Skip to main content

The Role of The Neural Growth Associated Protein B-50/Gap-43 in Morphogenesis

  • Chapter
Molecular and Cellular Mechanisms of Neuronal Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 446))

Abstract

Axonal guidance during development and regeneration can largely be attributed to a specialized structure at the distal end of a neurite called the growth cone (Ramon y Cajal, 1966). Structurally, these highly dynamic swellings can be divided into three distinct regions: a base, a central region and a peripheral region. The base is formed by the transition from growth cone to neurite, where bundles of microtubules diverge and extend into the central region. This region consists of a microtubular skeleton and is rich in membranous organelles such as mitochondria, dense and clear cored vesicles and endoplasmic reticu-lum like structures. The flattened leading edge of the growth cone, the peripheral region, is filled with a dense meshwork of actin filaments and is virtually devoid of microtubules and organelles. Growth cone and neurite architecture and motility are supported by a complex network of cell adhesion molecules, microtubules, actin, intermediate filaments and specific interacting regulatory proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarts L.H.J., Van der Linden J.A.M., Hage W.J., Van Rozen A.J., Oestreicher A.B., Gispen W.H., and Schotman P. (1995) N-terminal cysteines essential for Golgi sorting of B-50 (GAP-43) in PC12 cells. Neuroreport 6, 969–972.

    PubMed  CAS  Google Scholar 

  • Aarts L.H.J., Oestreicher A.B., Schrama L.H., Gispen W.H., and Schotman P. (1996) B-50 (GAP-43) induces spontaneous filopodia and focal adhesion-like complexes in Ratl fibroblasts. Soc Neurosci Abstr, 22, 1709.

    Google Scholar 

  • Aigner L., Arber S., Kapfhammer J.P., Laux T., Schneider C., Botteri F., Brenner H.R., and Caroni P. (1995) Overexpression of the neural growth-associated protein GAP-43 Induces nerve sprouting in the adult nervous system of transgenic mice. Cell 83, 269–278.

    PubMed  CAS  Google Scholar 

  • Aigner L. and Caroni P. (1993) Depletion of 43-kD Growth-associated protein in primary sensory neurons leads to diminished formation and spreading of growth cones. J Cell Biol 123, 417–429.

    PubMed  CAS  Google Scholar 

  • Aigner L. and Caroni P. (1995) Absence of persistent spreading, branching, and adhesion in GAP-43-depleted growth cones. J Cell Biol 128, 647–660.

    PubMed  CAS  Google Scholar 

  • Andreasen T.J., Luetje C.W., Heideman, W., and Storm D.R. (1983) Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes. Biochemisuy 22, 4615–4618.

    CAS  Google Scholar 

  • Apel E.D., Byford M.F., Au D., Walsh K.A., and Storm D.R. (1990) Identification of the protein kinase C phosphorylation site in neuromodulin. Biochemisuy 29, 2330–2335.

    CAS  Google Scholar 

  • Baetge E.E. and Hammang J.P. (1991) Neurite outgrowth in PC12 cells deficient in GAP-43. Neuron 6, 21–30.

    PubMed  CAS  Google Scholar 

  • Bahler M. and Greengard P. (1987) Synapsin I bundles F-actin in a phosphorylation dependent manner. Nature 326, 704–707.

    PubMed  CAS  Google Scholar 

  • Beggs H.E., Soriano P., and Maness P.F. (1994) NCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice. J Cell Biol 127, 825–833.

    PubMed  CAS  Google Scholar 

  • Bentley D. and O’Connor T.P. (1994) Cytoskeletal events in growth cone steering. Curr Opin Neurobiol 4, 43–48.

    PubMed  CAS  Google Scholar 

  • Bentley D. and Toroian-Raymond A. (1986) Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment. Nature 323, 712–715.

    PubMed  CAS  Google Scholar 

  • Bixby J.L. and Jhabvala P. (1992) Inhibition of tyrosine phosphorylation potentiates substrate-induced neurite growth. J Neurobiol 23, 468–480.

    PubMed  CAS  Google Scholar 

  • Bridgeman, P.C. (1991). Functional anatomy of the growth cone in relation to its role in locomotion and neurite assembly. In P.C. Letourneau. S.B. Kater & F.R. Macagno (Eds.). The Nerve Growth Cone (pp. 39–53). New York: Raven Press

    Google Scholar 

  • Burns M.E. and Augustine G.J. (1995) Synaptic structure and function: Dynamic organization yields architectural precision. Cell 83, 187–194.

    PubMed  CAS  Google Scholar 

  • Chang H.Y., Takei K., Sydor A.M., Born T., Rusnak F., and Jay D.G. (1995) Asymmetric retraction of growth cone filopodia following focal inactivation of calcineurin. Nature 376, 686–690.

    PubMed  CAS  Google Scholar 

  • Chao M.V. (1992) Neurotrophin receptors: a window into neuronal differentiation. Neuron 9, 583–593.

    PubMed  CAS  Google Scholar 

  • Chao S., Benowitz L.I., Krainc D., and Irwin N. (1996) Use of a two-hybrid system to investigate molecular interactions of GAP-43. Mol Brain Res 40, 195–202.

    PubMed  CAS  Google Scholar 

  • Chapman E.R., Au D., Alexander K.A., Nicolson T.A., and Storm D.R. (1991) Characterization of the calmodulin binding domain of neuromodulin. J Biol Chem 266, 207–213.

    PubMed  CAS  Google Scholar 

  • Cheng H.J., Nakamoto M., Bergemann A.D., and Flanagan J.G. (1995) Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82, 371–381.

    PubMed  CAS  Google Scholar 

  • Clark E.A. and Brugge J.S. (1995) integrins and signal transduction pathways: the road taken. Science 268, 233–238.

    PubMed  CAS  Google Scholar 

  • Coggins P.J., McLean K., Nagy A., and Zwiers H. (1993) ADP-ribosylation of the neuronal phosphoprotein B-50/GAP-43. J Neurochem 60, 368–371.

    PubMed  CAS  Google Scholar 

  • Cramer L.P., Mitchison T.J., and Theriot J.A. (1994) Actin-dependent motile forces and cell motility. Curr Opin Cell Biol 6, 82–86.

    PubMed  CAS  Google Scholar 

  • Davenport R.W., Dou P., Rehder V., and Kater S.B. (1993) A sensory role for neuronal growth cone filopodia. Nature 361, 721–724.

    PubMed  CAS  Google Scholar 

  • De Graan P.N.E., Moritz A., Dewit M., and Gispen W.H. (1993) Purification of B-50 by 2-mercaptoethanol extraction from rat brain synaptosomal plasma membranes. Neurochem Res 18, 875–881.

    PubMed  Google Scholar 

  • Desai C.J., Gindhard J.G., Goldstein L.S.B., and Zinn K. (1996) Receptor tyrosine phosphatases are required for motor axon guidance in the Drosophila embryo. Cell 84, 599–609.

    PubMed  CAS  Google Scholar 

  • Drescher U., Kremoser C. Handwerker C., Loschinger J., Noda M., and Bonhoeffer F. (1995) In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370.

    PubMed  CAS  Google Scholar 

  • Estep R.P., Alexander K.A., and Storm D.R. (1990) Regulation of free calmodulin levels in neurons by neuro-modulin: relationship to neuronal growth and regeneration. Curr Topics Cell Reg 31, 161–180.

    CAS  Google Scholar 

  • Fan J. and Raper J.A. (1995) Localized collapsing cues can steer growth cones without inducing their full collapse. Neuron 14, 263–274.

    PubMed  CAS  Google Scholar 

  • Fang K.S., Sabe H., Saito H., and Hanafusa H. (1994) Comparative study of three protein-tyrosine phosphatases. Chicken protein-tyrosine phosphatase lambda dephosphorylates c-Src tyrosine 527. J Biol Chem 269, 20194–20200.

    PubMed  CAS  Google Scholar 

  • Ferreira A., Niclas J., Vale R.D., Banker G., and Kosik K.S. (1992) Suppression of kinesin expression in cultured hippocampal neurons using antisense oligonucleotides. J Cell Biol 117, 595–606.

    PubMed  CAS  Google Scholar 

  • Fields R.D. and Itoh K. (1996) Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. Trends Neurosci 19, 473–480.

    PubMed  CAS  Google Scholar 

  • Foster R., Hu K.Q., Lu Y., Nolan K.M., Thissen J., and Settleman J. (1996) Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol 16, 2689–2699.

    PubMed  CAS  Google Scholar 

  • Gamby C., Waage M.C., Allen R.G., and Baizer L. (1996) Analysis of the role of calmodulin binding and sequestration in neuromodulin (GA1-43) function. J Biol Chem 271, 26698–26705.

    PubMed  CAS  Google Scholar 

  • Gilmore A.P. and Burridge K. (1996a) Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature 381, 531–535.

    PubMed  CAS  Google Scholar 

  • Gilmore A.P. and Burridge K. (1996b) Molecular mechanisms for focal adhesion assembly through regulation of protein-protein interactions. Structure 4, 647–651.

    PubMed  CAS  Google Scholar 

  • Goodman C.S. (1996) Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 19, 341–377.

    PubMed  CAS  Google Scholar 

  • Gordon-Weeks P.R. (1991a) Control of microtubule assembly in growth cones. J Cell Sci S15, 45–49.

    Google Scholar 

  • Gordon-Weeks PR. (1991b) Microtubule organization in growth cones. Biochem Soc Trans 19, 1080–1085.

    PubMed  CAS  Google Scholar 

  • Hartwig J.H., Thelen M., Rosen A., Janmey P.A., Nairn A.C., and Aderem A. (1992) MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356, 618–622.

    PubMed  CAS  Google Scholar 

  • Hens J.J.H., Benfenati F., Nielander H.B., Valtorta F., Gispen W.H., and De Graan P.N.E. (1993) B-50/GAP-43 binds to actin filaments without affecting actin polymerization and filament organization. J Neurochem 61, 1530–1533.

    PubMed  CAS  Google Scholar 

  • Holtmaat A.J.G.D., Dijkhuizen P.A., Oestreicher A.B., Romijn HJ., Van der Lugt N.M.T., Berns A., Margolis F.L., Gispen W.H., and Verhaagen J. (1995) Directed expression of the growth-associated protein B-50/GAP-43 to olfactory neurons in transgenic mice results in changes in axon morphology and extraglomerular fiber growth. J Neurosci. 15, 7953–7965.

    PubMed  CAS  Google Scholar 

  • Holtmaat, A.J.G.D., Hermens. W.TJ.M.C, Sonnemans, M.A.F., Giger, R.J., Van Leeuwen, F.W., Kaplitt, M.G., Oestreicher, A.B., Gispen, W.H., & Verhaagen, J. (1997). Adenoviral vector-mediated expression of B-50/GAP-43 induces alterations in the membrane organization of olfactory axon terminals in vivo. J Neurosci 17, 6575–6586

    PubMed  CAS  Google Scholar 

  • Igarashi M., Strittmatter S.M., Vartanian T., and Fishman M.C. (1993) Mediation by G-Proteins of Signals That Cause Collapse of Growth Cones. Science 259, 77–79.

    PubMed  CAS  Google Scholar 

  • Ignelzi M.A., Jr.. Miller D.R., Soriano P., and Maness P.F. (1994) Impaired neurite outgrowth of sre-minus cerebellar neurons on the cell adhesion molecule LI. Neuron 12, 873–884.

    PubMed  CAS  Google Scholar 

  • Jalink K., van Corven E.J., Hengeveld T., Morii N., Narumiya S., and Moolenaar W.H. (1994) Inhibition of lysophosphatidate-and thrombin-induced neurite retraction and neuronal cellrounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol 126, 801–810.

    PubMed  CAS  Google Scholar 

  • Jap Tjoen San E.R.A., Van Rozen A.J., Nielander H.B., Oestreicher A.B., Gispen W.H., and Schotman P. (1995) Expression levels of B-50/GAP-43 in PC 12 cells are decisive for the complexity of their neurites and growth cones. J Mol Neurosci 6, 185–200.

    PubMed  CAS  Google Scholar 

  • Jap Tjoen San E.R.A., Schmidt-Michels M.H., Oestreicher A.B., Gispen W.H., and Schotman P. (1992) Inhibition of nerve growth factor-induced B-50/GAP-43 expression by antisense oligomers interferes with neurite outgrowth of PC 12 cells. Biochem Biophys Res Commun 187, 839–846.

    PubMed  CAS  Google Scholar 

  • Kindt R.M. and Lander A.D. (1995) Pertussis toxin specifically inhibits growth cone guidance by a mechanism independent of direct G protein inactivation. Neuron 15, 79–88.

    PubMed  CAS  Google Scholar 

  • Kira M., Tanaka J., and Sobue K. (1995) Caldesmon and low Mr isoform of tropomyosin are localized in neuronal growth cones. J Neuivsci Res 40, 294–305.

    CAS  Google Scholar 

  • Krueger N.X., Van Vactor D., Wan H.I., Gelbart W.M., Goodman C.S., and Saito H. (1996) The transmembrane tyrosine phophatase DLAR controls motor axon guidance in Drosophila. Cell 84, 611–622.

    PubMed  CAS  Google Scholar 

  • Kumagai C., Tohda M., Isobe M., and Nomura Y. (1992) Involvement of growth-associated protein-43 with irreversible neurite outgrowth by dibutyryl cyclic AMP and phorbol ester in NG 108-15 cells. J Neurochem 59,41–47.

    PubMed  CAS  Google Scholar 

  • LaBate M.E. and Skene J.H.P. (1989) Selective conservation of GAP-43 structure in vertebrate evolution. Neuron 3, 299–310.

    PubMed  CAS  Google Scholar 

  • Lankford K.L., DeMello F.G., and Klein W.L. (1988) Dl-type dopamine receptors inhibit growth cone motility in cultured retina neurons: evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system. Proc Natl Acad Sei USA 85, 4567–4571.

    CAS  Google Scholar 

  • Lankford K.L. and Letourneau P.C. (1991) Roles of actin filaments and three second-messenger systems in shortterm regulation of chick dorsal root ganglion neurite outgrowth. Cell Motil Cvtoskel 20, 7–29.

    CAS  Google Scholar 

  • Letourneau, P.C. (1992). Integrins and N-cadherin are adhesive molecules involved in growth cone migration. In P.C. Letourneau, S.B. Kater & F.R. Macagno (Eds.). The nerve growth cone (pp. 181–193). New York: Raven Press

    Google Scholar 

  • Lin C.H., Espreafico E.M., Mooseker M.S., and Forscher P. (1996) Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 16, 769–782.

    PubMed  CAS  Google Scholar 

  • Lin C.H. and Forscher P. (1993) Cytoskeletal remodeling during growth cone-target interactions. J Cell Biol 121, 1369–1383.

    PubMed  CAS  Google Scholar 

  • Liu Y., Chapman E.R., and Storm D.R. (1991) Targeting of neuromodulin (GAP-43) fusion proteins to growth cones in cultured rat embryonic neurons. Neuron 6, 411–420.

    PubMed  CAS  Google Scholar 

  • Liu Y., Fisher D.A., and Storm D.R. (1994) Intracellular sorting of neuromodulin (GAP-43) mutants modified in the membrane targeting domain. J Neumsci 14, 5807–5817.

    CAS  Google Scholar 

  • Luo L., Liao Y.J., Jan L.Y., and Jan Y.N. (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac 1 is involved in axonal outgrowth and myoblast function. Genes Development 8, 1787–1802.

    PubMed  CAS  Google Scholar 

  • Luo L.Q., Hensch T.K., Ackerman L., Barbel S., Jan L.Y., and Jan Y.N. (1996) Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840.

    PubMed  CAS  Google Scholar 

  • Maccioni R.B. and Cambiazo V. (1995) Role of microtubule-associated proteins in the control of microtubule assembly. Physiol Rev 75, 835–864.

    PubMed  CAS  Google Scholar 

  • Mackay D.J.G., Nobes CD., and Hall A. (1995) The Rho’s progress: A potential role during neuritogenesis for the Rho family of GTPases. Trends Neurosci 18, 496–501.

    PubMed  CAS  Google Scholar 

  • Maness P.F. (1992) Nonreceptor protein tyrosine kinases associated with neuronal development. Dev Neurosci 14, 257–270.

    PubMed  CAS  Google Scholar 

  • Masse T. and Kelly P.T. (1997) Overexpression of calcium/calmodulin dependent protein kinase II in PC 12 cells alters cell growth, morphology, and nerve growth factor-Induced differentiation. J Neurosci 17: 924–931.

    PubMed  CAS  Google Scholar 

  • Meiri K.F. and Gordon-Weeks PR. (1990) GAP-43 in growth cones is associated with areas of membrane that are tightly bound to substrate and is a component of a membrane skeleton subcellular fraction. J Neurosci 10, 256–266.

    PubMed  CAS  Google Scholar 

  • Meiri K.F., Hammang J.P., Dent E.W., and Baetge E.E. (1996) Mutagenesis of ser41 to ala inhibits the association of GAP-43 with the membrane skeleton of GAP-43-deficient PC12B cells: effects on cell adhesion and the composition of neurite cytoskeleton and membrane. J Neurobiol 29, 213–232.

    PubMed  CAS  Google Scholar 

  • Milligan G., Parenti M., and Magee A.I. (1995) The dynamic role of palmitoylation in signal transduction. Trends Biochem Sci 20, 181–187.

    PubMed  CAS  Google Scholar 

  • Morton A.J. and Buss T.N. (1992) Accelerated differentiation in response to retinoic acid after retrovirally mediated gene transfer of gap-43 into mouse neuroblastoma cells. Eur J Neurosci 4, 910–916.

    PubMed  Google Scholar 

  • Neel V.A. and Young M.W. (1994) Igloo, a GAP-43-related gene expressed in the developing nervous system of Drosophila. Development 120, 2235–2243.

    PubMed  CAS  Google Scholar 

  • Nielander H.B., Schrama L.H., Van Rozen A.J., Kasperaitis M., Oestreicher A.B., Gispen W.H., and Schotman P. (1990) Mutation of serine 41 in the neuron-specific protein B-50 (GAP-43) prohibits phosphorylation by protein kinase C. J Neurochem 55, 1442–1445.

    PubMed  CAS  Google Scholar 

  • Nielander H.B., French P., Oestreicher A.B., Gispen W.H., and Schotman P. (1993) Spontaneous morphological changes by overexpression of the growth-associated protein B-50/GAP-43 in a PC 12 cell line. Neurosci Lett 162, 46–50.

    PubMed  CAS  Google Scholar 

  • Nobes CD. and Hall A. (1995) Rho, Rac; and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62.

    PubMed  CAS  Google Scholar 

  • O’Connor T.P. and Bentley D. (1993) Accumulation of actin in subsets of pioneer growth cone filopodia in response to neural and epithelial guidance cues insitu. J Cell Biol 123, 935–948.

    PubMed  Google Scholar 

  • O’Connor T.P., Duerr J.S., and Bentley D. (1990) Pioneer growth cone steering decisions mediated by single filopodial contacts in situ. J Neurosci 10, 3935–3946.

    PubMed  Google Scholar 

  • Oestreicher A.B., De Graan P.N.E., Gispen, W.H., Verhaagen, J and Schrama, L.H. (1997) B-50, the growth-associated protein-43: modulation of cell morphology and communication in the nervous system. Prog Neuro-biol, 53, 627–686

    CAS  Google Scholar 

  • Pawson T. (1995) Protein modules and signalling networks. Nature 373, 573–580.

    PubMed  CAS  Google Scholar 

  • Pollard T.D. (1990) Actin. Curr Opin Cell Biol 2, 33–40.

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S. (1966) Recollections of my life [by] Santiago Ramón y Cajal, transi, [from the Spanish] by E. Home Craigie, with the assistance of Juan Cano. Cambridge, Massachusetts: M.I.T. Press.

    Google Scholar 

  • Richardson A. and Parsons J.T. (1995) Signal transduction through integrins: A central role for focal adhesion ki-nase. BioEssays 17, 229–236.

    PubMed  CAS  Google Scholar 

  • Rosen L.B., Ginty D.D., Weber M.J., and Greenberg M.E. (1994) Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12, 1207–1221.

    PubMed  CAS  Google Scholar 

  • Schlessinger J. and Ullrich A. (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9, 383–391.

    PubMed  CAS  Google Scholar 

  • Schwab M.E. (1990) Myelin-associated inhibitors of neurite growth and regeneration in the CNS. Trends Neurosci 13, 452–456.

    PubMed  CAS  Google Scholar 

  • Shea T.B. (1994) Delivery of anti-GAP-43 antibodies into neuroblastoma cells reduces growth cone size. Biochem Biophys Res Commun 203, 459–464.

    PubMed  CAS  Google Scholar 

  • Shea T.B. (1995) Inhibition of neuronal surface proteases decreases the requirement for GAP-43 in neurite outgrowth. Dev Brain Res 87, 87–90.

    CAS  Google Scholar 

  • Shea T.B. and Benowitz L.I. (1995) Inhibition of neurite outgrowth following intracellular delivery of anti-GAP-43 antibodies depends upon culture conditions and method of neurite induction. J Neurosci Res 41, 347–354.

    PubMed  CAS  Google Scholar 

  • Shea T.B., Perrone-Bizzozero N.I., Beermann M.L., and Benowitz L.I. (1991) Phospholipid-mediated delivery of anti-GAP-43 antibodies into neuroblastoma cells prevents neuritogenesis. J Neurosci 11, 1685–1690.

    PubMed  CAS  Google Scholar 

  • Slemmon J.R. and Martzen M.R. (1994) Neuromodulin (GAP-43) can regulate a calmodulin-dependent target in vitro. Biochemistry 33, 5653–5660.

    PubMed  CAS  Google Scholar 

  • Stevens G.R., Zhang C., Berg M.M., Lambert M.P., Barber K., Cantallops I., Routtenberg A., and Klein W.L. (1996) CNS neuronal focal adhesion kinase forms clusters that co-localize with vinculin. J Neurosci Res 46, 445–455.

    PubMed  CAS  Google Scholar 

  • Strittmatter S.M., Valenzuela D., Vartanian T., Sudo Y., Zuber M.X., and Fishman M.C. (1992) Growth cone transduction: Go and GAP-43. J Cell Sci 15Sup, 27–33.

    Google Scholar 

  • Strittmatter S.M., Cannon S.C., Ross E.M., Higashijima T., and Fishman M.C. (1993) GAP-43 augments G-pro-tein-coupled receptor transduction in Xenopus laevis oocytes. Proc Natl Acad Sci USA 90, 5327–5331.

    PubMed  CAS  Google Scholar 

  • Strittmatter S.M., Fankhauser C., Huang P.L., Mashimo H., and Fishman M.C. (1995) Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell 80, 445–452.

    PubMed  CAS  Google Scholar 

  • Strittmatter S.M., Igarashi M., and Fishman M.C. (1994) GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth. J Neurosci 14, 5503–5513.

    PubMed  CAS  Google Scholar 

  • Strittmatter S.M., Valenzuela D., and Fishman M.C. (1994) An amino-terminal domain of the growth-associated protein GAP-43 mediates its effects on filopodial formation and cell spreading. J Cell Sci 107, 195–204.

    PubMed  CAS  Google Scholar 

  • Strittmatter S.M., Valenzuela D., Kennedy T.E., Neer E.J., and Fishman M.C. (1990) GO is a major growth cone protein subject to regulation by GAP-43. Nature 344, 836–841.

    PubMed  CAS  Google Scholar 

  • Strittmatter S.M., Valenzuela D., Sudo Y., Linder M.E., and Fishman M.C. (1991) An intracellular guanine nucleotide release protein for Go. J Biol Chem 266, 22465–22471.

    PubMed  CAS  Google Scholar 

  • Strittmatter S.M., Vartanian T., and Fishman M.C. (1992) GAP-43 as a plasticity protein in neuronal form and repair. J Neumbiol 23, 507–520.

    CAS  Google Scholar 

  • Sudo Y., Valenzuela D., Becksickinger A.G., Fishman M.C, and Strittmatter S.M. (1992) Palmitoylation alters protein activity — blockade of Go stimulation by GAP-43. EMBO J 11, 2095–2102.

    PubMed  CAS  Google Scholar 

  • Suidan H.S., Stone S.R., Hemmings B.A., and Monard D. (1992) Thrombin causes neurite retraction in neuronal cells through activation of cell surface receptors. Neuron 8, 363–375.

    PubMed  CAS  Google Scholar 

  • Sydor A.M., Su A.L., Wang F.S., Xu A., and Jay D.G. (1996) Talin and vinculin play distinct roles in filopodial motility in the neuronal growth cone. J Cell Biol 134, 1197–1207.

    PubMed  CAS  Google Scholar 

  • Teichmann-Weinberg A., Littauer U.Z., and Ginzburg I. (1988) The inhibition of neurite outgrowth in PC 12 cells by tubulin antisense oligodeoxyribonucleotides. Gene 72, 297–307.

    Google Scholar 

  • Theodore L., Derossi D. Chassaing G., Llirbat B., Kubes M., Jordan P., Cheinweiss H., Godement P., and Prochiantz A. (1995) Intraneuronal delivery of protein kinase C pseudosubstrate leads to growth cone collapse. J Neurosci 15: 7158–7167.

    PubMed  CAS  Google Scholar 

  • Van Dongen C.J., Zwiers H., De Graan P.N.E., and Gispen W.H. (1985) Modulation of the activity of purified phosphatidylinositol 4-phosphate kinase by phosphorylated and dephosphorylated B-50 protein. Biochem Biophys Res Commun 128, 1219–1227.

    PubMed  Google Scholar 

  • Van Hooff C.O.M., Holthuis J.C.M., Oestreicher A.B., Boonstra J., De Graan P.N.E., and Gispen W.H. (1989) Nerve growth factor-induced changes in the intracellular localization of the protein kinase C substrate B-50 in pheochromocytoma PC 12 cells. J Cell Biol 108, 1115–1125.

    PubMed  Google Scholar 

  • Van Hooff C.O.M., De Graan P.N.E., Oestreicher A.B., and Gispen W.H. (1988) B-50 phosphorylation and polyphosphoinositide metabolism in nerve growth cone membranes. J Neurosci 8, 1789–1795.

    PubMed  Google Scholar 

  • VanBerkum m.F.A. and Goodman C.S. (1995) Targeted disruption of Ca2+-calmodulin signaling in Drosophila growth cones leads to stalls in axon extension and errors in axon guidance. Neuron 14, 43–56.

    PubMed  CAS  Google Scholar 

  • Varnum-Finney B. and Reichardt L.F. (1994) Vinculin-deficient PC 12 cell lines extend unstable lamellipodia and filopodia and have a reduced rate of neurite outgrowth. J Cell Biol 127, 1071–1084.

    PubMed  CAS  Google Scholar 

  • Vaughn D.E. and Bjorkman P.J. (1996) The (Greek) key to structures of neural adhesion molecules. Neuron 16, 261–273.

    PubMed  CAS  Google Scholar 

  • Verhaagen J., Hermens W.TJ.M.C., Oestreicher A.B., Gispen W.H., Rabkin S.D., Pfaff D.W., and Kaplitt M.G. (1994) Expression of the growth-associated protein B-50/GAP43 via a defective herpes-simplex virus vector results in profound morphological changes in non-neuronal cells. Mol Brain Res 26, 26–36.

    PubMed  CAS  Google Scholar 

  • Widmer F. and Caroni P. (1993) Phosphorylation-site mutagenesis of the growth-associated protein GAP-43 modulates its effects on cell spreading and morphology. J Cell Biol 120, 503–512.

    PubMed  CAS  Google Scholar 

  • Williams E.J., Furness J., Walsh F.S., and Doherty P. (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by LI, N-CAM, and N-cadherin. Neuron 13, 583–594.

    PubMed  CAS  Google Scholar 

  • Wu D.Y., Wang L.C., Mason C.A., and Goldberg D.J. (1996) Association of ßi integrin with phosphotyrosine in growth cone filopodia. J Neurosci 16, 1470–1478.

    PubMed  CAS  Google Scholar 

  • Yankner B.A., Benowitz L.I., Villa-Komaroff L., and Neve R.L. (1990) Transfection of PC 12 cells with the human GAP-43 gene: effects on neurite outgrowth and regeneration. Mol Brain Res 7, 39–44.

    PubMed  CAS  Google Scholar 

  • Zinn K. (1993) Drosophila protein tyrosine phosphatases. Semin Cell Biol 4, 397–401.

    PubMed  CAS  Google Scholar 

  • Zuber M.X., Goodman D.W., Karns L.R., and Fishman M.C. (1989) The neuronal growth-associated protein GAP-43 induces filopodia in non-neuronal cells. Science 244, 1193–1195.

    PubMed  CAS  Google Scholar 

  • Zuber M.X., Strittmatter S.M., and Fishman M.C. (1989) A membrane-targeting signal in the amino terminus of the neuronal protein GAP-43. Nature 341, 345–348.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aarts, L.H.J., Schotman, P., Verhaagen, J., Schrama, L.H., Gispen, W.H. (1998). The Role of The Neural Growth Associated Protein B-50/Gap-43 in Morphogenesis. In: Ehrlich, Y.H. (eds) Molecular and Cellular Mechanisms of Neuronal Plasticity. Advances in Experimental Medicine and Biology, vol 446. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4869-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4869-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7209-7

  • Online ISBN: 978-1-4615-4869-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics