Skip to main content

Effect of Hemorrhagic Hypotension on Hydroxyl Radicals in Cat Brain

  • Chapter
Oxygen Transport to Tissue XX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 454))

Abstract

This study investigated the relationships between blood pressure, cortical oxygen pressure and hydroxyl radicals in the brain of adult cats during hemorrhagic hypotension and retransfusion. Oxygen pressure in the blood of the cortex was measured optically by the oxygen dependent quenching of phosphorescence and hydroxyl radicals by in vivo microdialysis. Following a 2 h stabilization period after implantation of the microdialysis probe in the striatum, the mean arterial blood pressure (MAP) was decreased in a stepwise manner from 132±2 Torr (control) to 90±1 Torr, 70±3 Torr and 50±3 Torr, holding the pressure at each level for 15 min. The whole blood was then retransfused and measurements were continued for 90 min. Cortical oxygen pressure progressively decreased with decrease in MAP, decreasing from 50±2 Torr (control) to 42±1 Torr, 31 ±2 Torr and 22±2 Torr, respectively. The level of hydroxyl radical increased by 20–25% following first 15 min of bleeding and stay on this level during the remaining period of hypotension. Maximal increase (by 78%) in level of hydroxyl radicals was observed after 15 min of retransfusion. The present study demonstrated that during hypotension and retransfusion there was an increase in the level of hydroxyl radicals in striatum. These can be important mediators of postischemic injury to the striatum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams R.N. (1974) An overview of the 6-hydroxydopamine theory of schizophrenia. Bull Menninger Clin. 38, 57–69.

    CAS  PubMed  Google Scholar 

  • Braughler J.M., and Hall E.D. (1989) Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad. Biol. Med. 6, 289–301.

    Article  CAS  PubMed  Google Scholar 

  • Cao W., Carney J.M., Duchon A., Floyd R.A., and Chevion M. (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci. Letters. 88, 233–238.

    Article  CAS  Google Scholar 

  • Chiueh C.C., Huang S-J., and Murphy D.L. (1992a) Enhanced hydroxy radical generation by 2′-methyl analog of MPTP: suppression by clorgyline and deprenyl. Synapse. 11, 346–348.

    Article  CAS  PubMed  Google Scholar 

  • Chiueh C.C., Krishna G., Tulsi P., Obata T., Lang K., Huang S-J., and Murphy D.L. (1992b) Intracranial microdialysis of salicylate to detect hydroxy radical generation through dopamine autoxidation in the caudate nucleus: effects of MPP+. Free Radical. Biol. Med. 13, 581–583.

    Article  CAS  Google Scholar 

  • Cohen G. (1988) Oxygen radicals and Parkinson’s disease, in: Halliwell B., ed. Oxygen radicals and tissue injury. Bethesda: FASEB, 130–135.

    Google Scholar 

  • Cohen G., Heikkila R.E., Allis B., Cabbat F., Dembiec D., and MacNamee D. (1976) Destruction of sympathetic nerve terminals by 6-hydroxydopamine: protection by l-phenyl-3-(2-thiazolyl)-2-thiourea, diethyldithio-carbamate, methimazole, cysteamine, ethanol and n-butanol. J. Pharmacol Exp. Ther. 199, 336–352.

    CAS  PubMed  Google Scholar 

  • Demopoulos H.B., Flamm E., Selligman M., and Pietronigro D.D. (1982) Oxygen free radicals in central nervous system ischemia and trauma. In Pathology of Oxygen (Autor AP, Ed.). New York: Academic Press pp 127–155.

    Google Scholar 

  • Floyd R.A. (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEBJ. 4, 2587–2597.

    CAS  Google Scholar 

  • Floyd R.A., Watson J., and Wong P.K. (1984) Sensitive assay of hydroxyl free radical formation utilizing high pressure liquid chromatography with electrochemical detection of phenol and salicylate hydroxylation products. J. Biochem. Biophys. Methods. 10, 221–235.

    Article  CAS  PubMed  Google Scholar 

  • Globus M.Y.T., Alonso O., Dietrich W.D., Busto R., and Ginsberg M.D. (1995a) Glutamate release and free radical production following brain injury: Effects of posttraumatic hypothermia. J. Neurochem. 65, 1704–1711.

    Article  CAS  PubMed  Google Scholar 

  • Globus M.Y.T., Busto R., Lin B., Schnippering H., and Ginsberg M.D. (1995b) Detection of free radical activity during transient global ischemia and recirculation: effects of intraischemic brain temperature modulation. J. Neurochem. 65, 1250–1256.

    Article  CAS  PubMed  Google Scholar 

  • Gruener N., Gonzlan O., Goldstein T., Davis J., Besner I., and Iancu T.C. (1991) Iron, transferrin and ferritin in cerebrospinal fluid of children. Clin. Chem. 37, 263–265.

    CAS  PubMed  Google Scholar 

  • Graham D.G., Tiffany S.M., Bell W.R., and Gutknecht W.F. (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine and related compounds toward C 1300 Neuroblastoma cells in vitro. Mol. Pharmacol. 14, 644–653.

    CAS  PubMed  Google Scholar 

  • Graham D.T. (1984) Catecholamine toxicity: a proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson’s disease. Neurotoxicology 5, 83–96.

    CAS  PubMed  Google Scholar 

  • Hall E.D., Andrus P.K., and Yonkers P.A. (1993) Brain hydroxyl radical generation in acute experimental head injury. J. Neurochem. 60, 588–594.

    Article  CAS  PubMed  Google Scholar 

  • Hall E.D., and Braughler J.M. (1989) Central nervous trauma and stroke. II Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Rad. Biol. Med. 6, 303–313.

    Article  CAS  PubMed  Google Scholar 

  • Hallgreen B., and Sourander P. (1958) The effect of age on the nonhaemin iron in the human brain. J. Neurochem. 3,41–51.

    Article  Google Scholar 

  • Halliwell B. (1989) Oxidants and the central nervous system: some fundamental questions, is oxidant damage relevant to Parkinson’s disease, traumatic injury, or stroke? Acta Neurol. Scand. 126, 23–33.

    Article  CAS  Google Scholar 

  • Halliwell B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B., and Gutteridge J.M.C. (1985) Oxygen radicals and the nervous system. Trends Neurosci. 8, 22–26.

    Article  CAS  Google Scholar 

  • Kontos H.A., and Povlishock J.T. (1986) Oxygen radicals in brain injury. Central Nervous System Trauma. 3 257–263.

    CAS  PubMed  Google Scholar 

  • Kontos H.A., Wei E.P., Povlishock J.T., Dietrich W.D., Mageira D.J., and Ellis E.F. (1980) Cerebral arteriolar damage by arachidonic acid and prostoglandin G2. Science. 209, 1242–1245.

    Article  CAS  PubMed  Google Scholar 

  • Lancelot E., Callebert J., Plotkine M., and Boulu R.G. (1995) Striatal dopamine participates in glutamate-induced hydroxyl radical generation. NeuroReport. 6, 1033–1036.

    Article  CAS  PubMed  Google Scholar 

  • Lo W.D., and Betz A.L. (1986) Oxygen free radical reduction of brain capillary rubidium uptake. J.Neurochem. 46,394–398.

    Article  CAS  PubMed  Google Scholar 

  • Maker H.S., Weiss C, Silides D.J., and Cohen G. (1981) Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J. Neurochem. 36, 589–593.

    Article  CAS  PubMed  Google Scholar 

  • Matsui Y, and Kumagae Y (1991) Monoamine oxidase inhibitors prevents striatal neuronal necrosis induced by transient forebrain ischemia. Neuroscience Letters, 126, 175–178.

    Article  CAS  PubMed  Google Scholar 

  • Obata T., and Chiueh C.C. (1992) In vivo trapping of hydroxyl free radicals in the striatum utilizing intracranial microdialysis perfusion of salicylate: effects of MPTP, MPDP+ and MPP+. J. Neural Transm. 89, 139–145.

    Article  CAS  Google Scholar 

  • Obata T., and Yamanaka Y (1995) Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation by monoamine oxidase inhibitor in the rat. Neurosci. Letters. 188, 13–16.

    Article  CAS  Google Scholar 

  • Olano M., Song D., Murphy S., Wilson D.F., and Pastuszko A. (1995) Relationships of dopamine, cortical oxygen pressure, and hydroxyl radicals in brain of newborn piglets during hypoxia and posthypoxic recovery. J. Neurochem. 65, 1205–1212.

    Article  CAS  PubMed  Google Scholar 

  • Patt A., Harken A.H., Burton L.K., Rodell T.C, Piermattei D., Schorr W.J., Parker N.B., Berger E.M., Horesh I.R., Terada L.S., Linas S.L., Cheronis J.C., and Repine J.E. (1988) Xanthine oxidase derived hydrogen peroxide contributes to ischemia reperfusion induced edema in gerbil brains. J. Clin. Invest. 81, 1556–1562.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pellmar T.C, and Neel K.L. (1989) Oxidative damage in the guinea pig hippocampal slice. Free Radical Biol. Med. 6, 467–472.

    Article  CAS  Google Scholar 

  • Phelan A.M., and Lange O.G. (1990) Enhanced transport of Superoxide dismutase (SOD) across the blood brain barrier using liposome encapsulated SOD (L-SOD) and its effect on ischemia and reperfusion induced membrane membrane damage. FASEB J. 4, A896.

    Google Scholar 

  • Rumsey W.L., Vanderkooi J.M., and Wilson D.F. (1988) Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue. Science. 241, 1649–1651.

    Article  CAS  PubMed  Google Scholar 

  • Schmidley J.W. (1990) Free radicals in central nervous system ischemia. Stroke 25, 7–12.

    Google Scholar 

  • Slivka A., and Cohen G. (1985) Hydroxyl radical attack on dopamine. J. Biol. Chem. 260, 15466–15472.

    CAS  PubMed  Google Scholar 

  • Song D., Marczis J., Olano M., Kovach A., Wilson D.F. and Pastuszko A. (1997) Effect of hemorrhagic hypotension on cortical oxygen pressure and striatal extracellular dopamine in cat brain. Neuro chemical Res. 22, 1111–1117.

    CAS  Google Scholar 

  • Traystman R.J., Kirsch J.R., and Koehler R.C. (1991) Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J. Appl. Physiol. 71, 1185–1195.

    CAS  PubMed  Google Scholar 

  • Tse D.C.S., McCreery R.L., and Adams R.N. (1976) Potential oxidative pathways of brain catecholamines. J. Med. Chem. 19, 37–40.

    Article  CAS  PubMed  Google Scholar 

  • Wei E.P., Dietrich W.D., Povlishock J.T., Navari R.M., and Kontos H.A. (1980) Functional, morphological and metabolic abnormalities of the cerebral microcirculation after concussive brain injury. Circ. Res. 46, 37–47.

    Article  CAS  PubMed  Google Scholar 

  • Wei E.P., Kontos H.A., Dietrich W.D., Povlishock J.T., and Ellis E.F. (1981) Inhibition of free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive head injury in cats. Circ. Res. 48,95–103.

    Article  CAS  PubMed  Google Scholar 

  • Wilson D.F., Rumsey W.L., Green T.J., and Vanderkooi J.M. (1988) The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J. Biol. Chem. 263,2712–2718.

    CAS  PubMed  Google Scholar 

  • Wilson D.F., Pastuszko A., DiGiacomo J.E., Pawlowski M., Schneiderman R., and Delivoria-Papadopoulos M. (1992) Effect of hyperventilation on oxygenation of the brain cortex of newborn piglets. J. App. Physiol. 70, 2691–2696.

    Google Scholar 

  • Youdim M.B.H. (1988) Iron in the brain: implications for Parkinson’s and Alzheimer’s disease. Mt. Sinai J. Med. 55,97–101.

    CAS  PubMed  Google Scholar 

  • Zhang J., and Piantadosi C.A. (1991) Preventation of H2O2 generation by monoamine oxidase protects against CNS O2 toxicity. J. Appl Physiol. 71, 1056–1061.

    Google Scholar 

  • Zini I., Tomasi A., Grimaldi R., Vannini V., and Agnati L.F. (1992) Detection of free radicals during brain ischemia and reperfusion by spin trapping and microdialysis. Neurosci. Letters. 138, 279–282.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Song, D., Murphy, S., Olano, M., Wilson, D.F., Pastuszko, A. (1998). Effect of Hemorrhagic Hypotension on Hydroxyl Radicals in Cat Brain. In: Hudetz, A.G., Bruley, D.F. (eds) Oxygen Transport to Tissue XX. Advances in Experimental Medicine and Biology, vol 454. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4863-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4863-8_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7206-6

  • Online ISBN: 978-1-4615-4863-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics