The Bacterial Flagellar Motor: A Brief Review of Models and a New Electrostatic Model

  • Roy Caplan
  • Dieter Walz


The rotary motor responsible for the spinning of a bacterial flagellum is one of the most intriguing of microbiological systems, and it presents a major challenge from the viewpoint of bioenergetics. It is driven by a proton current and may be switched from counterclockwise to clockwise rotation without alteration of the direction of proton flow. A wide variety of models of the flagellar motor have been developed in recent years1. Among these, the two most convincing types of mechanism that have been analyzed quantitatively, in terms of what we know about the structure and function of the motor, are those based on fixed elastic elements analogous to muscle cross-bridges2,3,4, and those based on electrostatic interactions5,6.


Swimming Speed Clockwise Rotation Viscous Drag External Torque Electrostatic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.R. Caplan, and M. Kara-Ivanov, The bacterial flagellar motor Intern. Rev. Cvvol. 147:97 (1993).CrossRefGoogle Scholar
  2. 2.
    H.C. Berg and S. Khan, A model for the flagellar rotary motor, in: Mobility and Recognition in Cell Biology. H. Sund and C. Veeger. eds.. DeGruyter, Berlin (1983).Google Scholar
  3. 3.
    P. Läuger. Torque and rotation rate of the bacterial flagellar motor Biophvs. J. 53:53 (1988).CrossRefGoogle Scholar
  4. 4.
    M. Meister, S.R. Caplan, and H.C. Berg, Dynamics of a tightly coupled mechanism for flagellar rotation. Biophvs. J. 55:905 (1989).CrossRefGoogle Scholar
  5. 5.
    R.M. Berry. Torque and switching in the bacterial flagellar motor. Biophvs. J. 64:961 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    C. Doering, B. Ermentrout. and G. Oster, Rotary DNA motors Biophvs. J. 69:2256 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    P. Läuger, Ion transport and rotation of bacterial flagella. Nature (London) 268:360 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    R.M. Macnab, How do flagella propel bacteria?. Trends Biochetn. Sci. 4:N10 (1979).CrossRefGoogle Scholar
  9. 9.
    N.R. Francis, C.E. Sosinsky, D. Thomas, and D.J. DeRosier, Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J. Mol. Biol 235:1261 (1994).CrossRefGoogle Scholar
  10. 10.
    C.S. Schuster, and S. Khan, The bacterial flagellar motor Annu. Rev. Biophvs. Biomol. Siruct. 23:509 (1994).CrossRefGoogle Scholar
  11. 11.
    S. Khan. M. Dapice, and T.S. Reese. Effects of mot gene expression on the structure of the flagellar motor. J. Mol. Biol 202:575 (1988).CrossRefGoogle Scholar
  12. 12.
    S.A. Lloyd, and D.F. Blair. Charged residues of the rotor protein F1iG essential for torque generation in the flagellar motor of Escherichia cols, J. Mol. Biol. 266:733 (1997).CrossRefGoogle Scholar
  13. 13.
    L.L. Sharp, J. Zhou, and D.F. Blair, Features of MotA proton channel structure revealed by tryptophan-scanning mutagenesis Proc. Natl. Acad. Sci. USA 92:7946 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    H. Felle. J.S. Porter, C.L. Slayman, and H.R. Kaback, Quantitative measurements of membrane potential in Escherichia coli, Biochemistry 19:3585 (1980).Google Scholar
  15. 15.
    D. Walz, S.R. Caplan, D.R.L. Striven, and D.C. Mikulecky, Methods of mathematical modelling, in: Bioelectrochemistrv: General Introduction S.R. Caplan, I.R. Miller, and G. Milazzo, eds., Birkhäuser, Basel (1995).Google Scholar
  16. 16.
    H.C. Berg, and L. Turner, Torque generated by the flagellar motor of Escherichia calf, Biophvs. J. 65:2201 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    G. Lowe, M. Meister, and H.C. Berg, Rapid rotation of flagellar bundles in swimming bacteria Nature (London) 235:637 (1987).ADSCrossRefGoogle Scholar
  18. 18.
    M. Meister, G. Lowe, and H.C. Berg. The proton flux through the bacterial flagellar motor Cell 49:643 (1987).CrossRefGoogle Scholar
  19. 19.
    J.-I. Shioi, S. Matsuura, and Y. Imae, Quantitative measurements of proton motive force and motility in Bacillus subtilis, J. Bacteriol. 144:891 (1980).Google Scholar
  20. 20.
    R.M. Berry. L. Turner, and H.C. Berg, Mechanical limits of bacterial flagellar motors probed by electrorotation. Biophys. J. 69:280 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Roy Caplan
    • 1
  • Dieter Walz
    • 2
  1. 1.Department of Membrane Research and BiophysicsThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Biozentrum University of BaselBaselSwitzerland

Personalised recommendations