Skip to main content

The Bacterial Flagellar Motor: A Brief Review of Models and a New Electrostatic Model

  • Chapter
Electricity and Magnetism in Biology and Medicine
  • 37 Accesses

Abstract

The rotary motor responsible for the spinning of a bacterial flagellum is one of the most intriguing of microbiological systems, and it presents a major challenge from the viewpoint of bioenergetics. It is driven by a proton current and may be switched from counterclockwise to clockwise rotation without alteration of the direction of proton flow. A wide variety of models of the flagellar motor have been developed in recent years1. Among these, the two most convincing types of mechanism that have been analyzed quantitatively, in terms of what we know about the structure and function of the motor, are those based on fixed elastic elements analogous to muscle cross-bridges2,3,4, and those based on electrostatic interactions5,6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.R. Caplan, and M. Kara-Ivanov, The bacterial flagellar motor Intern. Rev. Cvvol. 147:97 (1993).

    Article  Google Scholar 

  2. H.C. Berg and S. Khan, A model for the flagellar rotary motor, in: Mobility and Recognition in Cell Biology. H. Sund and C. Veeger. eds.. DeGruyter, Berlin (1983).

    Google Scholar 

  3. P. Läuger. Torque and rotation rate of the bacterial flagellar motor Biophvs. J. 53:53 (1988).

    Article  Google Scholar 

  4. M. Meister, S.R. Caplan, and H.C. Berg, Dynamics of a tightly coupled mechanism for flagellar rotation. Biophvs. J. 55:905 (1989).

    Article  Google Scholar 

  5. R.M. Berry. Torque and switching in the bacterial flagellar motor. Biophvs. J. 64:961 (1993).

    Article  ADS  Google Scholar 

  6. C. Doering, B. Ermentrout. and G. Oster, Rotary DNA motors Biophvs. J. 69:2256 (1995).

    Article  ADS  Google Scholar 

  7. P. Läuger, Ion transport and rotation of bacterial flagella. Nature (London) 268:360 (1977).

    Article  ADS  Google Scholar 

  8. R.M. Macnab, How do flagella propel bacteria?. Trends Biochetn. Sci. 4:N10 (1979).

    Article  Google Scholar 

  9. N.R. Francis, C.E. Sosinsky, D. Thomas, and D.J. DeRosier, Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J. Mol. Biol 235:1261 (1994).

    Article  Google Scholar 

  10. C.S. Schuster, and S. Khan, The bacterial flagellar motor Annu. Rev. Biophvs. Biomol. Siruct. 23:509 (1994).

    Article  Google Scholar 

  11. S. Khan. M. Dapice, and T.S. Reese. Effects of mot gene expression on the structure of the flagellar motor. J. Mol. Biol 202:575 (1988).

    Article  Google Scholar 

  12. S.A. Lloyd, and D.F. Blair. Charged residues of the rotor protein F1iG essential for torque generation in the flagellar motor of Escherichia cols, J. Mol. Biol. 266:733 (1997).

    Article  Google Scholar 

  13. L.L. Sharp, J. Zhou, and D.F. Blair, Features of MotA proton channel structure revealed by tryptophan-scanning mutagenesis Proc. Natl. Acad. Sci. USA 92:7946 (1995).

    Article  ADS  Google Scholar 

  14. H. Felle. J.S. Porter, C.L. Slayman, and H.R. Kaback, Quantitative measurements of membrane potential in Escherichia coli, Biochemistry 19:3585 (1980).

    Google Scholar 

  15. D. Walz, S.R. Caplan, D.R.L. Striven, and D.C. Mikulecky, Methods of mathematical modelling, in: Bioelectrochemistrv: General Introduction S.R. Caplan, I.R. Miller, and G. Milazzo, eds., Birkhäuser, Basel (1995).

    Google Scholar 

  16. H.C. Berg, and L. Turner, Torque generated by the flagellar motor of Escherichia calf, Biophvs. J. 65:2201 (1993).

    Article  ADS  Google Scholar 

  17. G. Lowe, M. Meister, and H.C. Berg, Rapid rotation of flagellar bundles in swimming bacteria Nature (London) 235:637 (1987).

    Article  ADS  Google Scholar 

  18. M. Meister, G. Lowe, and H.C. Berg. The proton flux through the bacterial flagellar motor Cell 49:643 (1987).

    Article  Google Scholar 

  19. J.-I. Shioi, S. Matsuura, and Y. Imae, Quantitative measurements of proton motive force and motility in Bacillus subtilis, J. Bacteriol. 144:891 (1980).

    Google Scholar 

  20. R.M. Berry. L. Turner, and H.C. Berg, Mechanical limits of bacterial flagellar motors probed by electrorotation. Biophys. J. 69:280 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Caplan, R., Walz, D. (1999). The Bacterial Flagellar Motor: A Brief Review of Models and a New Electrostatic Model. In: Bersani, F. (eds) Electricity and Magnetism in Biology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4867-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4867-6_56

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7208-0

  • Online ISBN: 978-1-4615-4867-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics