Skip to main content

Macromolecular Modelling on the Cray T3D

  • Chapter

Abstract

The two basic methods of computational chemistry, namely electronic structure calculations (quantum mechanics, QM) and those based upon force fields (molecular mechanics, MM) are now widely used, in a routine fashion, to model many aspects of the structure and reactivity of macromolecular systems. Energy minimizations based upon quite simple representations of inter—atomic interactions via MM force fields can be used to predict the geometric structure of systems having many thousands of atoms, whilst their motion, particularly important in many biological problems can be followed using molecular dynamics (MD) simulations. These latter studies are particularly computationally intensive due to the quite long time scales that often need to be simulated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.A. Pearlman, D.A. Case, J.C. Caldwell, G.L. Seibel, U.C. Singh, P. Weiner, and P.A. Kollman, AMBER 4.0, University of California, San Francisco (1992).

    Google Scholar 

  2. J.D. Wright, and C.A. Reynolds, Exploiting the parallelism inherent in the windowing approach to Monte Carlo free energy perturbation calculations, J. Mol. Struct.(Theochem), in press.

    Google Scholar 

  3. W.L. Jorgensen, Boss Version 3.5, Yale University, New Haven, CT (1994).

    Google Scholar 

  4. M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T.A. Keith, G.A. Peterson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrezewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, and J.A. Pople, Gaussian 94, Revision A.1, Gaussian Inc., Pittsburgh, PA (1995).

    Google Scholar 

  5. M.F. Guest, J.H. van Lenthe, J. Kendrick, K. Schoeffel, P. Sherwood, R.D. Amos, R.J. Buenker, M. Dupuis, N.C. Handy, I.H. Hillier, P.J. Knowles, V. Bonacic-Koutecky, W. von Niessen, A.P. Rendell, V.R. Saunders, and A.J. Stone, GAMESS(UK), CCLRC Daresbury Laboratory, Warrington(1996).

    Google Scholar 

  6. J.S. Craw, J.M. Guest, M.D. Cooper, N.A. Burton, and I.H. Hillier, Effect of hydration on the barrier to internal rotation in formamide. Quantum mechanical calculations including explicit solvent and continuum models, J. Phys. Chem. 100:6304 (1996).

    Article  CAS  Google Scholar 

  7. M.D. Cooper, N.A. Burton, R.J. Hall, and I.H, Hillier, Combined Hartree-Fock and density functional theory: A distributed memory parallel implementation, J. Mol. Struct. (Theochem) 315:97 (1994).

    Article  Google Scholar 

  8. W. Smith, and T.R. Forester, DL POLY, CCLRC Daresbury Laboratory, Warrington (1996).

    Google Scholar 

  9. A.J. Robinson, W.G. Richards, P.J. Thomas, and M.M. Hann, Behaviour of cholesterol and its effect on head group and chain conformation in lipid bilayers: A molecular dynamics study, Biophys. J. 68:164(1995).

    Article  CAS  Google Scholar 

  10. M. Knaggs, M. Williams, and J.M. Goodfellow, Protein hydration, stability and unfolding, Biochem. Soc. Trans. 711 (1995).

    Google Scholar 

  11. J.M. Goodfellow, M. Knaggs, M. Williams, and J.M. Thornton, Modelling protein unfolding: A solvent insertion protocol, Faraday Discussions 103:339 (1996).

    Article  CAS  Google Scholar 

  12. M.A. Williams, J.M. Thornton, and J.M. Goodfellow, Modelling protein unfolding: Hen egg-white lysozyme, Protein Engineer.10:895 (1997).

    Article  CAS  Google Scholar 

  13. C.R. Gouldson, C.R. Snell, and C.A. Reynolds, A new approach to docking in the ß2(2)-adrenergic receptor which exploits the domain structure of G-protein coupled receptors, J. Med Chem. 40:3871 (1997).

    Article  CAS  Google Scholar 

  14. J. Aqvist, and A. Warshel, Simulation of enzyme reactions using valence-bond force-fields and other hybrid quantum-classical approaches, Chem. Rev. 93:2523 (1993).

    Article  Google Scholar 

  15. U. C. Singh, and P.A. Kollman, A combined ab initio quantum-mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Application to the CH3CI and Cl exchange-reaction and gas phase protonation of polyethers, J. Comp. Chem. 7:718 (1986).

    Article  CAS  Google Scholar 

  16. M.J. Field, P.A. Bash, and M. Karplus, A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulation, J. Comp. Chem.11:700 (1990).

    Article  CAS  Google Scholar 

  17. B. Waszkowycz, I.H. Hillier, N. Gensmantel and D.W. Payling, Aspects of the mechanisms of catalysis in phospholipase A2. A combined ab initio molecular orbital and molecular mechanics study, J. Chem. Soc. Perkin Trans. 2 1795 (1989).

    Google Scholar 

  18. M.J. Harrison, N.A. Burton, and I.H. Hillier, Catalytic mechanism of the enzyme Papain: Predictions using a hybrid quantum mechanical/molecular mechanical potential, J. Amer. Chem. Soc. 119:12285(1997).

    Article  CAS  Google Scholar 

  19. A.J. Mulholland, and W.G. Richards, Acetyl-Co A enolization in citrate synthase. A quantum mechanical/molecular mechanical (QM/MM) study, Proteins: Struct. Funct. and Genetics 27:9 (1997).

    Article  CAS  Google Scholar 

  20. E.L. Ash, J.L. Sudmeier, E.C. de Fabo, and W.W. Bachovchi, A low-barrier hydrogen bond in the catalytic triad of serine proteases? Theory versus experiment, Science 278:1128 (1997).

    Article  CAS  Google Scholar 

  21. A.J. Turner, P. Sherwood, J.A. Barnes, and I.H. Williams, Theoretical modelling of equilibrium isotope effects for the rate-determining step of acid-catalysed hydrolysis of alpha-and beta-methylglucopyranosides: Evaluation of cut-off models and solvation effects using hybrid quantum-mechanical/molecular mechanical methods, in preparation.

    Google Scholar 

  22. A.J. Turner, P. Sherwood, and I.H. Williams, Protium/deuterium fractionation factors for organic molecules in aqueous solution: Calculations using hybrid quantum-mechanical/molecular-mechanical methods, in preparation.

    Google Scholar 

  23. C.F. Rodriquez and I.H. Williams, Mechanism of aldehyde alkylation by dimethylzinc catalysed by a beta-aminoalcohol-zinc complex: A density functional study, in preparation.

    Google Scholar 

  24. J.S. Craw, M.D. Cooper, and I.H. Hillier, The structure and intermolecular interactions of a creatinine designed-receptor complex, studied by ab initio methods, J. Chem. Soc. Perkin Trans. 2 869 (1997).

    Article  Google Scholar 

  25. T.W. Bell, Z. Hou, Y. Luo, M.G.B. Drew, E. Chapoteau, B.P. Czech, and A. Kumar, Detection of creatinine by a designed receptor, Science, 269:671 (1995).

    Article  CAS  Google Scholar 

  26. B.R. Smith, M.J. Bearpark, M.A. Robb, F. Bernardi and M. Olivucci, “Classical wavepacket” dynamics through a conical intersection: application to the S1/S0 conical intersection in benzene, Chem. Phys. Lett. 242:27 (1995).

    Article  CAS  Google Scholar 

  27. M.J. Bearpark, F. Bernardi, S. Clifford, M. Olivucci, M.A. Robb, B.R. Smith, and T. Vreven, The Azulene S1 state decays via a conical intersection. A CASSCF study with MMVB dynamics, J. Amer. Chem. Soc. 118:169 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cooper, M.D. et al. (1999). Macromolecular Modelling on the Cray T3D. In: Allan, R.J., Guest, M.F., Simpson, A.D., Henty, D.S., Nicole, D.A. (eds) High-Performance Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4873-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4873-7_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7211-0

  • Online ISBN: 978-1-4615-4873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics