Models to Evaluate Health Risks Derived from Copper Exposure/Intake in Humans

  • Manuel Olivares
  • Ricardo Uauy
  • Gloria Icaza
  • Mauricio González
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 448)


Copper (Cu) is essential for the survival of plants and animals. Animal and human studies have shown that Cu is involved in the function of several enzymes (Linder and Hazegh-Azam, 1996). Different studies have demonstrated that Cu is required for infant growth, host defense mechanisms, bone strength, red and white blood cell maturation, iron transport cholesterol and glucose metabolism, myocardial contractility, and brain development (Danks, 1988).


International Atomic Energy Agency Health Risk Assessment Copper Deficiency Wilson Disease Safe Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, D.G. and Dourson, M.L. (1988). Reference dose (RfD): description and use in health risk assessments. Regul. Toxicol. Pharmacol. 8, 471–486.PubMedCrossRefGoogle Scholar
  2. Beaumont, C., Simon, M., Fauchet, R., Hespel, J.P., Brissot, P., Genetet, B. and Bourel, M. (1979). Serum ferritin as a possible marker of the hemochromatosis allele. N. Engl. J. Med.. 301, 169–174PubMedCrossRefGoogle Scholar
  3. Becking, G. (1996). Copper: essentiality and toxicity. IPCS News 10, 4–5.Google Scholar
  4. Berg, R., Lundh, S., Jansonn, G. and Rappe, A. (1981). Kopparforgiftning av dricksvattnet som orsak till diarre hos barn. Halsovardskontakt. 10, 6–8Google Scholar
  5. Bloomfield, J., Dixon, S.R. and McCredie, D.A. (1971). Potential hepatotoxicity of copper in recurrent hemodialysis. Arch. Int. Med. 128, 555–560.CrossRefGoogle Scholar
  6. Bothwell, T.H., Charlton, R.W., Cook, J.D. and Finch, C.A. (1979). Iron Metabolism In Man. (Oxford: Blackwell), pp. 245–255.Google Scholar
  7. Bowman, B.A. and Rishert, J.F. (1994). Comparison of the methodological approaches used in the derivation of recommended dietary allowances and oral reference doses for nutritionally essential elements. In: Risk Assessment Of Essential Elements, W. Mertz, CO. Abernathy, S.S. Olin, eds. (Washington, DC: ILSI Press), pp. 63–73.Google Scholar
  8. Center for Disease Control (CDC). (1975). Acute copper poisoning — Pennsylvania. Mortal. Morbid. Weekly Rep. 29, 99.Google Scholar
  9. Cousins, R.J. (1996) Zinc. In: Present Knowledge In Nutrition. E.E. Ziegler, L.J. Jr. Filer, eds. (Washington, DC: ILSI Press), pp. 293–306.Google Scholar
  10. Danks, D.M. (1988). Copper deficiency in humans. Annu. Rev. Nutr. 8, 235–257.PubMedCrossRefGoogle Scholar
  11. Dourson, M.L. (1994). Methods for establishing oral reference doses. In: Risk Assessment Of Essential Elements, W. Mertz, CO. Abernathy, S.S. Olin, eds. (Washington, DC: ILSI Press), pp. 51–61.Google Scholar
  12. Dourson, M.L. and Stara, J.F. (1983). Regulatory history and experimental support of uncertainty (safety) factors. Regul. Toxicol. Pharmacol. 3, 224–238.PubMedCrossRefGoogle Scholar
  13. Farrell, P.M., Bieri, J.G., Fratatoni, J.F., Wood, R.E. and Di Sant’Agnese, P.A. (1977). The occurrence and effects of human vitamin E deficiency. J. Clin. Invest. 60, 233–241.PubMedCrossRefGoogle Scholar
  14. Fleet, J.C and Mayer, J. (1996). Discovery of the hemochromatosis gene will require rethinking the regulation of iron metabolism. Nutr. Rev. 54, 285–292.PubMedCrossRefGoogle Scholar
  15. Frommer, D.J. (1976). Direct measurement of serum non-caeruloplasmin copper in liver disease. Clin. Chim. Acta. 68, 303–307.PubMedCrossRefGoogle Scholar
  16. Goyer, R. (1994). Biology and nutrition of essential elements. In: Risk Assessment Of Essential Elements, W. Mertz, CO. Abernathy, S.S. Olin, eds. (Washington, DC: ILSI Press), pp. 13–19.Google Scholar
  17. Heresi, G., Castillo-Durán, C., Muñoz, C., Arévalo, M. and Schlesinger, L. (1985). Phagocytosis and immunoglobulin levels in hypocupremic infants. Nutr. Res. 5, 1327–1334.CrossRefGoogle Scholar
  18. Horslen, S.P., Tanner, M.S., Lyon, T.D.B., Fell, G.S. and Lowry, M.F. (1994). Copper associated childhood cirrhosis. Gut. 35, 1497–1500.PubMedCrossRefGoogle Scholar
  19. International Atomic Energy Agency (IAEA). (1992). Human Dietary Intakes Of Trace Elements: A Global Literature Survey Mainly For The Period 1970-1991. I. Data List And Sources Of Information. (Vienna: IAEA).Google Scholar
  20. Joint FAO/WHO Expert Committee on Food Additives (JECFA). (1982). Toxicological Evaluation Of Certain Food Additives. World Health Organization Tech Rep Ser 683. (Rome: WHO), pp. 265–296.Google Scholar
  21. Knobeloch, L., Ziarnik, M., Howard, J., Theis, B., Farmer, D., Anderson, H. and Proctor, M. (1994). Gastrointestinal upsets associated with ingestion of copper-contaminated water. Environ. Health Perspect. 102, 958–961PubMedCrossRefGoogle Scholar
  22. Linder, M.C. and Hazegh-Azam, M. (1996). Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 63, 797S–811S.PubMedGoogle Scholar
  23. Moynahan, E.J. (1974). Acrodermatitis enterophatica: a lethal inherited human zinc-deficiency disorder. Lancet ii, 399–400.CrossRefGoogle Scholar
  24. Müller, T., Feichtinger, H., Berger, H. and Müller, W. (1996). Endemic Tyrolean cirrhosis: an ecogenetic disorder. Lancet. 347, 877–880.PubMedCrossRefGoogle Scholar
  25. National Research Council (NRC). (1989). Recommended Dietary Allowances. 10th ed. (Washington, DC: National Academy of Sciences), pp. 205–213.Google Scholar
  26. Nielsen, FH. and Milne, D.B. (1993). Oxidant stress effects on the clinical and nutritional deficiencies of trace elements. Int. J. Toxicol. Occupat. Environ. Health. 2, 59 (abstract).Google Scholar
  27. Olivares, M. and Uauy, R. (1996a). Copper as an essential element. Am. J. Clin. Nutr. 63, 791S–796S.PubMedGoogle Scholar
  28. Olivares, M. and Uauy, R. (1996b). Limits of metabolic tolerance to copper and biological basis for present recommendations and regulations. Am. J. Clin. Nutr. 63, 846S–852S.PubMedGoogle Scholar
  29. Pandit, A. and Bhave, S. (1996). Present interpretation of the role of copper in Indian childhood cirrhosis. Am. J. Clin. Nutr. 63, 830S–835S.PubMedGoogle Scholar
  30. Scheinberg, I.H. and Sternlieb I. (1996). Wilson disease and idiopathic copper toxicosis. Am. J. Clin. Nutr. 63, 842S–845S.PubMedGoogle Scholar
  31. Scheinberg, I.H. and Sternlieb, I. (1994). Is non-Indian childhood cirrhosis caused by excess dietary copper?. Lancet. 344, 1002–1004.PubMedCrossRefGoogle Scholar
  32. Shaw, J.C.L. (1992). Copper deficiency in term and preterm infants. In: Nutritional Anemias. S.J. Fomon, S. Zlotkin, eds. Nestlé Nutrition Workshop Series Vol 30. (Vevey: Nestec Ltd, New York: Raven Press), pp. 105–119.Google Scholar
  33. Simpson, K.M., Morris, E.M. and Cook, J.D. (1981). The inhibitory effect of bran in iron absorption in man. Am. J. Clin. Nutr. 34, 1469–1478.PubMedGoogle Scholar
  34. Spitalny, K.C., Brondum, J., Vogt, R.L., Sargent, H.E. and Kappel, S. (1984) Drinking water-induced intoxication in a Vermont family. Pediatr. 74, 1103–1106.Google Scholar
  35. Stekel, A., Olivares, M., Pizarro, F., Amar, M., Chadud, P., Cayazzo, M., Llaguno, S., Vega, V and Hertrampf, E. (1985). The role of ascorbic acid in the bioavailability of iron from infant foods. Int. J. Vitamin. Nutr. Res. 55(Suppl 27), 167–175.Google Scholar
  36. Stenhammar, L. (1979). Kopparintoxikation-en differentialdiagnos vi.d diarre hos barn. Lakartidningen. 76, 2618–2620.PubMedGoogle Scholar
  37. Sternlieb, I. (1980). Copper and the liver. Gastroenterology. 78, 1615–1628.PubMedGoogle Scholar
  38. Turnlund, J.R., Keyes, W.R., Anderson, H.L. and Acord, L.L. (1989). Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am. J. Clin. Nutr. 49, 870–878.PubMedGoogle Scholar
  39. Uauy, R., Castillo-Durán, C., Fisberg, M., Fernandez, N. and Valenzuela, A. (1985). Red cell Superoxide dismutase activity as an index of human copper nutrition. J. Nutr. 115, 1650–1655.PubMedGoogle Scholar
  40. US Environmental Protection Agency (USEPA), Environment Criteria and Assessment Office. (1985). Drinking Water Document For Copper (final draft). (EPA 600/X-84/190-l).(Cincinnati, OH: Environmental Protection Agency).Google Scholar
  41. US Environmental Protection Agency (USEPA), Environment Criteria and Assessment Office. (1987). Summary Review Of The Health Effects Associated With Copper. (EPA 600/8–87/00l).(Cincinnati, OH: Environmental Protection Agency).Google Scholar
  42. US Environmental Protection Agency (USEPA), Environmental Criteria and Assessment Office. (1993). The Integrated Risk Information System (IRIS) (online). (Cincinnati, OH, Environmental Protection Agency).Google Scholar
  43. van Campen, D.R. and Scaifi, P.U. (1967). Zinc interference with copper absorption in rats. J. Nutr. 91, 473–476.PubMedGoogle Scholar
  44. WHO/FAO/IAEA. Copper. In: Trace Elements In Human Nutrition And Health. (Geneva: World Health Organization), pp. 123–143.Google Scholar
  45. Williams, M.L., Shott, R.J., O’Neal, P.L. and Oski, F.A. (1975). Role of dietary iron and fat on vitamin E deficiency anemia of infancy. N. Engl. J. Med. 292, 887–890.PubMedCrossRefGoogle Scholar
  46. Wyllie, J. (1957). Copper poisoning at a cocktail party. Am. J. Public. Health. 47, 617.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Manuel Olivares
    • 1
  • Ricardo Uauy
    • 1
  • Gloria Icaza
    • 1
  • Mauricio González
    • 1
  1. 1.Institute of Nutrition and Food TechnologyUniversity of ChileChile

Personalised recommendations