.-M. Dittes, E. Doron, and U. Smilansky, Phys. Rev. E 49, R963 (1994).

    Article  ADS  Google Scholar 

  23. N. L. Balazs and A. Voros, Europhys. Lett. 4, 1089 (1987); N. L. Balazs and A. Voros, Ann. Phys. (N. Y.) 190, 1 (1989); M. Saraceno, Ann. Phys. (N. Y.) 199, 37 (1990); M. Saraceno and A. Voros, Physica D 79, 206 (1994).

    Article  ADS  Google Scholar 

  24. P. W. O’Connor, S. Tomsovic and E. J. Heller, Physica D 55, 340 (1992); P. W. O’Connor and S. Tomsovic, Ann. Phys. (N. Y.) 207, 218 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. L. Kaplan and E. J. Heller, unpublished.

    Google Scholar 

  26. L. Kaplan, unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaplan, L., Heller, E.J. (1999). Theory of Eigenfunction Scarring. In: Lerner, I.V., Keating, J.P., Khmelnitskii, D.E. (eds) Supersymmetry and Trace Formulae. NATO ASI Series, vol 370. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4875-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4875-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7212-7

  • Online ISBN: 978-1-4615-4875-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics