Computer Modeling for Cellular Phones Dosimetry

  • P. Bernardi
  • M. Cavagnaro
  • S. Pisa
  • E. Piuzzi


This work presents a summary of the main results obtained by using numerical methods to evaluate the power distribution in a human head exposed to a hand-held cellular phone. Attention is particularly focused on three topics: the realisation of an accurate numerical anatomical model, the evaluation of the electrical parameters to be assigned to the various tissues, and the source modeling. Numerical results for typical exposure situations are also presented.


Human Head Source Modeling Cellular Phone Microwave Theory Coaxial Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Toftgard, S. N. Homsleth and J. B. Andersen, Effects on portable antennas of the presence of a person, IEEE Trans. Antennas Propagat., 41:739 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    P. J. Dimbylow and S. M. Mann, SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz, Phys. Med. Biol., 39:1537 (1994).CrossRefGoogle Scholar
  3. 3.
    M. A. Jensen and Y. Rahmat-Samii, EM interaction of handset antennas and a human in personal communications, Proc. IEEE, 83:7 (1995).CrossRefGoogle Scholar
  4. 4.
    L. Martens, J. De Moerloose, D. De Zutter, J. De Poorter, and C. De Wagter, Calculation of the electromagnetic fields induced in the head of an operator of a cordless telephone, Radio Science, 30:283 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    P. Bernardi, M. Cavagnaro, and S. Pisa, Evaluation of the SAR distribution in the human head for cellular phones used in a partially closed environment, IEEE Trans. Electromag. Compat., 38:357 (1996).CrossRefGoogle Scholar
  6. 6.
    O. P. Gandhi, G. Lazzi, and C. M. Furse, Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz, IEEE Trans. Microwave Theory Tech., 44:1884 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    M. Okoniewski and M. A. Stuchly, A study of the handset antenna and human body interaction, IEEE Trans. Microwave Theory Tech., 44:1855 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, and N. Kuster, The dependence of EM energy absorption upon human head modeling at 900 MHz, IEEE Trans. Microwave Theory Tech., 44:1865 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    S. Watanabe, M. Taki, T. Nojima, and O. Fujiwara, Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by a hand-held portable radio, IEEE Trans. Microwave Theory Tech., 44:1874 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, Temperature elevation induced in the head of a cellular phone user, International Scientific Meeting on Electromagnetics in Medicine, Chicago (1997).Google Scholar
  11. 11.
    M. Cavagnaro and S. Pisa, Simulation of cellular phone antennas by using inductive lumped elements in the 3D-FDTD algorithm, Microwave Opt. Technol. Lett., 13:324 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • P. Bernardi
    • 1
  • M. Cavagnaro
    • 1
  • S. Pisa
    • 1
  • E. Piuzzi
    • 1
  1. 1.Department of Electronic EngineeringUniversity “La Sapienza” of RomeRomeItaly

Personalised recommendations