Advertisement

Evaluation of Near Infrared Spectroscopy in Patients with Traumatic Brain Injury

  • Mary E. Kerr
  • Donald Marion
  • Patricia A. Orndoff
  • Barbara B. Weber
  • Susan M. Sereika
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 454)

Abstract

Near infrared spectroscopy provides a continuous noninvasive measure of changes in regional cerebral oxygen (rSO2) and quantifies these changes into a single index (Somanetics, Corporation). McCormick et al1 originally validated this index from gas analysis studies of normal adults where they found that the rSO2 index represented a summation of differential weighting of arterial O2 saturation (SaO2) (20%), jugular venous O2 saturation (SvjO2) (75%), and extracranial O2 saturation (5%).

Keywords

Traumatic Brain Injury Cerebral Perfusion Pressure Cerebral Oxygen Near Infrared Spectroscopy Cerebral Oximetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCormick PW, Stewart M, Goetting MG, Balakrishnan G. Regional cerebrovascular oxygen saturation measured by optical spectroscopy in humans. Stroke 22(5):596–602, 1991.PubMedCrossRefGoogle Scholar
  2. 2.
    Germon TJ, Kane NM, Manara AR, Nelson RJ. Near-infrared spectroscopy in adults: effects of extracranial ischaemia and intracranial hypoxia on estimation of cerebral oxygenation [see comments]. British Journal of Anaesthesia. 73(4):503–6, 1994.PubMedCrossRefGoogle Scholar
  3. 3.
    Colier WN, van Haaren NJ, Oeseburg B. A comparative study of two near infrared spectrophotometer for the assessment of cerebral hemodynamics. Acta Anaesthesiologica Scandinavica. Supplementum. 107:101–5, 1995.PubMedCrossRefGoogle Scholar
  4. 4.
    Prough DS, Scuderi PE, Lewis G, Stump DA, Goetting M. Initial clinical experience using in vivo optical spectroscopy to quantify brain oxygen saturation. Abstract. Anesthesiology. 1990; 7S:A424.Google Scholar
  5. 5.
    Schindler E, Zickmann B, Muller M, Boldt J, Kroll J, Hempelmann G. [Cerebral oximetry by infrared spectroscopy in comparison with continuous measurement of oxygen saturation of the jugular vein bulb in interventions of the internal carotid artery]. [German] Vasa. 24(2): 168–75, 1995.PubMedGoogle Scholar
  6. 6.
    Prough DS, Scuderi PE, Motsinger S, Lewis G. Initial evaluation of a new prototype of a noninvasive brain oxygen monitor. Abstract. Critical Care Medicine. 1992:20 (Suppl):S110.Google Scholar
  7. 7.
    Bullock MR, Povlishock JT. Guidelines for the management of traumatic brain injury. Journal of Neurotrauma. 13(11): 643–721, 1996.CrossRefGoogle Scholar
  8. 8.
    Pollard V, DeMelo E, Deyo DJ et al. Generation and validation of an algorithm for brain oxygen monitoring. (Abstract). Anesthesia Analgesia 78:S343. 1994.Google Scholar
  9. 9.
    Prough DS. Cerebral near-infrared spectroscopy: Ready for prime time? Critical Care Medicine 23:(1):1624–1526, 1995.PubMedCrossRefGoogle Scholar
  10. 10.
    McCormick PW, Stewart M, Goetting MG, Balakrishnan G. Regional cerebrovascular oxygen saturation measured by optical spectroscopy in humans. Stroke 22(5):596–602, 1991.PubMedCrossRefGoogle Scholar
  11. 11.
    Kirkpatrick PJ, Smielewski P, Czosnyka M, Menon DK, Pickard JD. Near-infrared spectroscopy use in patients with head injury. Journal of Neurosurgery 83:963–970, 1995.PubMedCrossRefGoogle Scholar
  12. 12.
    Meixensberger J, Dings J, Hamelbeck B, Roosen K. Monitoring of cerebral oxygenation by near infrared spectroscopy versus brain tissue PO2 and cerebral perfusion pressure following severe head injury (Abstract). 9th International Cerebral Hemodynamics Symposium, South Carolina, February 5–9, 1995.Google Scholar
  13. 13.
    Slavin K, Dujovny M, Ausman JI, Cui W. Monitoring of cerebral oxygen saturation using near-infrared spectroscopy in neurosurgical patients. Presented at AANS Annual Meeting, San Diego, CA April 9–14 1994.Google Scholar
  14. 14.
    Germon TJ, Young AE, Manara AR, Nelson RJ. Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy. Journal of Neurology, Neurosurgery & Psychiatry. 58(4):477–9, 1995.CrossRefGoogle Scholar
  15. 15.
    Schwarz G, Litscher G, Kleinert R, Jobstmann R. Cerebral oximetry in dead subjects [see comments]. Journal of Neurosurgical Anesthesiology. 8(3): 189–93, 1996 Jul.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Mary E. Kerr
    • 1
  • Donald Marion
    • 2
  • Patricia A. Orndoff
    • 1
  • Barbara B. Weber
    • 1
  • Susan M. Sereika
    • 1
  1. 1.University of PittsburghUSA
  2. 2.University of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations