Molecular Aspects of Vasopressin Receptor Function

  • Torsten Schöneberg
  • Evi Kostenis
  • Jie Liu
  • Thomas Gudermann
  • Jürgen Wess
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 449)


The molecular mechanisms governing the G protein coupling selectivity of different members of the vasopressin receptor family were studied by using a combined molecular genetic/biochemical approach. While the V1a and V1b vasopressin receptors are selectively linked to G proteins of the Gq/11 class, the V2 vasopressin receptor is preferentially coupled to Gs. Systematic functional analysis of V1a/V2 hybrid receptors showed that the second intracellular loop of the V1a receptor is required and sufficient for efficient coupling to Gq/11, whereas the third intracellular loop of the V2 receptor is required and sufficient for coupling to Gs. By using a strategy involving the coexpression of the wild type V1a receptor with chimeric G protein αsq subunits, two C-terminal αq/11, residues were identified that are critical for proper receptor recognition.

We previously demonstrated -in transiently transfected COS-7 cells-that selected mutant V2 vasopressin receptors (all of which have been identified in X-linked nephrogenic diabetes insipidus patients) containing inactivating mutations in the C-terminal third of the receptor protein (including missense, frameshift, or nonsense mutations) can be functionally rescued by coexpression with a C-terminal V2 receptor fragment (V2-tail) spanning the region where the various mutations occur. Co-immunoprecipitation experiments and a newly developed sandwich ELISA revealed that the V2-tail polypeptide directly interacts with the mutant V2 receptors thus creating a functional receptor protein. To study the potential therapeutic usefulness of these findings, CHO cell lines stably expressing low levels of functionally inactive mutant V2 vasopressin receptors (E242stop, Y280C, and W284stop) were created and infected with a recombinant adenovirus coding for the V2-tail polypeptide. Following adenovirus infection, arginine vasopressin (AVP) gained the ability to stimulate cAMP formation in CHO cell clones studied. Adenovirus-mediated gene transfer also proved to be a highly efficient method to achieve expression of the V2-tail fragment (as well as of the wild type V2 vasopressin of receptor fragments in vivo may represent a novel strategy in the treatment of human diseases caused by inactivating mutations in distinct G protein-coupled receptors.


Mutant Receptor Nephrogenic Diabetes Insipidus Mutant Versus Vasopressin Receptor Receptor Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Watson S, Arkinstall S 1994 The G-Protein Linked Receptor - Facts Book. Academic Press, London, UKGoogle Scholar
  2. 2.
    Laszlo FA, Laszlo F, Jr, De Wied D 1991 Pharmacology and clinical perspectives of vasopressin antagonists. Pharmacol Rev 43:73–108.PubMedGoogle Scholar
  3. 3.
    Liu J, Wess J 1996 Different single receptor domains determine the distinct G protein coupling profiles of members of the vasopressin receptor family. J Biol Chem 270:8772–8778.Google Scholar
  4. 4.
    Offermanns S, Simon MI 1995 Gα15 and Gα16 couple a wide variety of receptors to phospholipase C. J Biol Chem 270:15175–15180.PubMedCrossRefGoogle Scholar
  5. 5.
    Wong SK-F, Ross EM 1994 Chimeric muscarinic cholinergic:β-adrenergic receptors that are functionally promiscuous among G proteins. J Biol Chem 269:18968–18976.PubMedGoogle Scholar
  6. 6.
    Rens-Domiano S, Hamm H 1995 Structural and functional relationships of heterotrimeric G-proteins. FASEB J 9:1059–1066.PubMedGoogle Scholar
  7. 7.
    Bourne HR 1997 How receptors talk to trimeric G proteins. Curr Opin Cell Biol 9:134–142.PubMedCrossRefGoogle Scholar
  8. 8.
    Wess J 1997 G protein-coupled receptors: Molecular mechanisms involved in receptor activation and selectivity of G protein recognition. FASEB J 11:346–354.PubMedGoogle Scholar
  9. 9.
    Liu J, Conklin BR, Blin N, Yun J, Wess J 1995 Identification of a receptor/G-protein contact site critical for signalling specificity and G-protein activation. Proc Natl Acad Sci USA 92:11642–11646.PubMedCrossRefGoogle Scholar
  10. 10.
    Kostenis E, Conklin BR, Wess J 1997 Molecular basis of receptor/G protein coupling selectivity studied by coexpression of wild type and mutant m2 muscarinic receptors with mutant Gαq subunits. Biochemistry 36:1487–1495.PubMedCrossRefGoogle Scholar
  11. 11.
    Conklin BR, Farfel Z, Lustig KD, Julius D, Bourne HR 1993 Substitution of three amino acids switches receptor specificity of Gqa to that of Giα. Nature 363:274–276.PubMedCrossRefGoogle Scholar
  12. 12.
    Conklin BR, Herzmark P, Ishida S, Voyno-Yasenetskaya TA, Sun Y, Farfel Z, Bourne HR 1996 Carboxyl-terminal mutations of G and G that alter the fidelity of receptor activation. Mol Pharmacol 50:885–890.PubMedGoogle Scholar
  13. 13.
    Kostenis E, Gomeza J, Lerche C, Wess J 1997 Genetic analysis of receptor/Gαq coupling selectivity. J Biol Chem, in press.Google Scholar
  14. 14.
    Levis MJ, Bourne HR 1992 Activation of the α subunit of Gs in intact cells alters its abundance, rate of degradation, and membrane avidity. J Cell Biol 119:1297–1307.PubMedCrossRefGoogle Scholar
  15. 15.
    Wall MA, Coleman DE, Lee E, Iniguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR 1995 The structure of the G protein heterotrimer Giα1β1γ2. Cell 83:1047–1058.PubMedCrossRefGoogle Scholar
  16. 16.
    Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB 1996 The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379:311–319.PubMedCrossRefGoogle Scholar
  17. 17.
    Dratz EA, Furstenau JE, Lambert CG, Thireault DL, Rarick H, Schepers T, Pakhlevaniants S, Hamm HE 1993. NMR structure of a receptor-bound G-protein peptide. Nature 363:276–281.PubMedCrossRefGoogle Scholar
  18. 18.
    Birnbaumer M 1995 Mutations and diseases of G protein coupled receptors. J Rec Sign Transduct Res 151:131–160.CrossRefGoogle Scholar
  19. 19.
    Spiegel AM 1996 Defects in G protein-coupled signal transduction in human disease. Annu Rev Physiol 58:143–170.PubMedCrossRefGoogle Scholar
  20. 20.
    Schöneberg T, Yun J, Wenkert D, Wess J 1996 Functional rescue of mutant V2 vasopressin receptors causing nephrogenic diabetes insipidus by a co-expressed receptor polypeptide. EMBO J 15:1283–1291.PubMedGoogle Scholar
  21. 21.
    Wenkert D, Schöneberg T, Merendino JJ, Pena MSR, Vinitsky R, Goldsmith PK, Wess J, Spiegel AM 1996 Functional characterization of five V2 vasopressin receptor gene mutations. Mol Cell Endocrinol 124:43–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Maggio R, Vogel Z, Wess J 1993 Reconstitution of functional muscarinic receptors by coexpression of amino and carboxyl terminal receptor fragments. FEBS Lett 319:195–200.PubMedCrossRefGoogle Scholar
  23. 23.
    Schöneberg T, Liu J, Wess J 1995 Plasma membrane localization and functional rescue of truncated forms of a G protein-coupled receptor. J Biol Chem 270:18000–18006.PubMedCrossRefGoogle Scholar
  24. 24.
    Ridge KD, Lee SSJ, Yao LL 1995 In vivo assembly of rhodopsin from expressed polypeptide fragments. Proc Natl Acad Sci USA 92:3204–3208.PubMedCrossRefGoogle Scholar
  25. 25.
    Schöneberg T, Sandig V, Wess J, Gudermann T, Schultz G Reconstitution of mutant V2 vasopressin receptors by adenovirus-mediated gene transfer: Molecular basis and clinical implication. J Clin Invest, in press.Google Scholar
  26. 26.
    Rosenfeld, MA, Siegfried W, Yoshimura K, Yoneyama K, Fukayama M, Stier LE, Paakko PK, Gilardi P, Stratford-Perricaudet LD, Perricaudet M, Jallat S, Pavirani A, Lecocq JP, Crystal RG 1991 Adenovirus-mediated transfer of a recombinant al -antitrypsin gene to the lung epithelium in vivo. Science 252:431–434.PubMedCrossRefGoogle Scholar
  27. 27.
    Rosenfeld MA, Yoshimura K, Trapnell BC, Yoneyama K, Rosenthal ER, Dalemans W, Fukayama M, Bar-gon J, Stier LE, Stratford-Perricaudet LD, Perricaudet M, Guggino WB, Pavirani A, Lecocq JP, Crystal RG 1992 In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68:143–155.PubMedCrossRefGoogle Scholar
  28. 28.
    Chang H, Katoh T, Nodo M, Kanegae Y, Saito I, Asano S, Kurokawa K 1995 Highly efficient adenovirus-mediated gene transfer into renal cells in culture. Kidney Int 47:322–326.PubMedCrossRefGoogle Scholar
  29. 29.
    Mollier P, Friedlander G, Calise D, Ronco P, Perricaudet M, Fenrry N 1994 Adenoviral-mediated gene transfer to renal tubular cells in vivo. Kidney Int 45:1220–1225.CrossRefGoogle Scholar
  30. 30.
    Handler JS, Burg MB 1992 Application of tissue culture techniques to study of renal tubular epithelia. In: Windhager EE (ed) Handbook of Physiology, Section 8: Renal Physiology (Vol. II). Oxford University Press, New York, pp 385–414Google Scholar
  31. 31.
    Popot J-L, Engelman DM 1990 Membrane folding and oligomerization: the two-stage model. Biochemistry 29:4031–4037.PubMedCrossRefGoogle Scholar
  32. 32.
    Morel A, O’Carroll A-M, Brownstein MJ, Lolait SJ 1992 Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature 356:523–526.PubMedCrossRefGoogle Scholar
  33. 33.
    Bimbaumer M, Seibold A, Gilbert S, Ishido M, Barberis C, Antaramian A, Brabet P, Rosenthal W 1992 Molecular cloning of the receptor for human antidiuretic hormone. Nature 357:333–335.CrossRefGoogle Scholar
  34. 34.
    Rosenthal W, Seibold A, Antaramian A, Lonergan M, Arthus M-F, Hendy GN, Bimbaumer M, Bichet, DG 1992 Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 359:233–235.PubMedCrossRefGoogle Scholar
  35. 35.
    Bichet DG, Arthus M-F, Lonergan M, Hendy GN, Paradis AJ, Fujiwara TM, Morgan K, Gregory MC, Rosenthal W, Didwania A, Antaramian A, Bimbaumer M 1993 X-linked nephrogenic diabetes insipidus mutations in North America and the Hopewell hypothesis. J Clin Invest 92:1262–1268.PubMedCrossRefGoogle Scholar
  36. 36.
    Tsukaguchi H, Matsubara H, Aritaki S, Kimura T, Abe S, Inada M 1993 Two novel mutations in the vasopressin V2 receptor gene in unrelated Japanese kindreds with nephrogenic diabetes insipidus. Biochem Biophys Res Commun 197:1000–1010.PubMedCrossRefGoogle Scholar
  37. 37.
    Wildin RS, Antush MJ, Bennett RL, Schoof JM, Scott CR 1994 Heterogeneous AVPR2 gene mutations in congenital nephrogenic diabetes insipidus. Am J Hum Genet 55:266–277.PubMedGoogle Scholar
  38. 38.
    Bichet DG, Bimbaumer M, Lonergan M, Arthus M-F, Rosenthal W, Goodyer P, Nivet H, Benoit S, Giampietro P, Simonetti S, Fish A, Whitley CB, Jaeger P, GertnerJ, New M, DiBona FJ, Kaplan BS, Robertson GL, Hendy GN, Fujiwara TM, Morgan K 1994 Nature and recurrence of AVPR2 mutations in X-linked nephrogenic diabetes insipidus. Am J Hum Genet 55:278–286.PubMedGoogle Scholar
  39. 39.
    Wenkert D, Merendino JJ, Jr, Shenker A, Thambi N, Robertson GL, Moses AM, Spiegel AM 1994 Novel mutations in the V2 vasopressin receptor gene of patients with X-linked nephrogenic diabetes insipidus. Hum Mol Genet 3:1429–1430.PubMedCrossRefGoogle Scholar
  40. 40.
    Bett AJ, Haddara W, Prevec L, Graham FL 1994 An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci USA 91:8802–8806.PubMedCrossRefGoogle Scholar
  41. 41.
    McGrory WJ, Bautista DS, Graham FL 1988 A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 163:614–617.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Torsten Schöneberg
    • 1
    • 2
  • Evi Kostenis
    • 1
  • Jie Liu
    • 1
  • Thomas Gudermann
    • 2
  • Jürgen Wess
    • 1
  1. 1.Laboratory of Bioorganic ChemistryNIH-NIDDKBethesdaUSA
  2. 2.Institut für PharmakologieFreie Universität BerlinBerlinGermany

Personalised recommendations