Magnetic Orientation of Fibrin and other Biopolymers

  • Jim Torbet


In general high orientation facilitates scientific investigation and can open up new technological applications by improving physical or biological properties. Electric and magnetic fields can induce orientation. However, the former can cause potentially harmful heating effects when the medium is conducting, which is generally the case with biological samples, whilst there is no evidence to suggest that the application of a strong magnetic field can cause significant chemical damage. As the magnetic field acts at a distance its effect permeates the entire sample; consequently uniform orientation can be attained in bulk samples.


Strong Magnetic Field Microtubule Assembly Magnetic Field Effect Homogeneous Magnetic Field Magnetic Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-M. Freyssinet, J. Torbet, G. Hudry-Clergeon, and G. Maret, Fibrinogen and fibrin structure and fibrin formation using magnetic orientation, Proc. Nat. Acad. Sci. USA 80: 1616 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    J. Torbet, J.-M. Freyssinet, and G. Hudry-Clergeon, Oriented fibrin gels formed by polymerisation in a strong magnetic field, Nature 289: 91 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    J. Torbet, The thrombin activation pathway modulates the assembly, structure and lysis of human plasma clots in vitro, Thromb. Haemostasis 73: 785 (1995).Google Scholar
  4. 4.
    Torbet, and M.J. Dickens, Orientation of skeletal muscle actin in a strong magnetic field, Febs Letters 173: 403 (1984).CrossRefGoogle Scholar
  5. 5.
    J. Torbet, and G. Maret, Fibres of highly oriented Pfl bacteriophage produced in a strong magnetic field, J. Mol. Biol. 134: 843 (1979).CrossRefGoogle Scholar
  6. 6.
    J. Torbet, and M.-C. Ronzière, Magnetic alignment of collagen during self-assembly, Biochem. J. 219: 1057 (1984).Google Scholar
  7. 7.
    F. Pirollet, D. Job, R.L. Margolis, and J.-R. Garel, An oscillatory mode for microtubule assembly, EMBO J. 6:3247 (1987).Google Scholar
  8. 8.
    P. Costa Ribeiro, M.A. Davidovich, E. Wajnberg, G. Bemski, and M. Kischinevsky, Rotation of sickle cells in homogeneous magnetic fields, Biophys. J. 36: 443 (1981).CrossRefGoogle Scholar
  9. 9.
    R. T. Tranquillo, T.S. Girton, B.A. Bromberek, T.G. Triebes, and D.L. Mooradian, Magnetically oriented tissue-equivalent tubes: application to a circumferentially oriented media-equivalent, Biomaterials 17: 349 (1996).CrossRefGoogle Scholar
  10. 10.
    R. Gollwitzer, W. Bode, H-J. Schramm, D. Typke and R. Guckenberger, Laser diffraction of oriented fibrinogen molecules, Ann. N. Y Acad. Sci. 408: 214 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    S. Ueno, M. Iwasaka, and T. Kitajima, Redistribution of dissolved oxygen concentration under magnetic fields up to 8 T, J. Appl. Phys. 75: 7174 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    M. Iwasaka, and S. Ueno, Effects of magnetic fields on fibrinolysis, J. Appl. Phys. 75: 7162 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Jim Torbet
    • 1
  1. 1.Laboratoire d’Elaboration par Procédés Magnétiques and Grenoble High Magnetic Field LaboratoryC.N.R.SGrenoble Cedex 09France

Personalised recommendations