Advertisement

Independently Replicated Biological Effects of ELF Electromagnetic Fields: A Literature Study

  • Maria Gustavsson
  • Martin Lindgren
  • Sheila Galt
  • Yngve Hamnerius

Abstract

Biological effects of extremely low frequency (ELF) electromagnetic fields (EMF) demonstrated over the past few decades have proven notoriously difficult to replicate. There are many possible reasons for this problem: variations in exposure parameters; variations in biological material; variations in biological experimental protocols; or as some critics assume, lack of existence of any real effect in the original experiment. Until recently there have been very few attempts to conduct replication experiments.

Keywords

Magnetic Field Effect Replication Experiment Intracellular Calcium Oscillation Human Amniotic Cell Single Cell Calcium Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. D. Smith, B. R. McLeod, A. R. Liboff and K. Cooksey. Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics. 8:215–227 (1987).CrossRefGoogle Scholar
  2. 2.
    J. A. Reese, M. E. Frazier, R. L. Morris and D. L. Miller. Evaluation of diatom mobility after exposure to 16 Hz electromagnetic fields. Bioelectromagnetics. 12:21–25 (1991).CrossRefGoogle Scholar
  3. 3.
    W. C. Parkinson and G. L. Sulik. Diatom response to extremely low-frequency magnetic fields. Radial. Res. 130:319–330 (1992).CrossRefGoogle Scholar
  4. 4.
    E. Saalman, S. Galt, Y. Hamnerius and B. Nordén. Diatom motility: replication study in search of cyclotron resonance effects. In Interaction Mechanisms of Lois-level Electromagnetic Fields in Living Systems - Resonant Phenomena (C. Kamel and B. Nordén, Eds), pp. 280–292. Oxford University Press, Oxford (1993).Google Scholar
  5. 5.
    M. S. Davies, R. Dixey and J. Green. An EMF-effect using the diatom system. In Abstracts of Contractors Review,p. 1 (1993).Google Scholar
  6. 6.
    A. V. Prasad, M. W. Miller, C. Cox, E. L. Carstensen, H. Hoops and A. A. Brayman. A test of the influence of cyclotron resonance exposures on diatom motility. Health Physics. 66:305–312 (1994).CrossRefGoogle Scholar
  7. 7.
    J. J. Greene, W. J. Skowronski, J. M. Mullins and R. M. Nardone. Delineation of electric and magnetic field effects of extremely low frequency electromagnetic radiation on transcription. Biochent. and Biophys. Res. Comm. 174:742–749 (1991).CrossRefGoogle Scholar
  8. 8.
    M. Azadniv and M. W. Miller. 3H-Uridine uptake in human Leukemia HL-60 cells exposed to extremely low frequency electromagnetic fields. Biochem. and Biophva. Res. Comm. 189:437–444 (1992).CrossRefGoogle Scholar
  9. 9.
    T. A. Litovitz, D. Krause and J. M. Mullins. Effect of coherence time of the applied magnetic field on omithine decarboxylase activity. Biochem. and Biophvs. Res. Comm. 178:862–865 (1991).CrossRefGoogle Scholar
  10. 10.
    Owen, R. D. ELF-EMF replication studies: gene expression and enzyme activity. In Abstracts of the Eighteenth Annual Meeting of the Bioelectromagnetics Society,Victoria, p. 189 (1996).Google Scholar
  11. 11.
    R. Goodman, J. Bumann, L-X. Wei and A. Shirley-Henderson. Exposure of human cells to electromagnetic fields: effect of time and field strength on transcript levels. Electro. Magnetobiol. 11:19–28 (1992).Google Scholar
  12. 12.
    A. Lacy-Hulbert, R. C. Wilkins. T. R. Hesketh and J. C. Metcalfe. No effect of 60 Hz electromagnetic field on MYC or b-actin expression in human leukemic cells. Radial. Res. 144:9–17 (1995).CrossRefGoogle Scholar
  13. 13.
    J. D. Saffer and S. J. Thurston. Short exposures to 60 Hz magnetic fields do not alter MYC expression in HL60 or Daudi cells. Radial. Res. 144:18–25 (1995).CrossRefGoogle Scholar
  14. 14.
    E. K. Balcer-Kubiczek, G. H. Harrison, X.-F. Zhang, Z.-M. Shi, J. M. Abraham, S. J. Meltzer and C. C. Davies. 60 Hz magnetic fields and early immediate gene expression in HL60 cells: failure to replicate the Goodman/Henderson data. In Abstracts of the Eighteenth Annual Meeting of the Bioelectromagnetics Society,Victoria, p. 180 (1996).Google Scholar
  15. 15.
    J. L. Buthod. W. Engdahl. J. R. Gauger and D. L. McCormick. Influence of 60 Hz magnetic fields and 12-O-tetradecanoylphorbol-13-acetate on expression of c-MYC in HL-60 cells. In Abstracts of the Eighteenth Annual Meeting of the Bioelectromagnetics Society,Victoria, pp. 179–180 (1996).Google Scholar
  16. 16.
    E. Czerska, J. Casamento, C. Davis, E. Elson, J. Ning and M. Swicord. Effects of ELF on c-myc oncogene expression in normal and transformed human cells. In Proceedings of the I 8th Annual Northeast Bioengineering Conference (W. J. Ohley, Ed.), pp. 61–62. IEEE, New York (1992).Google Scholar
  17. 17.
    E. Czerska, J. Casamento, J. Ning, M. Swicord, H. Al-Barazi, C. Davis and E. Elson. Comparison of the effect of ELF on c-myc oncogene expression in normal and transformed human cells. Ann. NY Acad. Sci. 649:340–342 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    J. L. Phillips, W. Haggren, W. J. Thomas, T. Ishida-Jones and W. Ross Adey. Magnetic field-induced changes in specific gene transcription. Biochem. Biophyc. Acta, 1132:140–144 (1992).CrossRefGoogle Scholar
  19. 19.
    S. W. Hui, G. P. Jahreis, Y. L. Zhao and P. G. Johnson. Effect of 60 Hz magnetic field on proto-oncogene transcription. In Abstracts of the Eighteenth Annual Meeting of the Bioelectromagnetics Society, Victoria, p. 181 (1996).Google Scholar
  20. 20.
    C. F. Blackman, S. G. Benane and D. E. House. Evidence for direct effect of magnetic fields on neunte outgrowth. Faseb J. 7:801–806 (1993).Google Scholar
  21. 21.
    J. Bergquist, B. Bergqvist, S. Galt, R. Ekman and Y. Hamnerius. Search for magnetic field effects on neurite outgrowth and extracted peptide fragments in rat pheochromocytoma cells. In Biological Effects of EM Fields at the Cellular Level and Tropospheric DOAS Measurements (B. Bergqvist). Technical Report No. 188L, Chalmers University of Technology, Göteborg (1994).Google Scholar
  22. 22.
    R. P. Liburdy, T. R. Stoma, R. Sokolic and P. Yaswen. ELF magnetic fields, breast cancer, and melatonin: 60 Hz fields block melatonin’s oncostatic action on ER+ breast cancer cell proliferation. J. Pineal Res. 14:89–97 (1993).CrossRefGoogle Scholar
  23. 23.
    C. F. Blackman, S. G. Benane, D. E. House and J. P. Blanchard. Independent replication of the 12-mG magnetic field effect on melatonin and MCF- 7 cells in vitro. In Abstracts of the Eighteenth Annual Meeting of the Bioelectromagnetics Society. Victoria, pp. 1–2 (1996).Google Scholar
  24. 24.
    R. A. Luben, S. Saraiya and A. P. Morgan. Replication of 12 mG EMF effects on melatonin responses of MCF-7 breast cancer cells in vitro. In Abstracts of the Annual Review of Research on Biological Effects of Electric and Magnetic Fields from the Generation. Delivery & Use of Electricity. San Antonio, Texas, pp. 1–2 (1996).Google Scholar
  25. 25.
    D. Weisbrot, O. Khorkova. H. Lin, A. S. Henderson and R. Goodman. The effect of low frequency electric and magnetic fields on gene expression in Saccharomyeces cerevi.siae. Bioelectrochem. Bioenerg. 31:167–177 (1993).CrossRefGoogle Scholar
  26. 26.
    D. M. Binninger, V. Ungvichian. H. Lin and R. Goodman. Effects of 60 Hz EMF on gene expression in yeast: progress on replication experiments. In Abstracts of the Eighteenth Annual Meeting of the Bioelectromagnetics Society,Victoria, pp. 183–184 (1996).Google Scholar
  27. 27.
    E. Lindström, P. Lindström, A. Berglund, K. Hansson Mild and E. Lundgren. Intracellular calcium oscillations induced in a T-cell line by a weak 50 Hz magnetic field. J. Cellular Physiol. 156:395–398 (1993).CrossRefGoogle Scholar
  28. 28.
    F. Gollnick, U. Pohl, G. Conrad, H. Bock and R. Meyer. Single cell calcium imaging in Jurkat T-lymphocytes during application of 50 Hz magnetic fields. In Abstracts of the Sixteenth Annual Meeting of the Bioelectromagnetics Society, Copenhagen, p. 75 (1994).Google Scholar
  29. 29.
    D. E. Callahan, R. P. Liburdy, V. L. Eckert, E. E. Dunham, M. F. Maestre, B. Parvin and W. E. Johnston. Effects of 50 Hz magnetic fields on intracellular calcium oscillations in Jurkat cells: single-cell fluorescence microscope imaging studies. In Abstracts of the Sixteenth Annual Meeting of the Bioelectromagnetics Society,Copenhagen, p. 78 (1994).Google Scholar
  30. 30.
    J. Wallaczek, P. L. Killoran and W. R. Adey. Acute 60-Hz magnetic field effects on Ca2+ (Mn2+) influx in human Jurkat T-cells: strict dependence on cell state. In Abstracts of the Sixteenth Annual Meeting of the Bioelectromagnetics Society, Copenhagen, p. 76 (1994).Google Scholar
  31. 31.
    J. Gatvanovskis, J. Sandblom, B. Bergqvist, S. Galt and Y. Hamnerius. The influence of 50-Hz magnetic fields on cytoplasmic Ca2+ oscillations in human leukemia T-cells. The Science of Tot. Lotir. 180:19–33 (1996).CrossRefGoogle Scholar
  32. 32.
    R. P. Liburdy, and V. Eckert. Receptor-ligand binding during calcium signal transduction as an interaction site for ELF magnetic fields. In Abstracts of the Seventeenth Annual Meeting of the Bioelectromagnetics Society,Boston, p. 59 (1995).Google Scholar
  33. 33.
    W. X. Balcavage, M. B. Seward, V. Eckert and R. P. Liburdy. CD3: anti-CD3 receptor-ligand binding as an interaction site for ELF magnetic fields. In Abstracts of the Eighteenth Annual Meeting of the Bioelectromagnetics Society, Victoria, pp. 206–207 (1996).Google Scholar
  34. 34.
    I. Nordenson, K. Hansson Mild, M. Sandström and M-O. Mattsson. Effect of low-frequency magnetic fields on the chromosomal level in human amniotic cells. In Interaction Mechanisms of Low-level Electromagnetic Fields in Living Systems - Resonant Phenomena (C. Ramel and B. Nordén, Eds), pp. 240–250. Oxford University Press, Oxford (1993).Google Scholar
  35. 35.
    S. Galt, J. Wahlström, Y. Hamnerius, D. Holmgvist and T. Johannesson. Study of effects of 50 Hz magnetic fields on chromosome aberrations and the growth-related enzyme ODC in human amniotic cells. Bioelectrochem. Bioenerg. 36:1–8 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Maria Gustavsson
    • 1
  • Martin Lindgren
    • 1
  • Sheila Galt
    • 1
  • Yngve Hamnerius
    • 1
  1. 1.Microwave TechnologyChalmers University of TechnologyGöteborgSweden

Personalised recommendations