Skip to main content

Health Aspects of Mobile Communication: Risks to the Central Nervous System

  • Chapter
Electricity and Magnetism in Biology and Medicine

Abstract

The wide and growing use of mobile communication has raised concerns about adverse interactions of electromagnetic radiation with the human organism and, in particular, the brain. Due to the close proximity of the mobile telephone device to the head, the brain is exposed to relatively high specific absorption rates (SAR), compared with the rest of the body. Numerical measurements during normal operation of GSM communication devices in the 900 MHz range have shown that, averaged over any 10 g of tissue, a maximum spatial SAR of 0.525 W/kg is reached in the brain1, and that the peak SAR may increase up to 0.75W/kg for devices operating in the 1.8 GHZ range2. These values are not too far away from the 1–4W/kg threshold at which body temperature begins to rise3, and there is ample evidence of biological effects due to heat stress. It is, therefore, conceiveable that some of the here reported effects are, in fact, due to spurious temperature changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ICNIRP, Health issues related to the use of hand-held radiotelephones and base transmitters, Health Physics 70:587–593 (1996).

    Google Scholar 

  2. Dimbylow, P.J. and Mann, S.M., SAR calculation in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz, Physics in Medicine and Biology 39:1537–1553 (1994).

    Article  ADS  Google Scholar 

  3. IEEE, IEEE Standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz. New York; Institute of Electrical and Electronic Engineers: C95.1, (1991).

    Google Scholar 

  4. McKinlay, A., Possible health effects related to the use of radiotelephones, Radiol. Protect. Bull 187:9–16 (1997).

    Google Scholar 

  5. Hermann, D.M. and Hossmann, K.-A., Neurological effects of microwave exposure related to mobile communication, J. Neural. Sci. 152:1–14 (1997).

    Article  ADS  Google Scholar 

  6. Wachtel, H., Seaman, R. and Joines, W., Effects of low-intensity microwaves on isolated neurons, Ann. NY Acad. Sci. 247:46–62 (1975).

    Article  ADS  Google Scholar 

  7. Seaman, R.L. and Wachtel, H., Slow and rapid responses to CW and pulsed microwave radiation by individual Aplysia pacemakers, Journal of Microwave Power 13:77–86 (1978).

    Google Scholar 

  8. Arber, S.L. and Lin, J.C., Microwave-induced changes in nerve cells: effects of modulation and temperature, Bioelectromagnetics 6:257–270 (1985).

    Article  Google Scholar 

  9. McRee, D.I. and Wachtel, H., The effects of microwave radiation on the vitality of isolated frog sciatic nerves, Radiat. Res. 82:536–546 (1980).

    Article  Google Scholar 

  10. Wang, Z., Van Dorp, R., Weidema, A.F. and Ypey, D.L., No evidence for effects of mild microwave irradiation on electrophysiological and morphological properties of cultured embryonic rat dorsal root ganglion cells, European Journal of Morphology 29:198–206 (1991).

    Google Scholar 

  11. Blackman, C.F., Benane, S.G., Elder, J.A., House, D.E., Lampe, J.A. and Faulk, J.M., Induction of calcium ion efflux from brain tissue by radiofrequence radiation: effect of sample number and modulation frequency on the power-density window, Bioelectromagnetics 12:173–182 (1980).

    Article  Google Scholar 

  12. Bawin, S.M., Kaczmarek, L.K. and Adey, W.R., Effects of modulated VHF fields on the central nervous system, Ann. NY Acad. Sci. 247:74–81 (1975).

    Article  ADS  Google Scholar 

  13. Sheppard, A.R., Bawin, S.M. and Adey, W.R., Models of long-range order in cerebral macromolecules: effect of sub-ELF and of modulated VHF and UHF fields, Radio Sci. 14:141–145 (1979).

    Article  ADS  Google Scholar 

  14. Shelton, W.W. and Merritt, J.H., In vitro study of microwave effects on calcium efflux in rat brain tissue, Bioelectromagnetics 2:161–167 (1981).

    Article  Google Scholar 

  15. Merritt, J.H., Shelton, W.W. and Chamness, A.F., Attempts to alter 45Ca2+ binding to brain tissue with pulse-modulated microwave energy, Bioelectromagnetics 3:475–478 (1982).

    Article  Google Scholar 

  16. Gandhi, C.R. and Ross, D.H., Microwave induced stimulation of32 Pi-incorporation into phsophoinositides of rat brain synaptosomes, Radial. Environ. Biophys. 28:223–234 (1989).

    Article  Google Scholar 

  17. Shandala, M.G., Dumanski, U.D., Rudnev, M.I., Ershova, L.K. and Los, I.P., Study of nonionizing microwave radiation effects upon the central nervous system and behavior reaction, Environmental Health Perspectives 30:115–121 (1979).

    Google Scholar 

  18. Thuroczy, G., Kubinyi, G., Bodo, M., Balms, J. and Szabo, L.D., Simultaneous response of brain electrical activity (EEG) and cerebral circulation (REG) to microwave exposure in rats, Review of Environmental Health 10:135–148 (1994).

    Google Scholar 

  19. McGinty, D. and Szymusiak, R., Keeping cool: a hypothesis about the mechanisms and functions of slow-wave sleep, Trends Neurosci. 13:480–487 (1990).

    Article  Google Scholar 

  20. Chou, C.K., Yee, K.C. and Guy, A.W., Auditory response in rats exposed to 2450 MHz electromagnetic fields in a circularly polarized waveguide, Bioelectromagnetics 6:323–326 (1985).

    Article  Google Scholar 

  21. Chou, C.K., Guy, A.W. and Galambos, R., Auditory perception of radiofrequency electromagnetic fields, J. Acoust. Soc. Am. 71:1321–1334 (1982).

    Article  ADS  Google Scholar 

  22. Seaman, R.L. and Lebowitz, R.M., Thresholds of cat cochlear nucleus neurons to microwave pulses, Bioelectromagnetics 10:147–160 (1989).

    Article  Google Scholar 

  23. Inaba, R., Shishido, K., Okada, A. and Moroji, T., Effects of whole body microwave exposure on the rat brain contents of biogenic amines, European Journal of Applied Physiology 65:124–128 (1992).

    Article  Google Scholar 

  24. Merritt, J.H., Chamnes, A.F., Hartzell, R.H. and Allan, S.J., Orientation effect on microwave-induced hyperthermia and neurochemical correlates, Journal of Microwave Power 12:167–172 (1977).

    Google Scholar 

  25. Grin, A.N., Effects of microwave on catecholamine metabolism inbrain, US Joint Pub. Research Device Rep JPRS 72606. (1974).

    Google Scholar 

  26. Modak, A.T., Stavinoha, W.B. and Dean, U.P., Effect of short electromagnetic pulses on brain acetylcholine content and spontaneous motor activity in mice, Bioelectromagnetics 2:89–92 (1981).

    Article  Google Scholar 

  27. Baranski, S., Arber, S.L. and Lin, J.C., Histological and histochemical effects of microwave irradiation on the central nervous system of rabbits and guinea pigs, American Journal of Physiological Medicine 51:182–190 (1972).

    Google Scholar 

  28. Galvin, M.I., Parks, D.L. and McRee, D.L., Influence of 2.45 GHz microwave radiation on enzyme activity, Radial’. Environ. Biophys. 19:149–156 (1981).

    Article  Google Scholar 

  29. Millar, D.B., Christopher, J.P., Hunter, J. and Yeandle, S.S., The effect of exposure of acetylcholinesterase to 2450 MHz microwave radiation, Bioelectromagnetics 5:165–172 (1984).

    Article  Google Scholar 

  30. Lai, H., Carino, M.A., Wen, Y.F., Morita, A. and Guy, A.W., Naltrexone pretreatment blocks microwave-induced changes in central cholinergic receptors, Bioelectromagnetics 12:27–33 (1991).

    Article  Google Scholar 

  31. Lai, H., Carino, M.A. and Guy, A.W., Low-level microwave irradiation and central cholinergic systems, Pharmacology Biochemistry and Behavior 33:131–138 (1989).

    Article  Google Scholar 

  32. Sanders, A.P., Schaefer, D.J. and Joines, W.T., Microwave effects on energy metabolism of rat brain, Bioelectromagnetics 1:171–182 (1980).

    Article  Google Scholar 

  33. Sanders, A.P. and Joines, W.T., The effects of hyperthermia and hyperthermia plus microwaves on rat brain energy metabolism, Bioelectromagnetics 5:63–70 (1984).

    Article  Google Scholar 

  34. Sanders, A.P., Joines, W.T. and Allis, J.W., Effect of continuous-wave, pulsed, and sinusoidal-amplitude-modulated microwaves on brain energy metabolism, Bioelectromagnetics 6:89–97 (1985).

    Article  Google Scholar 

  35. Lai, H. and Singh, N.P., Single-and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation, Int. J. Radial. Biol. 69:513–521 (1996).

    Article  Google Scholar 

  36. Fritze, K., Wiessner, C., Kuster, N., Sommer, C., Gass, P., Hermann, D.M., Kiessling, M. and Hossmann, K.-A., Effect of GSM microwave exposure on the genomic response of the rat brain, Neuroscience 81:627–639 (1997).

    Article  Google Scholar 

  37. Albert, E.N. and Kerns, J.M., Reversible microwave effects on the blood-brain barrier, Brain Res. 230:153–164 (1981).

    Article  Google Scholar 

  38. Fritze, K., Sommer, C., Schmitz, B., Mies, G., Hossmann, K.-A., Kiessling, M. and Wiessner, C., Effect of GSM microwave exposure on blood-brain barrier, Acta Neuropathologica 94:465–470 (1997).

    Article  Google Scholar 

  39. Neubauer, C., Phelan, A.M., Kues, H. and Lange, D.G., Microwave irradiation of rats at 2.45 GHz activates pinocytic-like uptake of tracer by capillary endothelial cells of cerebral cortex, Bioelectromagnetics 11:261–268 (1990).

    Article  Google Scholar 

  40. Salford, L.S., Brun, A., Sturesson, K., Eberhardt, J.L. and Persson, B.R.R., Permeability of the blood-brain barrier induced by 915 MHz electromagnetic radiation, continuous wave and modulated at 8, 50, and 200 Hz, Microscopy Research and Technique 27:535–542 (1994).

    Article  Google Scholar 

  41. Preston, E., Vavasour, E.J. and Assenheim, H.M., Permeability of the blood-brain barrier to mannitol in the rat following 2,450 MHz microwave irradiation, Brain Res. 174:109–117 (1979).

    Article  Google Scholar 

  42. Gruenau, S.P., Oscar, K.J., Folker, M.T. and Rapoport, S.I., Absence of microwave effect on blood-brain barrier permeability to 14C-sucrose in the conscious rat, Exp. Neurol. 75:299–307 (1982).

    Article  Google Scholar 

  43. Ward, T.R., Elder, I.A., Long, M.D. and Svendsgaard, D., Measurement of blood-brain barrier permeation in rats during exposure to 2450-MHz microwaves, Bioelectromagnetics 3:371–383 (1982).

    Article  Google Scholar 

  44. Garber, J.H., Oldendorf, W.H., Braun, L.D. and Lufkin, R.B., MRI gradient fields increase brain mannitol space, Magn. Reson. Imaging 7:605–610 (1989).

    Article  Google Scholar 

  45. Prato, F.S., Frappier, J.R.H., Shivers, R.R., Kavaliers, M., Zabel, P., Drost, D.J. and Lee, T.-Y., Magnetic resonance imaging increases the blood-brain barrier permeability to 153-gadolinium diethylenetriaminepentaacetic acid in rats, Brain Res. 523:301–304 (1990).

    Article  Google Scholar 

  46. Shivers, R.R., Kavaliers, M., Teskey, G.C., Prato, F.S. and Pelletier, R.M., Magnetic resonance imaging temporarily alters blood-brain barrier permeability in the rat, Neurosci. Lett. 76:25–31 (1987).

    Article  Google Scholar 

  47. Liburdy, R.P., DeManincor, D.J., Roos, M.S. and Brennan, K.M., Permeability of the blood-brain barrier of the rat is not significantly altered by NMR exposure, Ann. NY Acad. Sci. 649:345–349 (1992).

    Article  ADS  Google Scholar 

  48. Persson, B.R.R., Salford, L.G., Brun, A., Eberhardt, J.L. and Malmgren, L., Increased permeability of the blood-brain barrier induced by magnetic and electromagnetic fields, Ann. NY Acad. Sci. 649:356–358 (1992).

    Article  ADS  Google Scholar 

  49. Merritt, J.H., Chamness, A.P. and Allen, S.J., Studies on blood-brain barrier permeability after microwave radiation, Radial. Environ. Biophvs. 15:367–377 (1978).

    Article  Google Scholar 

  50. Chang, B.K., Huang, A.T., Joines, W.T. and Kramer, R.S., The effect of microwave radiation (1.0 GHz) on the blood-brain barrier, Radio Sci. 17:165–168 (1982).

    Article  ADS  Google Scholar 

  51. Oscar, K.J. and Hawkins, T.D., Microwave alteration of the blood-brain barrier system of rats, Brain Res. 126:281–293 (1977).

    Article  Google Scholar 

  52. von Klitzing, I., Low-Frequency pulsed electromagnetic fields influence EEG of man, Physica Medica 11:77–80 (1995).

    Google Scholar 

  53. Reiser, H.-P., Dimpfel, W. and Schober, F., The influence of electromagnetic fields on human brain activity, European Journal of Medical Research 1:27–32 (1995).

    Google Scholar 

  54. Mann, K. and Röschke, J., Effects of pulsed high-frequency electromagnetic fields on human sleep, Neuropsvchobiology 33:41–47 (1996).

    Article  Google Scholar 

  55. Pasche, B., Erman, M., Hayduk, R., Mitler, M.M., Reite, M., Higgs, L., Kuster, N., Rossel, C., Dafni, U., Amato, D., Barbault, A. and Lebet, J.-P., Effects of low energy emission therapy in chronic psychophysiological insomnia, Sleep 19:327–336 (1996).

    Google Scholar 

  56. Reite, M., Higgs, L., Lebet, J.-P., Barbault, A., Rossel, C., Kuster, N., Dafni, U., Amato, D. and Amato, B. P., Sleep inducing effect of low energy emission therapy, Bioelectromagnetics 15:67–75 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hossmann, KA., Hermann, D.M. (1999). Health Aspects of Mobile Communication: Risks to the Central Nervous System. In: Bersani, F. (eds) Electricity and Magnetism in Biology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4867-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4867-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7208-0

  • Online ISBN: 978-1-4615-4867-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics