Skip to main content

Oxygen and Ion Concentrations in Normoxic and Hypoxic Brain Cells

  • Chapter
Oxygen Transport to Tissue XX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 454))

Abstract

The goal of the present contribution is to discuss the relationships among brain oxygen tension, energy (ATP) level, and ion gradients and movements. The function of the CNS, the generation and transmission of impulses, is determined to a large extent by the movements of ions. Hence elucidation of these relationships is necessary to the understanding of how brain works. Moreover, such knowledge is indispensable for the design of rational therapies for treatment of a large group of pathological states caused by lack of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davies PW, Brink F. Microelectrodes for measuring local oxygen tension in animal tissues. Rev Sci Instrum. 1942; 13: 524–533.

    Article  CAS  Google Scholar 

  2. Feng Z-C, Roberts Jr EL, Sick TJ, Rosenthal M. Depth profile of local oxygen tension and blood flow in rat cerebral cortex, white matter and hippocampus. Brain Res. 1988; 445: 280–288.

    Article  CAS  PubMed  Google Scholar 

  3. Degn H, Wohlrab H. Measurement of steady-state values of respiration rate and oxidation levels of respiratory pigments at low oxygen tensions. Biochim. Biophys. Acta 1971; 245: 347–355.

    Article  CAS  PubMed  Google Scholar 

  4. Longmuir IS. Respiration rate of bacteria as a function of oxygen concentration. Biochem. J. 1954; 57: 81–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Sugano T, Oshino N, Chance B. Mitochondrial fonction under hypoxic conditions. The steady states of cytochrome c reduction and of energy metabolism. Biochim. Biophys. Acta 1974; 347: 340–358.

    Article  CAS  PubMed  Google Scholar 

  6. EreciƄska M, Silver IA. ATP and brain function. J. Cereb. Blood Flow Metab. 1989; 9: 2–19.

    Article  PubMed  Google Scholar 

  7. Jameson N, Olson J, Nguyen H, Holtzman D. Respiration of primary cultured cerebellar granule neurons and cerebral cortical neurons. J. Neurochem. 1984; 42: 470–474.

    Article  CAS  PubMed  Google Scholar 

  8. Pauwels PJ, Opperdoes FR, Trouet A. Effects of antimycin, glucose deprivation, and serum on cultures of neurons, astrocytes, and neuroblastoma cells. J. Neurochem. 1985; 44: 143–148.

    Article  CAS  PubMed  Google Scholar 

  9. Silver IA, EreciƄska M. Energetic demands of the Na+/K+ ATPase in mammalian astrocytes. Glia 1997; 20:1–11

    Article  Google Scholar 

  10. Siesjö BK. Brain Energy Metabolism. New York: John Wiley and Sons, 1978

    Google Scholar 

  11. Gregory GA, Welsh FA, Yu ACH, Chan PH. Fructose-1,6-bisphosphate reduces ATP loss from hypoxic astrocytes. Brain Res. 1990; 516:310–312.

    Article  CAS  PubMed  Google Scholar 

  12. Longuemare MC, Hill MP, Swanson RA. Glycolysis can prevent non-synaptic excitatory amino acid release during hypoxia. NeuroReport 1994; 5: 1789–1792.

    Article  CAS  PubMed  Google Scholar 

  13. Tombaugh GC, Sapolsky RM. Corticosterone accelerates hypoxia-and cyanide-induced ATP loss in cultured hippocampal astrocytes. Brain Res. 1992; 588: 154–158.

    Article  CAS  PubMed  Google Scholar 

  14. EreciƄska M, Silver IA. Ions and energy in mammalian brain. Prog. Neurobiol. 1994; 43: 37–71.

    Article  PubMed  Google Scholar 

  15. Yager JY, Kala G, Hertz L, Juurlink BHJ. Correlation between content of high-energy phosphates and hypoxic-ischemic damage in immature and mature astrocytes. Dev. Brain Res. 1994 82: 62–68

    Article  CAS  Google Scholar 

  16. Cambray-Deakin M, Pearce B, Morrow C, Murphy S. Effects of extracellular potassium on glycogen stores of astrocytes in vitro. J. Neurochem. 1988; 51: 1846–1851.

    Article  CAS  PubMed  Google Scholar 

  17. Cataldo AM, Broadwell RD. Cytochemical identification of cerebral glycogen and glucose-6-phosphate activity under normal and experimental conditions. I. Neurons and glia. J. Electron Microscop. Techn. 1986; 3:413–437.

    Article  CAS  Google Scholar 

  18. Ibrahim MZM. Glycogen and its related enzymes of metabolism in the central nervous system. Adv. Anat. Embryol. Cell Biol. 1975; 52: 1–85.

    Google Scholar 

  19. Sorg O, Magistretti PJ. Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenalme and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res. 1991; 563:277–233

    Article  Google Scholar 

  20. Wilson CJ. The generation of natural firing patterns in neostriatal neurons. Prog. Brain Res. 1993; 99:277–297

    Article  CAS  PubMed  Google Scholar 

  21. Jiang C, Haddad GG. Effect of anoxia on intracellular and extracellular potassium activity in hypoglossal neurons in vitro. J. Neurophysiol. 1991; 66: 103–111.

    CAS  PubMed  Google Scholar 

  22. Erecinska M, Nelson D, Yudkoff M, Silver IA. Energetics of the nerve terminal in relation to central nervous system fonction. Bioch. Soc. Trans. 1994; 22: 959–965.

    CAS  Google Scholar 

  23. Hansen AJ. Effect of anoxia on ion distribution in the brain. Physiol. Rev. 1985; 65: 101–148

    CAS  PubMed  Google Scholar 

  24. Silver IA, Erecinska M. Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat bram m vivo. J. Gen. Physiol. 1990; 95: 837–866.

    Article  CAS  PubMed  Google Scholar 

  25. Silver IA, Erecinska M. Ion homeostasis in rat brain in vivo: Intra-and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term, transient ischemia. J. Cereb. Blood Flow. Metab. 1992; 12:759–772

    Article  CAS  PubMed  Google Scholar 

  26. Silver IA, EreciƄska M. Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation of oxygen supply in normo-, hypo-and hyperglycemic animals. J. Neurosci. 1994; 14: 5068–5076.

    CAS  PubMed  Google Scholar 

  27. Silver IA, Deas J, EreciƄska M. Ion homeostasis in brain cells. Differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 1997; 78: 589–601.

    Article  CAS  PubMed  Google Scholar 

  28. Ikehara T, Yamaguchi H, Hosokawa K, Sakai T, Miyamoto H. Rb+ influx in response to changes in energy generation: effect of regulation of the ATP content of HeLa cells. J. Cell. Physiol. 1984; 119: 273–282.

    Article  CAS  PubMed  Google Scholar 

  29. Soltoff SP, Mandel LP. Active ion transport in the renal proximal tubule. J. Gen. Physiol. 1984; 84: 643–662.

    Article  CAS  PubMed  Google Scholar 

  30. Tessitore N, Sakhrani LM, Massry SG. Quantitative requirement for ATP for active transport in isolated renal cells. Am. J. Physiol. 1986; 251: C120–C127.

    CAS  PubMed  Google Scholar 

  31. EreciƄska M, Silver IA. The role of glial cells in regulation of neurotransmitter amino acids in the external environment I. Transmembrane electrical and ion gradients and energy parameters in cultured glial-derived cell lines. Brain Res. 1986; 369(1-2): 193–202.

    Article  PubMed  Google Scholar 

  32. EreciƄska M, Dagani F, Nelson D, Deas J, Silver IA. Relations between intracellular ions and energy metabolism: a study with monensin in synaptosomes, neurons, and C6 glioma cells. J. Neurosci. 1991; 11(8): 2410–2421.

    PubMed  Google Scholar 

  33. EreciƄska M, Nelson D, Dagani F, Deas J, Silver IA. Relations between intracellular ions and energy metabolism under acidotic conditions: a study with nigericin in synaptosomes, neurons and C6 glioma cells. J. Neurochem. 1993; 61: 1356–1368.

    Article  PubMed  Google Scholar 

  34. EreciƄska M, Deas J, Silver IA. The effect of pH on glycolysis and phosphofructokinase activity in cultured cells and synaptosomes. J. Neurochem. 1995; 65: 2765–2772.

    Article  PubMed  Google Scholar 

  35. EreciƄska M, Nelson D, Deas J, Silver IA. Limitation of glycolysis by hexokinase in synaptosomes during intense ion pumping. Brain Res. 1996;.

    Google Scholar 

  36. Wilson JE. Regulation of mammalian hexokinase activity. In: Beitner R, ed. Regulation of Carbohydrate Metabolism. Boca Raton, Fl.: CRC Press, 1985: 45–86. vol I.

    Google Scholar 

  37. Krebs HA, Woods HF, Alberti KGMM. Hyperlactataemia and lactic acidosis. Ess. Med. Biochem. 1975; 1: 81–103.

    CAS  Google Scholar 

  38. Alberti KGMM, Cuthbert C. The hydrogen ion in normal metabolism: a review. Ciba Found. Symp. 1982; 87: 1–19.

    CAS  PubMed  Google Scholar 

  39. Hochachka PW, Mommsen TP. Protons and anaerobiosis. Science 1983; 219: 1391–1397.

    Article  CAS  PubMed  Google Scholar 

  40. Cater DB, Garatini S, Marina F, Silver IA. Changes of oxygen tension in brain and somatic tissues induced by vasodilator and vasoconstrictor substances. Proc. R. Soc. Lond. B. Biol. Sci. 1961; 155: 136–157.

    Article  Google Scholar 

  41. Nair P, Whalen WJ, Buerk D. PO2 of cat cerebral cortex: response to breathing N2 and 100% O2. Microvasc. Res. 1975; 9: 158–165.

    Article  CAS  PubMed  Google Scholar 

  42. Smith RH, Guilbeau EJ, Renau DD. The oxygen tension field within a discrete volume of cerebral cortex. Microvasc. Res. 1977; 13: 233–240.

    Article  CAS  PubMed  Google Scholar 

  43. Ikeda M, Busto R, Yoshida S, Santiso M, Martinez E, Ginsberg MD. Cerebral phosphoinositide, triacyl-glycerol and energy metabolism during severe hypoxia and recovery. Brain Res. 1988; 459: 344–350.

    Article  CAS  PubMed  Google Scholar 

  44. FolbergrovĂĄ J, Minamisawa H, Ekholm A, Siesjö BK. Phosphorylase a and labile metabolites during anoxia: correlation to membrane fluxes of K+ and Ca2+. J. Neurochem. 1990; 55: 1690–1696.

    Article  PubMed  Google Scholar 

  45. Budd SL, Nicholls DG. A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J. Neurochem. 1996; 66: 403–411.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silver, I., EreciƄska, M. (1998). Oxygen and Ion Concentrations in Normoxic and Hypoxic Brain Cells. In: Hudetz, A.G., Bruley, D.F. (eds) Oxygen Transport to Tissue XX. Advances in Experimental Medicine and Biology, vol 454. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4863-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4863-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7206-6

  • Online ISBN: 978-1-4615-4863-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics