Current Status of Knowledge and Critical Issues in Tumor Oxygenation

Results from 25 Years Research in Tumor Pathophysiology
  • P. Vaupel
  • O. Thews
  • D. K. Kelleher
  • M. Hoeckel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 454)


In 1972 we started the systematic investigation of oxygenation status in (a) experimental tumor systems in rats and mice [e.g., 1–6], (b) in human tumors xenotransplanted into immune-deficient rnu/rnu-rats [e.g., 7–9], (c) in tumors derived from spontaneously tumorigenic or ras-transformed cell lines [10], and (d) in human tumors in situ [e.g., 11–15] under various pathophysiological conditions using polarographic O2 needle electrodes. In the earlier studies a cryospectrophotometric ex vivomicrotechnique was also used that allowed the measurement of HbO2 saturation in individual red blood cells in tumor microvessels [e.g., 16, 17]. Besides polarographic and cryospectrophotometric microtechniques, mathematical evaluations of the pO2 distribution in tumor tissues have additionally been used to gain an insight into the oxygenation of microareas in tumor tissues [e.g., 18–21].


Metastatic Lesion Uterine Cervix Oxygenation Status Tumor Hypoxia Tumor Oxygenation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Guenther, P. Vaupel, H. Metzger &. G. Thews. Stationaere Verteilung der O2-Drucke im Tumorgewebe (DS-Carcinosarkom). I. Messungen in vivo unter Verwendung von Gold-Mikroelektroden. Z. Krebsforsch. 7,26–39(1972)Google Scholar
  2. 2.
    P. Vaupel. Hypoxia in neoplastic tissue. Microvasc. Res. 13, 399–408 (1977)Google Scholar
  3. 3.
    P. Vaupel, S. Frinak & H.I. Bicher. Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res. 41, 2008–2013 (1981)Google Scholar
  4. 4.
    P. Vaupel, P. Okunieff, F. Kallinowski & L.J. Neuringer. Correlations between 31P-NMR spectroscopy and tissue O2 tension measurements in a murine fibrosarcoma. Radiat. Res. 120, 477–493 (1989)PubMedCrossRefGoogle Scholar
  5. 5.
    O. Thews, D.K. Kelleher & P.W. Vaupel. Modulation of spatial O2 tension distribution in experimental tumors by increasing arterial O2 supply. Acta Oncol. 34, 291–295 (1995)PubMedCrossRefGoogle Scholar
  6. 6.
    P. Vaupel, H. Guenther, H. Metzger & G. Thews. pO2 histograms and pO2 profiles in tumor tissue (DS-Carcinosarcoma) during different stages of growth. In: M. Kessler, D.F. Bruley, L.C. Clark, D.W. Luebbers, I.A. Silver & J. Strauss (eds.) Oxygen Supply. Urban & Schwarzenberg, Muenchen,Berlin,Wien pp 189–192(1972)Google Scholar
  7. 7.
    P. Vaupel, H.P. Fortmeyer, S. Runkel & F. Kallinowski. Blood flow, oxygen consumption and tissue oxygenation of human breast cancer xenografts in nude rats. Cancer Res. 47, 3496–3503 (1987)Google Scholar
  8. 8.
    F. Kallinowski, K.H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff & P. Vaupel. Blood flow, metabolism, cellular microenvironment and growth rate of human tumor xenografts. Cancer Res. 49, 3759–3764(1989)Google Scholar
  9. 9.
    F. Kallinowski & P. Vaupel. Concurrent measurements of O2 partial pressures and pH values in human mammary carcinoma xenotransplants. Adv. Exp. Med. Biol. 200, 609–621 (1986)Google Scholar
  10. 10.
    F. Kallinowski, R. Wilkerson, R. Moore, W. Strauss & P. Vaupel. Vascularity, perfusion rate and local tissue oxygenation of tumors derived from ras-transplanted fibroblasts. Int. J. Cancer 48, 121–127 (1991)Google Scholar
  11. 11.
    P. Vaupel, F. Kallinowski & P. Okunieff. Blood flow, oxygen and nutrient supply, and metabolic microenvi-ronment of human tumors: A review. Cancer Res. 49, 6449–6465 ( 1989)Google Scholar
  12. 12.
    P. Vaupel. Oxygenation of human tumors. Strahlenther. Onkol. 166, 377–386 (1990)Google Scholar
  13. 13.
    F. Kallinowski, R. Zander, M. Hoeckel & P. Vaupel. Tumor tissue oxygenation as evaluated by computerized pO2-histography. Int. J. Radiat. Oncol. Biol. Phys. 19, 953–962 (1990)Google Scholar
  14. 14.
    P. Vaupel, K. Schlenger, C. Knoop & M. Hoeckel. Oxygenation of human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 51, 3316–3322 (1991)Google Scholar
  15. 15.
    M. Hoeckel, K. Schlenger, C. Knoop & P. Vaupel. Oxygenation of carcinomas of the uterine cervix: Evaluation of computerized O2 tension measurements. Cancer Res. 51, 6098–6102 (1991)Google Scholar
  16. 16.
    W. Mueller-Klieser, P. Vaupel, R. Manz & R. Schmidseder. Intracapillary oxyhemoglobin saturation of malignant tumors in humans. Int. J. Radiat. Oncol. Biol. Phys. 7, 1397–1404 (1981)PubMedCrossRefGoogle Scholar
  17. 17.
    P. Wendling, R. Manz, G. Thews & P. Vaupel. Inhomogeneous oxygenation of rectal carcinomas in humans. A critical parameter for preoperative irradiation? Adv. Exp. Med. Biol. 180, 293–300 (1984)Google Scholar
  18. 18.
    G. Thews & P. Vaupel. O2 supply conditions in tumor tissue in vivo. Adv. Exp. Med. Biol. 75, 537–546 (1976)Google Scholar
  19. 19.
    P.W. Vaupel. Blood flow, oxygenation, tissue pH distribution and bioenergetic status of tumors. Berlin, Ernst Schering Research Foundation, Lecture 23, 1994Google Scholar
  20. 20.
    P. Vaupel, F. Kallinowski & K. Groebe. Evaluation of oxygen diffusion distances in human breast cancer using inherent in vivo-data: Role of various pathogenetic mechanisms in the development of tumor hypoxia. Adv. Exp. Med. Biol. 222, 719–726 (1988)PubMedCrossRefGoogle Scholar
  21. 21.
    K. Groebe & P. Vaupel. Evaluation of oxygen diffusion distances in human breast cancer xenografts using tumor-specific in vivo-data: Role of various mechanisms in the development of tumor hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 15, 691–697 (1988)PubMedCrossRefGoogle Scholar
  22. 22.
    C. McCoy, D.J.O. Mclntyre, S.P. Robinson, E.O. Aboagye & J.R. Griffiths. Magnetic resonance spectroscopy and imaging methods for measuring tumour and tissue oxygenation. Brit. J. Cancer 74, 226–231(1996)Google Scholar
  23. 23.
    F. Steinberg, H.J. Roehrborn, K.M. Scheufler, S. Asgari, H.A. Trost, V. Scivert, D. Stolke & C. Streffer. NIR reflexion measurements of hemoglobin and cytochrome aa3 in healthy tissue and neoplasms. Correlations to oxygen consumption: preclinical and clinical data. Adv. Exp. Med. Biol., in press (1997)Google Scholar
  24. 24.
    J.D. Chapman. Measurement of tumor hypoxia by invasive and non-invasive procedures: a review of recent clinical studies. Radiother. Oncol. 20, 13–19 (1991)PubMedCrossRefGoogle Scholar
  25. 25.
    D. Groshar, A.J.B. McEwan, M.B. Parliament, R.C. Urtasun, L.E. Golberg, M. Hoskinson, J.R. Mercer, R.H. Mannan, L.I. Wiebe & J.D. Chapman. Imaging tumor hypoxia and tumor perfusion. J. Nucl. Med. 34, 885–888(1993)PubMedGoogle Scholar
  26. 26.
    R.C. Urtasun, M.B. Parliament, A.J. McEwan, J.R. Mercer, R.H. Mannan, L.I. Wiebe, C. Morin & J.D. Chapman. Measurement of hypoxia in human tumours by non-invasive SPECT imaging of iodoazomycin arabinoside. Brit. J. Cancer 74, S209–S212 (1996)Google Scholar
  27. 27.
    W.J. Koh, K.S. Bergman, J.S. Rasey, L.M. Peterson, M.L. Evans, M.M. Graham, J.R. Grierson, K.L. Lindsley, T.K. Lewellen, K.A. Krohn & T.W. Griffin. Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]Fluoromisonidazole positron emission tomography. Int J. Radiat. Oncol. Biol. Phys. 33, 391–398 (1995)Google Scholar
  28. 28.
    P.E. Valk, C.A. Mathis, M.D. Prados, J.C. Gilbert & T.F. Budinger. Hypoxia in human gliomas: Demonstration by PET with fluorine-18-fluoromisonidazole. J. Nucl. Med. 33, 2133–2137 (1992)PubMedGoogle Scholar
  29. 29.
    J.S. Rasey, W.J. Koh, M.L. Evans, L.M. Peterson, T.K. Lewellen, M.M. Graham & K.A. Krohn. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F] fluoromisonidazole: A pretherapy study of 37 patients. Int. J. Radiat. Oncol. Biol. Phys. 36, 417–428 (1996)PubMedCrossRefGoogle Scholar
  30. 30.
    H.B. Stone, J.M. Brown, T.L. Phillips & R.M. Sutherland. Oxygen in human tumors: Correlations between methods of measurement and response to therapy. Radiat. Res. 136, 422–434 (1993)PubMedCrossRefGoogle Scholar
  31. 31.
    P.W. Vaupel. Oxygenation of solid tumors. In: B.A. Teicher (ed.) Drug Resistance in Oncology. Marcel Dekker, New York, pp. 53–85 (1993)Google Scholar
  32. 32.
    P. Vaupel, O. Thews & M. Hoeckel. Tumor oxygenation: Characterization and clinical implications. In: J.F. Smyth, M.A. Boogaerts & B.R.M. Ehmer (eds.) rhErythropoietin in Cancer Supportive Treatment. Marcel Dekker, New York, Basel,Hongkong, pp. 205–239 ( 1996)Google Scholar
  33. 33.
    P. Vaupel. Oxygen transport in tumors: Characteristics and clinical implications. 388, 341–351 (1996)Google Scholar
  34. 34.
    P. Vaupel & M. Hoeckel. Oxygenation of human tumors. In: M. Molls & P. Vaupel (eds.) Medical Radiology — Diagnostic Imaging and Radiation Oncology. Blood Perfusion and Microenvironment of Human Tumors — Implications for Clinical Radiooncology. Springer, Berlin, Heidelberg, New York, pp. 63–72 (1997)Google Scholar
  35. 35.
    S.J. Falk, R. Ward & N.M. Bleehan. The influence of carbogen breathing on tumour tissue oxygenation in man evaluated by computerised pO2 histography. Brit. J. Cancer 66, 919–924 (1992)PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    S. Runkel, A. Wischnik, J. Teubner, E. Kaven, J. Gaa & F. Melchert. Oxygenation of mammary tumors as evaluated by ultrasound-guided computerized-pO2-histography. Adv. Exp. Med. Biol. 345, 451–458 (1994)PubMedCrossRefGoogle Scholar
  37. 37.
    J. Fueller, HJ. Feldmann, M. Molls & H. Sack. Untersuchungen zum Sauerstoffpartialdruck im Tumorgewebe unter Radio-und Thermoradiotherapie. Strahlenther. Onkol. 170, 453–460 (1994)Google Scholar
  38. 38.
    M. Hoeckel, C. Knoop, K. Schienger, B. Vorndran, M. Mitze, P.G. Knapstein & P. Vaupel. Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother. Oncol. 26, 45–50 (1993)CrossRefGoogle Scholar
  39. 39.
    E. Lartigau, L. Vitu, C. Haie-Meder, M.F. Cosset, M. Delapierre, A. Gerbaulet, F. Eschwege & M. Guichard. Feasibility of measuring oxygen tension in uterine cervix carcinoma. Eur. J. Cancer 28A, 1354–1357(1992)PubMedCrossRefGoogle Scholar
  40. 40.
    D.M. Brizel, G.L. Rosner, L.R. Prosnitz & M.W. Dewhirst. Patterns and variability of tumor oxygenation in human soft tissue sarcomas, cervical carcinomas, and lymph node metastases. Int. J. Radiat. Oncol. Biol. Phys. 32, 1121–1125(1995)Google Scholar
  41. 41.
    H. Lyng, K. Sundfor, G. Trope & E.K. Rofstad. Oxygen tension and vascular density in human cervix carcinoma. Brit. J. Cancer 74, 1559–1563 (1996)PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    HJ. Feldmann. Optimierungsansätze und Limitationen in der regionalen Thermoradiotherapie von Beckentumoren. Thesis, University of Essen, Germany ( 1994)Google Scholar
  43. 43.
    F. Kallinowski & H.J. Buhr. Tissue oxygenation of primary, metastatic and xenografted rectal cancers. In: P. Vaupel, D.K. Kelleher & M. Guenderoth (eds.) Tumor Oxygenation. Gustav Fischer Verlag, Stuttgart, Jena, New York, pp. 205–209 (1995)Google Scholar
  44. 44.
    J. Mattern, F. Kallinowski, C. Herfarth & M. Volm. Association of resistance-related protein expression with poor vascularization and low levels of oxygen in human rectal cancer. Int. J. Cancer 67, 20–23 (1996)Google Scholar
  45. 45.
    D.M. Brizel, G. Rosner, J. Harrelson, L.R. Prosnitz & M.W. Dewhirst. Pretreatment oxygenation profiles of human soft tissue sarcomas. Int. J. Radiat. Oncol. Biol. Phys. 30, 635–642 (1994)Google Scholar
  46. 46.
    M. Nordsmark, S.M. Bentzen & J. Overgaard. Measurement of human tumour oxygenation status by a polarographic needle electrode. Acta Oncol. 33, 383–389 (1994)PubMedCrossRefGoogle Scholar
  47. 47.
    P. Hohenberger & S. Dragon. In situ oxygen partial pressure measurements in human soft tissue sarcomas. In: P.W. Vaupel, D.E. Kelleher & M. Guenderoth (eds.) Tumor Oxygenation. Gustav Fischer Verlag, Stuttgart, Jena, New York, pp. 327–333 (1995)Google Scholar
  48. 48.
    M. Nordsmark, M. Hoyer, J. Keller, O.S. Nielsen, O.M. Jensen & J. Overgaard. The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas. Int. J. Radiat. Oncol. Biol. Phys. 35, 701–708(1996)PubMedCrossRefGoogle Scholar
  49. 49.
    W. Fleckenstein, J.R. Jungblut, M. Suckfuell, W. Hoppe & C. Weiss. Sauerstoffdruckverteilungen in Zentrum und Peripherie maligner Kopf-Hals-Tumoren. Dtsch. Z. Mund-Kiefer-Gesichts-Chir. 12, 205–211 (1993)Google Scholar
  50. 50.
    D.M. Saumweber, R.J. Kau & W. Arnold. Tumor tissue oxygenation in primary squamous cell carcinomas of the head and neck — preliminary results. In: P.W. Vaupel, D.K. Kelleher & M. Guenderoth (eds.) Tumor Oxygenation. Gustav Fischer Verlag, Stuttgart, Jena,New York, pp. 313–318 (1995)Google Scholar
  51. 51.
    R. Rampling, G. Cruickshank, A.D. Lewis, S.A. Fitzsimmons & P. Workman. Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumours. Int. J. Radiat. Oncol. Biol Phys. 29, 427–432(1994)PubMedCrossRefGoogle Scholar
  52. 52.
    M. Hoeckel, K. Schlenger, B. Aral, M. Mitze, U. Schaeffer & P. Vaupel. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 56 4509–4515 (1996)Google Scholar
  53. 53.
    M. Nordsmark, M. Overgaard & J. Overgaard. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother. Oncol. 41, 31–39 (1996)PubMedCrossRefGoogle Scholar
  54. 54.
    S.A. Hill, K.H. Pigott, M.I. Saunders, M.E.B. Powell, S. Arnold, A. Obeid, G. Ward, M. Leahy, P.J. Hoskin & D.J. Chaplin. Microregional blood flow in murine and human tumours assessed using laser Doppler microprobes. Brit. J. Cancer 74, 260–263 (1996)Google Scholar
  55. 55.
    K.H. Pigott, S.A. Hill, D.J. Chaplin & M.I. Saunders. Microregional fluctuations in perfusion within human tumours detected using laser Doppler flowmetry. Radiother. Oncol. 40, 45–50 (1996)PubMedCrossRefGoogle Scholar
  56. 56.
    E. Lartigau, H. Randrianarivelo, L. Martin, S. Stern, CD. Thomas, M. Guichard, P. Weeger, A.M. Le Ridant, B. Luboinski, T. Nguyen, J.-C. Ortoli, F. Grange, M.-F. Avril, A. Lusinchi, P. Wibault, C. Haie-Meder, A. Gerbaulet & F. Eschwege. Oxygen tension measurements in human tumors: The Institut Gustave-Roussy experience. Radiat. Oncol. Invest. 1, 285–291 (1994)Google Scholar
  57. 57.
    L. Martin, E. Lartigau, P. Weeger, P. Lambin, A.M. Le Ridant, A. Lusinchi, P. Wibault, F. Eschwege, B. Luboinski & M. Guichard. Changes in the oxygenation of head and neck tumours during carbogen breathing. Radiother. Oncol. 27, 123–130 (1993)PubMedCrossRefGoogle Scholar
  58. 58.
    S.J. Falk, J.R. Ramsay, R. Ward, K. Miles, A.K. Dixon & N.M. Bleehan BW12C perturbs normal and tumour tissue oxygenation and blood flow in man. Radiother. Oncol. 32, 210–217 (1994)PubMedCrossRefGoogle Scholar
  59. 58a.
    E. Lartigau, A.M. Le Ridant, P. Lambin, P. Weeger, L. Martin, R. Sigal, A. Lusinchi, B. Luboinski, F. Eschwege & M. Guichard. Oxygenation of head and neck tumors. Cancer 71, 2319–2325 (1993)PubMedCrossRefGoogle Scholar
  60. 59.
    D.J. Terris & E.P. Dunphy. Oxygen tension measurements of head and neck cancers. Arch. Otolaryngol. Head Neck Surg. 120, 283–287 (1994)PubMedCrossRefGoogle Scholar
  61. 60.
    M.J. Eble, F. Lohr & M. Wannenmacher. Oxygen tension distribution in head and neck carcinomas after peroral oxygen therapy. Onkologie 18, 136–140 (1995)CrossRefGoogle Scholar
  62. 61.
    V. Strnad, L. Keilholz, M. Kirschner, M. Meyer & R. Sauer. Sauerstoffdruckverteilung in Lymphknotenmetastasen und die Veränderungen während akuter respiratorischer Hypoxie. Strahlenther. Onkol. 173, 267–271 (1997)PubMedCrossRefGoogle Scholar
  63. 62.
    R.A. Gatenby, H.B. Kessler, J.S. Rosenblum, L.R. Coia, PJ. Moldofsky, W.H. Hartz & G.J. Broder. Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 14, 831–838 (1988)PubMedCrossRefGoogle Scholar
  64. 63.
    M. Hoeckel, B. Vorndran, K. Schlenger, E. Baussmann, P.G. Knapstein & P. Vaupel. Tumor oxygenation: A new predictive parameter in locally advanced cancer of the uterine cervix. Gynecol. Oncol. 51, 141–149 (1993)CrossRefGoogle Scholar
  65. 64.
    B. Vorndran. Die intratumorale Oxygenierung als neuer und unabhaengiger Prognosefaktor beim lokal fortgeschrittenen und rezidivierenden Karzinom der Cervix uteri. Dr. med. Thesis, University of Mainz, Med. Faculty, Germany ( 1996)Google Scholar
  66. 65.
    J.A. Raleigh. Hypoxia and its clinical significance. In: J.E. Tepper & J.A. Raleigh (eds.) Seminars in Radiation Oncology. Vol. 6, Saunders, Orlando, Fla., pp 1–70 (1996)Google Scholar
  67. 66.
    M. Molls & P. Vaupel (eds.) Medical Radiology — Diagnostic Imaging and Radiation Oncology. Blood Perfusion and Microenvironment of Human Tumors — Implications for Clinical Radiooncology. Springer, Berlin, Heidelberg,New York(1997)Google Scholar
  68. 67.
    R.E. Durand. Keynote Address: The influence of microenvironmental factors on the activity of radiation and drugs. Int. J. Radiat. Oncol. Biol. Phys. 20, 253–258 (1991)PubMedCrossRefGoogle Scholar
  69. 68.
    T.G. Graeber, C. Osmanian, T. Jacks, D.E. Housman, C.J. Koch, S.W. Lowe & A.J. Giaccia. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996)PubMedCrossRefGoogle Scholar
  70. 69.
    M. Molls & P. Vaupel. The impact of the tumor microenvironment on experimental and clinical radiation oncology and other therapeutic modalities. In: M. Molls & P. Vaupel (eds.) Medical Radiology-Diagnostic Imaging and Radiation Oncology. Blood Perfusion and Microenvironment of Human Tumors — Implications for Clinical Radiooncology. Springer, Berlin, Heidelberg, New York, pp. 1–3 (1997)Google Scholar
  71. 70.
    R.M. Sutherland. Cell and environment interaction in tumor microregions: the multicell spheroid model. Science 240, 177–184 (1988)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • P. Vaupel
    • 1
  • O. Thews
    • 1
  • D. K. Kelleher
    • 1
  • M. Hoeckel
    • 2
  1. 1.Institute of Physiology and PathophysiologyGermany
  2. 2.Department of Obstetrics and GynecologyUniversity of MainzMainzGermany

Personalised recommendations