Adaptation of Hearts to Chronic Hypoxia Increases Tolerance to Subsequent Ischemia by Increased Nitric Oxide Production

  • John E. Baker
  • Patricia Holman
  • B. Kalyanaraman
  • Kirkwood A. PritchardJr.
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 454)


Each year, in excess of 25,000 children undergo corrective surgery for cardiac birth defects. Advances in surgical techniques have made possible the correction of nearly all congenital cardiac defects. Timing of surgery is critically important, with early surgery desirable to promote more normal development. For example, repair of tetralogy of Fallot is now generally recommended in the first 6 to 12 months of life, and routine repair is now being advocated in the first month of life.1–7 Many children undergoing cardiac surgery in the first year of life exhibit varying degrees of cyanotic heart disease where the myocardium is chronically perfused with hypoxic blood. Understanding the mechanisms by which cyanotic congenital heart disease modifies the myocardium and how that modification impacts on protective mechanics during ischemia may provide insight into developing treatments for limiting myocardial damage during surgery.


Nitric Oxide Nitric Oxide Production Chronic Hypoxia Nitric Oxide Donor Cyanotic Congenital Heart Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tucker WY, Turley K, Ullyot DJ, Ebert PA. Management of symptomatic tetralogy of Fallot in the first year of life. J Thorac Cardiovasc Surg 1979; 78:494–501.PubMedGoogle Scholar
  2. 2.
    Gustafson RA, Murray GF, Warden HE, Hill RC, Rozar GE Jr. Early primary repair of tetralogy of Fallot. Ann Thorac Surg 1988; 45:235–241.PubMedCrossRefGoogle Scholar
  3. 3.
    Touati GD, Vouhe PR, Amodeo A, Pouard P, Mauriat P, Leca F, Neveux JV, Castaneda AR. Primary repair of tetralogy of Fallot in infancy. J Thorac Cardiovasc Surg 1990; 99:396–403.PubMedGoogle Scholar
  4. 4.
    Groh MA, Meliones JN, Bove EL, Kirklin JW, Blackstone EH, Lupinetti FM, Snider AR, Rosenthal A. Repair of tetralogy of Fallot in infancy: effect of pulmonary artery size on outcome. Circulation 1991; 84(Suppl):III 206–212.Google Scholar
  5. 5.
    Kirklin JW, Blackstone EH, Jonas RA, Shimazaki Y, Kirklin JK, Mayer JE, Pacifico AD, Castaneda AR. Morphologic and surgical determinants of outcome events after repair of tetralogy of Fallot and pulmonary stenosis: a two-institution study. J Thorac Cardiovasc Surg 1992; 103:706–723.PubMedGoogle Scholar
  6. 6.
    Di Donato RM, Jonas RA, Lang P, Rome JJ, Mayer JE, Castaneda AR. Neonatal repair of tetralogy of Fallot with and without pulmonary atresia. J Thorac Cardiovasc Surg 1991; 101:126–137.PubMedGoogle Scholar
  7. 7.
    Uva MS, Lacour-Gayet F. Komiya T, Serraf A, Bruniaux J, Touchot A, Roux D, Petit J, Planche C. Surgery for tetralogy of Fallot at less than six months of age. J Thorac Cardiovasc Surg 1994; 107:1291–1300.Google Scholar
  8. 8.
    Bove, E.L., and A. H. Stammers. Recovery of left ventricular function after hypothermic global ischemia: Age-related differences in the isolated working rabbit heart. J. Thorac. Cardiovasc. Surg. 91:115–122, 1986.PubMedGoogle Scholar
  9. 9.
    Baker, J.E., L. E. Boerboom, and G. N. Olinger. Age related changes in the ability of hypothermia and cardioplegia to protect ischemic rabbit myocardium. J. Thorac. Cardiovasc. Surg. 96:717–724, 1988.PubMedGoogle Scholar
  10. 10.
    Quantz, M., C. I. Tchervenkov, and R. C.-J. Chiu. Unique responses of immature hearts to ischemia: functional recovery versus initiation of contracture. J. Thorac. Cardiovasc. Surg. 103:927–935, 1992.PubMedGoogle Scholar
  11. 11.
    Yano, Y, M. V. Braimbridge, and D. J. Hearse. Protection of the pediatrie myocardium: differential susceptibility to ischemie injury of the neonatal rat heart. J. Thorac. Cardiovasc. Surg. 94:887–896, 1987.PubMedGoogle Scholar
  12. 12.
    Grice, W. N., T. Konishi, and C. S. Apstein. Resistance of neonatal myocardium to ischemie injury during normothermic and hypothermie ischemie arrest and reperfusion. Circulation 76(pt 2):V150–155, 1987.PubMedGoogle Scholar
  13. 13.
    Watanabe, H., T. Yokosawa, S. Eguchi, and S. Imai. Functional and metabolic protection of the neonatal myocardium from ischemia: insufficient protection by cardioplegia. J. Thorac. Cardiovasc. Surg. 97:50–58, 1989.PubMedGoogle Scholar
  14. 14.
    Avkiran, M., and D. J. Hearse. Protection of the myocardium during global ischemia. Is crystalloid cardioplegia effect in the immature myocardium? J. Thorac. Cardiovasc. Surg. 97:220–228, 1989.PubMedGoogle Scholar
  15. 15.
    Nayler, W. G., and F. Fassold. Calcium accumulation and ATP activity of cardiac sarcoplasmic reticulum before and after birth. Cardiovasc. Res. 37: 283–285, 1977.Google Scholar
  16. 16.
    Nishioka, K., T. Nakanishi, and J. M. Jarmakani. Effect of ischemia on calcium exchange in the rabbit myocardium. Am. J. Physiol. 247: H177–H184, 1984.PubMedGoogle Scholar
  17. 17.
    Nishioka, K., and J. M. Jarmakani. Effect of ischemia on mechanical function and high-energy phosphates in rabbit myocardium. Am. J. Physiol. 242(Suppl II): H1077–H1083, 1982.PubMedGoogle Scholar
  18. 18.
    Julia, P. L., E. R. Kofsky, G. D. Buckberg, H. H. Young, and H. I. Bugyi. Studies of myocardial protection in the immature heart. I. Enhanced tolerance of immature versus adult myocardium to global ischemia with reference to metabolic differences. J. Thorac. Cardiovasc. Surg. 100: 879–887, 1990.PubMedGoogle Scholar
  19. 19.
    Purshottam, T., U. Kaveeshwar, and H. D. Brahmacham. Changes in tissue glycogen stores of rats under acute and chronic hypoxia and their relationship to hypoxia tolerance. Aviat. Space Environ. Med. 48:351–355, 1977.PubMedGoogle Scholar
  20. 20.
    Gennser, G. Influence of hypoxia and glucose on contractility of papillary muscles from adult and neonatal rabbits. Biol. Neonaie 21:90–l06, 1972.CrossRefGoogle Scholar
  21. 21.
    Jarmakini, J.M., M. Nakazawa, T. Nagamoto, and G. A. Langer. Effect of hypoxia on mechanical function in the neonatal mammalian heart. Am. J. Physiol. 235: H469–H474, 178.Google Scholar
  22. 22.
    Grosso, M.A., A. Banerjee, J. A. St. Cyr, K. B. Rogers, J. M. Brown, D. R. Clarke, D. N. Campbell, and A. H. Harken. Cardiac 5’-nucleotidase activity increases with age and inversely relates to recovery from ischemia. J. Thome. Cardiovasc. Surg. 103:206–209, 1992.Google Scholar
  23. 23.
    Abd-Elfattah, A., C. Murphy, D. Salter, J. Goldstein, C. K. Godwin, and A. S. Wechsler. Age-and speciesrelated differences in adenine nucleotide degradation during myocardial global ischemia. Fed. Proc. 45:1039, 1986.Google Scholar
  24. 24.
    Baker EJ, Boerboom LE, Olinger GN, Baker JE: Tolerance of the Developing Heart to Ischemia: Impact of Hypoxemia from Birth. Am J Physiol 268:H1165–H1173, 1995.PubMedGoogle Scholar
  25. 25.
    Konorev EA, Joseph J, Tarpey MM, Baker JE, Kalyanaraman B. S-Nitrosoglutathione Improves Functional Recovery in the Isolated Rat Heart Following Cardioplegic Ischemic Arrest-Evidence for a Cardioprotective Effect of Nitric Oxide. J Pharmacol Exp Ther 274:200–206, 1995.PubMedGoogle Scholar
  26. 26.
    Pabla R, Buda AJ, Flynn DM, Blesse SA, Shin AM, Curtis MJ, Lefer DJ. Nitric oxide attenuates neutrophil-mediated myocardial contractile dysfunction after ischemia and reperfusion. Circ Res 1996; 78:65–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Baker JE, Curry BD, Olinger GN, Gross GJ. Increased tolerance of the chronically hypoxic immature heart to ischemia: Contribution of the KATP Channel. Circulation 1997:95:1278–1285.PubMedCrossRefGoogle Scholar
  28. 28.
    Langendorff O. Untersuchungen am uberlebenden Saugertierherzen. Pflugers Arch Gesamte Physiol 1895; 61:291–332.CrossRefGoogle Scholar
  29. 29.
    Baker JE, Boerboom LE, GN Olinger. Age related changes in the ability of hypothermia and cardioplegia to protect ischemie rabbit myocardium. J Thorac Cardiovasc Surg 1988; 96:717–724.PubMedGoogle Scholar
  30. 30.
    Krebs HA, Henseleit K. Untersuchungen uber die Harnstoffbildung im Tierkorper. Hoppe Seylers Z Physiol Chem 1932; 210:33–66.CrossRefGoogle Scholar
  31. 31.
    Ludbrook J. Repeated measurements and multiple comparisons in cardiovascular research. Cardiovasc Res 1994; 28:303–311.PubMedCrossRefGoogle Scholar
  32. 32.
    Gutzki FM, Tsikas D, Alheid U, Frolich JC. Determination of endothelium-derived nitrite/nitrate by gas chromatography/tandem mass spectrometry using ((15N) NaNO2) as internal standard. Biol Mass Spectrum 1992; 21:97–102.CrossRefGoogle Scholar
  33. 33.
    Akiyama K, Suzuki H, Grant P, Bing RJ. Oxidation products of nitric oxide, NO2 and NO3 in plasma after experimental myocardial infarction. J Mol Cell Cardiol 1997; 29:1–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Pratt PF, Nithipatikom K, Campbell WB. Simultaneous determination of nitrate and nitrite in biological samples by multichannel flow injection analysis. Anal Biochem 1995; 231:383–386.PubMedCrossRefGoogle Scholar
  35. 35.
    Balligand JL, Ungureanu D, Kelly RA, Kobzik L, Pimentai D, Michel T, Smith TW. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 1993; 91:2314–2319.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Konorev EA, Joseph J, Tarpey MM, Kalyanaraman B. The mechanism of cardioprotection by S-nitrosoglutathione monoethyl ester in rat heart during cardioplegic ischemie arrest. Br J Pharmacol 1996; 119:511–518.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 1994, 74:349–353.Google Scholar
  38. 38.
    Plunkett MD, Hendry PJ, Anstadt MP, Camporesi EM, Amota MT, St. Louis JD, Lowe JE. Chronic hypoxia induces adaptive metabolic changes in neonatal myocardium. J Thorac Cardiovasc Surg 1996; 712:8–13.CrossRefGoogle Scholar
  39. 39.
    Kirklin JW, Barratt-Boyes BG. Cardiac Surgery 1986:463–1344.Google Scholar
  40. 40.
    Arnett O, McMillan A, Dinerman JL, Ballermann B, Lowenstein CJ. Regulation of endothelial nitric-oxide synthase during hypoxia. J. Biol. Chem. 1996; 271:15069–15073.CrossRefGoogle Scholar
  41. 41.
    Pabla R, Curtis MJ. Effects of NO modulation on cardiac arrhythmias in the rat isolated heart. Circ Res 1995; 77:984–992.PubMedCrossRefGoogle Scholar
  42. 42.
    Baker JE, Contney SJ, Gross GJ, Bosnjak ZJ. KATP channel activation in a rabbit model of chronic myocardial hypoxia. J Moll Cell Cardiol 1997; 29:845–48.CrossRefGoogle Scholar
  43. 43.
    Shinbo A, Iijima T. Potentiation by nitric oxide of the ATP-sensitive K+ current induced by K+ channel openers in guinea-pig ventricular cells. Br J Pharmacol 1997; 120:1568–1574.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Murphy ME, Brayden JE. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol 1995; 486:47–58.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Vegh A, Papp JG, Parratt JR. Prevention by dexamethasone of the marked antiarrhythmic effects of preconditioning induced 20 h after rapid cardiac pacing. Br J Pharmacol 1994; 113:1081–1082.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Nadaud S, Philippe M, Arnal J-F, Michel J-B, Soubrier F. Sustained increase in aortic endothelial nitric oxide synthase expression in vivo in a model of chronic high blood flow. Circ Res 1996; 79:857–863.PubMedCrossRefGoogle Scholar
  47. 47.
    Nishida K, Harrison DG, Navas JP, Fisher AA, Dockery SP, Uematsu M, Nerem RM, Alexander RW, Murphy TJ. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest 1992; 90:2092–2096.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander R, Nerem RM, Harrison DG. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 1995; 289:C1371–C1378.Google Scholar
  49. 49.
    Noris M, Morigi M, Donodelli R, Aiello S, Poppolo M, Todenchinl M, Orisio S, Remuzzi G, Remuzzi A. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res 1995; 76:536–543.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • John E. Baker
    • 1
    • 2
  • Patricia Holman
    • 1
  • B. Kalyanaraman
    • 3
  • Kirkwood A. PritchardJr.
    • 4
  1. 1.Department of Cardiothoracic SurgeryMedical College of WisconsinUSA
  2. 2.Department of Cardiovascular SurgeryChildren’s Hospital of WisconsinMilwaukeeUSA
  3. 3.Biophysics InstituteMedical College of WisconsinUSA
  4. 4.Department of PathologyMedical College of WisconsinUSA

Personalised recommendations