Advertisement

Structure/Function Relationships in Ceruloplasmin

  • Giovanni Musci
  • Fabio Polticelli
  • Lilia Calabrese
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 448)

Abstract

Ceruloplasmin belongs to the family of multinuclear copper oxidases, which also includes ascorbate oxidase and laccase (Solomon et al., 1996). These proteins are trinuclear copper cluster enzymes, as documented by spectroscopic and functional studies in solution for laccase (Aliendorf et al., 1985; Spira-Solomon et al., 1986) and ceruloplasmin (Calabrese et al., 1988, 1989), and recently confirmed by X-ray crystallography for ascorbate oxidase (Messerschmidt et al., 1992) and ceruloplasmin (Zaitseva et al., 1996). Multiple copper sites are present, with a minimal functional unit constituted by a blue, or type 1, copper site, and three copper atoms clustered in a trinuclear arrangement. The blue copper site takes up an electron from a reducing substrate and transfers it, through long-range intramolecular electron transfer mediated by a Cys-His pathway, to the trinuclear cluster (Fig. 1), which provides four electrons to reduce oxygen to water. Among multicopper oxidases, ceruloplasmin is presently unique in that it possesses additional copper sites beside the four ions of the minimal unit. The three dimensional structure of ceruloplasmin solved at 3 A resolution has shown that the enzyme is made up of six α-barrel domains arranged in a ternary simmetry (Zaitseva et al., 1996). Consistent with spectroscopic data (Wever et al., 1973, Musci et al., 1993), three of these domains (domains 2, 4 and 6) bind type 1 copper ions coordinated by nitrogen and sulphur ligands. Type 1 copper ions bound to domain 4 and 6 (hereafter referred to as Cu4 and Cu6) are coordinated by 2 histidines, a cysteine and a methionine. Type 1 copper bound to domain 2 (Cu2) should be preferably reduced (Musci et al., 1995; Solomon et al., 1996) since the axial methionine is replaced by leucine, in a geometry typical of a high redox potential copper site. The three copper ions of the trinuclear cluster lie at the interface between domain 1 and 6 and are coordinated by 8 histidine ligands and an oxygen ligand (OH or H2O) bridging two of them. Labile metal binding sites have also been observed on domains 4 and 6, close to the respective prosthetic blue sites. Domain 2 appears different also in this respect, since it lacks the proper ligands for the corresponding labile site.

Keywords

Ascorbate Oxidase Copper Site Multicopper Oxidase Ferroxidase Activity Labile Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allendorf, M.D., Spira, D. J., and Solomon, E.I. (1985). Low-temperature magnetic circular dichroism studies of native laccase: spectroscopic evidence for exogenous ligand bridging at a trinuclear copper active site. Proc Natl Acad Sci U S A 82, 3063–3067.PubMedCrossRefGoogle Scholar
  2. Askwith, C., Eide, D., Van Ho, A., Bernard, P.S., Li, L., Davis-Kaplan, S., Sipe, D.M., and Kaplan, J. (1994). The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76, 403–410.PubMedCrossRefGoogle Scholar
  3. Calabrese, L., Carbonaro, M., and Musci, G. (1988). Chicken ceruloplasmin. Evidence in support of a trinuclear cluster involving type 2 and 3 copper centers. J. Biol. Chem. 263, 6480–6483.PubMedGoogle Scholar
  4. Calabrese, L., Carbonaro, M., and Musci, G. (1989). Presence of coupled trinuclear copper cluster in mammalian ceruloplasmin is essential for efficient electron transfer to oxygen. J. Biol. Chem. 264, 6183–6187.PubMedGoogle Scholar
  5. Cappelli-Bigazzi, M., Ambrosio, G., Musci, G., Battaglia, C., Bonaccorsidi Patti, M.C., Golino, P., ragni, M., Chiariello, M., and Calabrese, L. (1997) Ceruloplasmin impairs endothelium-dependent relaxation of rab-bit aorta. Am. J. Physiol., in press.Google Scholar
  6. Cousins, RJ. (1985). Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 65, 238–309.PubMedGoogle Scholar
  7. De Silva, D., Davis-Kaplan, S., Fergestad, J., and Kaplan, J. (1997). Purification and characterization of Fet3 protein, a yeast homologue of ceruloplasmin. J Biol Chem 272, 14208–14213.PubMedCrossRefGoogle Scholar
  8. De Silva, D.M., Askwith, C.C, Eide, D., and Kaplan, J. (1995). The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J Biol Chem 270, 1098–1101.PubMedCrossRefGoogle Scholar
  9. Deinum, J., and Vanngard, T. (1973). The stoichiometry of the paramagnetic copper and the oxidation-reduction potentials of type I copper in human ceruloplasmin. Biochim Biophys Acta 310, 321–330.PubMedCrossRefGoogle Scholar
  10. Dini, L., Carbonaro, M., Musci, G., and Calabrese, L. (1990). The interaction of ceruloplasmin with Kupffer cells. Eur. J. Cell Biol. 52, 207–212.PubMedGoogle Scholar
  11. Gutteridge, J.M.C. (1978). Ceruloplasmin: a plasma protein, enzyme and antioxidant. Ann. Clin. Biochem. 15, 293–296.PubMedGoogle Scholar
  12. Harris Z.L., (1995). Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc. Natl. Acad. Sci. U.S.A.Google Scholar
  13. Henry, J.B. (1984). Clinical diagnosis and management by laboratory methods. 7th ed. (Philadelphia, PA, W.B. Saunders).Google Scholar
  14. Huber, C.T., and Frieden, E. (1970). Substrate activation and the kinetics of ferroxidase. J. Biol. Chem. 245, 3973–3978.PubMedGoogle Scholar
  15. J Biol Chem 268(18), 13388–13395 (1993)Google Scholar
  16. Kataoka, M., and Tavassoli, M. (1984). Ceruloplasmin receptors in liver cells suspensions are limited to endothelium. Exp. Cell Res. 155, 232–240.PubMedCrossRefGoogle Scholar
  17. Kataoka, M., and Tavassoli, M. (1985). Identification of ceruloplasmin receptors on the surface of human blood monocytes, granulocytes and limphocytes. Exp. Hematol. 13, 806–810.PubMedGoogle Scholar
  18. Lane, E.E., and Walker, J.F. (1987). Clinical arterial blood gas analysis. (St. Louis, MS, C.V. Mosby).Google Scholar
  19. Lindley, P.F., Card, G., Zaitseva, I., Zaitsev, V., Reinhammar, B., Selin-Lindgren, E., and Yoshida, K. (1997). An X-ray structural study of human ceruloplasmin in relation to ferroxidase activity. JBIC 2, 454–463.CrossRefGoogle Scholar
  20. Messerschmidt, A., Rossi, A., Ladenstein, R., Huber, R., Bolognesi, ML, Gatti, G., Marchesini, A., Petruzzelli, and Finazzi-Agrò, A. (1989). X-ray crystal structure of ascorbate oxidase from zucchini: a preliminary analysis of the polypeptide fold and a model of the copper sites and ligands. J. Mol. Biol. 206, 513–529.PubMedCrossRefGoogle Scholar
  21. Mukhopadhyay, K.C., Mazumder, B., Lindley, P.F., and Fox, P.L. (1997). Identification of the prooxidant site of human ceruloplasmin: a model for oxidative damage by copper bound to protein surfaces. Proc. Natl. Acad. Sci. U.S.A. 94, 11546–11546.PubMedCrossRefGoogle Scholar
  22. Musci, G., Bonaccorsidi Patti, M.C., and Calabrese, L. (1993). The state of the copper sites in human ceruloplasmin. Arch. Biochem. Biophys. 306, 111–118.PubMedCrossRefGoogle Scholar
  23. Musci, G., Bonaccorsidi Patti, M.C., and Calabrese, L. (1995). Modulation of the redox state of the copper sites of human ceruloplasmin by chloride. J. Prot. Chem. 14, 611–619.CrossRefGoogle Scholar
  24. Orena, S.J., Goode, CA., and Linder, M.C. (1986). Binding and uptake of copper from ceruloplasmin. Biochim. Biophys. Res. Commun. 139, 822–829.CrossRefGoogle Scholar
  25. Osaki, S. (1966). Kinetic studies of ferrous ion oxidation with crystallin human ferroxidase (ceruloplasmin). J. Biol. Chem. 241, 5053–5059.PubMedGoogle Scholar
  26. Osaki, S., and Walaas, O. (1967). Kinetic studies of ferrous ion oxidation with crystallin human ferroxidase. II Rate constants at various steps and formation of a possible enzyme-substrate complex. J. Biol. Chem. 242, 2653–2657.PubMedGoogle Scholar
  27. Osaki, S., Johnson, D.A., and Frieden, E. (1966). The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem 241, 2746–2751.PubMedGoogle Scholar
  28. Osaki, S., Johnson, D.A., and Frieden, E. (1971). The mobilization of iron from the perfused mammalian liver by a serum copper enzyme, ferroxidase I. J. Biol. Chem. 246, 3018–3023.PubMedGoogle Scholar
  29. Patel, B.N., and David, S. (1997). A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is ex-pressed by mammalian astrocytes. J. Biol. Chem. 272, 20185–20190.PubMedCrossRefGoogle Scholar
  30. Percival, S.S., and Harris, E.D. (1990) Copper transport from ceruloplasmin: characterization of the cellular uptake mechanism. Am. J. Physiol. 258, C140–C146.PubMedGoogle Scholar
  31. Polticelli, F., Falconi, M., O’Neill, P., Petruzzelli, R., Galtieri, A., Lania, A., Calabrese, L., Rotilio, G., and Desideri, A. (1994). Molecular modeling and electrostatic potential calculations on chemically modified Cu,Zn Superoxide dismutases from Bos taurus and shark Prionace glauca: role of Lys 134 in electrostatically steering the substrate to the active site. Arch. Biochem. Biophys. 312, 22–30.PubMedCrossRefGoogle Scholar
  32. Sergi, A., Ferrario, M., Polticelli, F., P. O’Neill, and Desideri, A. (1994) Simulation of superoxide-superoxide dismutase assoction rate for six natural variants. Comparison with the experimental catalytic rate. J. Phys. Chem. 98, 10554–10557.CrossRefGoogle Scholar
  33. Smith, C.K., and Honig, B. (1994). Evaluation of the conformational free energies of loops in proteins. Proteins 18, 119–132.PubMedCrossRefGoogle Scholar
  34. Solomon, E.I., Sundaram, U.M., and Machonkin, T.E. (1996). Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563–2605.PubMedCrossRefGoogle Scholar
  35. Spira-Solomon, D.J., Allendorf, M.D., and Solomon, E.I. (1986). Low temperature magnetic circular dichroism studies of native laccase: confirmation of a trinuclear copper active site. J. Amer. Chem. Soc. 108, 5318–5328.CrossRefGoogle Scholar
  36. Wever, R., Van Leuween, F. X. R., and Van Gelder, B. F. (1973). The reaction of nitric oxide with ceruloplasmin. Biochim Biophys Acta 302, 236–239.PubMedCrossRefGoogle Scholar
  37. Zaitseva, I., Zaitsev, V, Card, G., Moshkov, K., Bax, B., Ralph, A., and Lindley, P. (1996). The X-ray structure of human serum ceruloplasmin at 3.1 A: nature of the copper centres. JBIC 1, 15–23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Giovanni Musci
    • 1
  • Fabio Polticelli
    • 2
  • Lilia Calabrese
    • 2
    • 3
  1. 1.Department of Organic and Biological ChemistryUniversity of MessinaS. Agata, MessinaItaly
  2. 2.Department of BiologyUniversity Roma TreRomeItaly
  3. 3.CNR Center of Molecular BiologyRomeItaly

Personalised recommendations