Postharvest Changes in Glycoalkaloid Content of Potatoes

  • Mendel Friedman
  • Gary M. McDonald
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 459)


Potatoes contain antinutritional and potentially toxic compounds including inhibitors of digestive enzymes, hemagglutinins, and glycoalkaloids. Solanum glycoalkaloids are reported to inhibit Cholinesterase, disrupt cell membranes, and induce teratogenicity. In this overview, we describe the role of potatoes in the human diet, reported changes in glycoalkaloid content of fresh and processed potatoes during storage, under the influence of light and radiation, following mechanical damage, and as a result of food processing. Also covered are safety aspects and suggested research needs to develop a protocol that can be adopted by the potato producers and processors to minimize post-harvest synthesis of glycoalkaloids in potatoes. Reducing the glycoalkaloid content of potatoes will provide a variety of benefits extending from the farm to processing, shipping, marketing, and consumption of potatoes and potato products. A commercially available ELISA kit is described which permits rapid assay of glycoalkaloid content of parts of the potato plant including leaves, tubers, and peel, as well as processed potato products including french fries, chips, and skins. Understanding the multiple overlapping aspects of glycoalkaloids in the plant and in the diet will permit controlling postharvest glycoalkaloid production for the benefit of the producer and consumer.


Potato Tuber Potato Cultivar Potato Product Nicotinamide Adenine Dinucleotide Phosphate Potato Peel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azim, A.; Shaikh, H. A.; Ahmad, R. Effect of feeding greened potatoes on different visceral organs and blood palsma of rabbits. J. Sci. Food Agric. 1982, 33, 1275–1279.CrossRefGoogle Scholar
  2. Blankemeyer, J. T.; Stringer, B. K.; Rayburn, J. R.; Bantle, J. A.; Friedman, M. Effect of potato glycoalkaloids α-chaconine and α-solanine on membrane potential of frog embryos. J. Agric. Food Chem. 1992, 40, 2022–2026.CrossRefGoogle Scholar
  3. Blankemeyer, J. R.; Atherton, R.; Friedman, M. Effect of potato glycoalkaloids α-Chaconine and α-solanine on sodium active transport in skin. J. Agric. Food Chem. 1995, 43, 636–639.CrossRefGoogle Scholar
  4. Blankemeyer, J. T.; White, J. B.; Stringer, B. K.; Friedman, M. Effect of a-tomatine and tomatidine on membrane potential of frog embryos and active transport in frog skin. Food Chem. Toxicol. 1997, 35, 639–647.CrossRefGoogle Scholar
  5. Blankemeyer, J. T.; McWilliams, M. L.; Rayburn, J. R.; Weissenberg, M.; Friedman, M. Developmental toxicology of solamargine and solasonine glycoalkaloids in frog embryos. Food Chem. Toxicol. 1998, 36, 383–389.CrossRefGoogle Scholar
  6. Brierley, E. R.; Bonner, P. L. R.; Cobb, A. H. Factors influencing the free amino acid content of potato (Solanum tuberosum L.) tubers during prolonged storage. J. Sci. Food Agric. 1996, 47, 515–525.CrossRefGoogle Scholar
  7. Bushway, R. J.; Ponnampalam, R. α-Chaconine and α-solanine content of potato products and their stability during several modes of cooking. J. Agric. Food Chem. 1981, 29, 814–817.CrossRefGoogle Scholar
  8. Bushway, A. A.; Bushway, A. W.; Belyea, P. R.; Bushway, R. J. The proximate composition and glycoalkaloid content of three potato meals. Am. Potato J. 1981, 58, 498.Google Scholar
  9. Bushway, R. J.; Bureau, J. L.; McGann, D. F. α-Chaconine and α-solanine content of potato peels and potato peel products. J. Food Sci. 1983, 48, 84–86.CrossRefGoogle Scholar
  10. Caldwell, K. A.; Grosjean, O. K.; Henika, P. R.; Friedman, M. Hepatic ornithine decarboxylase induction by potato glycoalkaloids in rats. Food Chem. Toxicol. 1991, 29, 531–535.CrossRefGoogle Scholar
  11. Camire, M. E.; Zhao, J.; Dougherty, M. P; Bushway, R. J.; In vitro binding of benz(a)pyrene by extruded potato peel. J. Agric. Food Chem. 1995, 43, 970–973.CrossRefGoogle Scholar
  12. Cham, B. E.; Daunter, B.; Evans, R. A. Topical treatment of malignant and premalignant skin lesions by very low concentrations of a standard mixture (BEC) of solasodine glycoalkaloids. Cancer Lett. 1991, 59, 55–58.CrossRefGoogle Scholar
  13. Chungcharoen, A. Glycoalkaloid Content of Potatoes Grown under Controlled Environments and Stability of Glycoalkaloids during Processing. Ph. D. Thesis, University of Wisconsin, Madison, WI. 1988.Google Scholar
  14. Cieslik. E. Glycoalkaloids — toxic substances in plants. Zywnosc. Technologia. Jakosc. 1997, 1 (10), 21–29. (Polish)Google Scholar
  15. Coelho, C. N. D.; Klein, N. W. Methionine and neural tube closure in rat embryos: morphological and biochemical analyses. Teratology 1990, 42, 437–451.CrossRefGoogle Scholar
  16. Coxon, T. The glycoalkaloid content of potato berries. J. Sci. Food Agric. 1981, 32, 412–414.CrossRefGoogle Scholar
  17. Dale, M. F. B.; Grfiffiths, D. W.; Bain, H.; Todd, D. Glycoalkaloid increase in Solanum tuberosum on exposure to light. Ann. Appl. Biol. 1993, 123, 411–418.CrossRefGoogle Scholar
  18. Dale, M. F. B.; Griffiths, D. W.; Bain, H.; Goodman, B. A. The effect of gamma irradiation on glycoalkaloid and chlorophyll synthesis in seven potato cultivars. J. Sci. Food Agric. 1997, 75, 141–147.CrossRefGoogle Scholar
  19. Dao, L.; Friedman, M. Chlorogenic acid content of fresh and processed potatoes determined by ultraviolet spectrophotometry. J. Agric. Food Chem. 1992, 40, 2152–2156.CrossRefGoogle Scholar
  20. Dao, L.; Friedman, M. Chlorophyll, chlorogenic acid, glycoalkaloid, and protease inhibitor content of fresh and green potatoes. J. Agric. Food Chem. 1994, 42, 633–639.CrossRefGoogle Scholar
  21. Dao, L.; Friedman, M. Comparison of glycoalkaloid content of fresh and freeze-dried potato leaves determined by HPLC and colorimetry. J. Agric. Food Chem. 1996, 44, 2287–2291.CrossRefGoogle Scholar
  22. Davies, A. M.; Blincow, P. J. Glycoalkaloid content of potatoes and potato products sold in the U. K. J. Sci. Food Agric. 1984, 35, 553–557.CrossRefGoogle Scholar
  23. Dimenstein, L.; Lisker, N.; Kedar, N.; Levy, D. Changes in the content of steroidal glycoalkaloids in potato tubers grown in the field and in the greenhouse under different conditions of light, temperature and day length. Physiol. Mol. Plant Pathol. 1997, 50, 391–402.CrossRefGoogle Scholar
  24. Domek, J. M.; Cantelo, W. W.; Wagner, R. M.; Li, B. W.; Miller-Ihli, N. J. Nutritional composition of potato foliage. J. Agric. Food Chem. 1995, 43, 1512–1515.CrossRefGoogle Scholar
  25. Duan, G. M.; Zong, H. Effect of different solvent systems on extraction of potato glycoalkaloids. Plant Physiol. Commun. 1993, 29, 365–368. (Chinese)Google Scholar
  26. Fewell, A. M.; Roddick, J. G. Potato glycoalkaloid impairment of fungal development. Mycol. Res. 1997, 101, 597–603.CrossRefGoogle Scholar
  27. Filadelfi, M. A.; Zitnak, A. Preparation of chaconines by enzymatic hydrolysis of potato berry alkaloids. Phytochemistiy 1982, 21, 250–251.CrossRefGoogle Scholar
  28. Fitzpatrick, T. J.; Herb, S. F.; Osman, S. F.; McDermott, J. A. Potato glycoalkaloids: increases in variations of ratios in aged slices over prolonged storage. Am. Potato J. 1977, 54, 539–544.CrossRefGoogle Scholar
  29. Fitzpatrick, T. J.; MacDermott, J. A.; Osman, S. F. Evaluation of injured commercial potato samples for total glycoalkaloid content. J. Food Sci. 1978, 43, 1617–1618.CrossRefGoogle Scholar
  30. Friedman, M. Composition and safety evaluation of potato berries, potato and tomato seeds, potatoes, and potato alkaloids. ACS Symp. Sen 1992, 484, 429-462.CrossRefGoogle Scholar
  31. Friedman, M. Improvement in the safety of foods by SH-containing amino acids and peptides. J. Agric. Food Chem. 1994, 42, 3–20.CrossRefGoogle Scholar
  32. Friedman, M. Nutritional value of proteins from different food sources. J. Agric. Food Chem. 1996a, 44, 6–20.CrossRefGoogle Scholar
  33. Friedman, M. Food browning and its prevention. J. Agric. Food Chem. 1996b, 44, 631–653.CrossRefGoogle Scholar
  34. Friedman, M. Chemistry, biochemistry, and dietary role of potato polyphenols. J. Agric.Food Chem. 1997, 45, 3–20.CrossRefGoogle Scholar
  35. Friedman, M.; Bautista, F. F. Inhibition of polyphenol oxidase by thiols in the absence and presence of potato tissue suspensions. J. Agric. Food Chem. 1995, 43, 69–76.CrossRefGoogle Scholar
  36. Friedman, M.; Dao, L. Distribution of glycoalkaloids in potato plants and commercial potato products. J. Agric. Food Chem. 1992, 40, 419–423.CrossRefGoogle Scholar
  37. Friedman, M.; Henika, P. R. Absence of genotoxicity of potato alkaloids a-chaconine, a-solanine, and solanidine in the Ames Salmonella and adult and foetal erythrocyte micronucleus assays. Food Chem. Toxicol. 1992, 30, 689–694.CrossRefGoogle Scholar
  38. Friedman, M.; Gumbmann, M. R. Nutritional improvement of legume proteins through disulfide interchange. In Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods; Friedman, M., Ed.; Plenum: New York, 1989; pp 357–390.Google Scholar
  39. Friedman, M.; Levin, C. E. Reversed-phase high-performance liquid chromatographic separation of potato glycoalkaloids and hydrolysis products on acidic columns. J. Agric. Food Chem. 1992, 40, 2157–2163.CrossRefGoogle Scholar
  40. Friedman, M; Levin, C. E. a-Tomatine content in tomatoes and tomato products determined by HPLC with pulsed amperometric detection. J. Agric. Food Chem. 1995, 43, 1507–1511.CrossRefGoogle Scholar
  41. Friedman, M.; Levin, C. E. Dehydro tomatine content in tomatoes. J. Agric. Food Chem. 1998, 46, 4571–1576.CrossRefGoogle Scholar
  42. Friedman, M.; McDonald, G. M. Acid catalyzed partial hydrolysis of carbohydrate groups of the potato glycoalkaloid α-Chaconine in alcoholic solutions. J. Agric. Food Chem. 1995a, 43, 1501–1506.CrossRefGoogle Scholar
  43. Friedman, M.; McDonald, G. M. Extraction efficiency of various solvents for glycoalkaloid determination in potatoes and potato products. Am. Potato J. 1995b, 72, 66A.Google Scholar
  44. Friedman, M.; McDonald, G. M. Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit. Rev. Plant Sci. 1997, 16, 55–132.Google Scholar
  45. Friedman, M.; McDonald, G. M. Steroidal glycoalkaloids. In Naturally Occurring Glycosides: Chemistry, Distribution and Biological Properties. R. Ikan, Ed.; John Wiley and Sons: New York and London, 1999; pp. 311–342.Google Scholar
  46. Friedman, M.; Grosjean, G. K.; Gumbmann, M. R. Nutritional improvement of soy flour. J. Nutr. 1984, 114, 2241–2246.Google Scholar
  47. Friedman, M.; Rayburn, J. R.; Bantle, J. A. Developmental toxicology of potato alkaloids in the frog embryo teratogenesis assay-Xenopus (FETAX). Food Chem. Toxicol. 1991, 29, 537–547.CrossRefGoogle Scholar
  48. Friedman, M.; Rayburn, J. R.; Bantle, J. A. Structural relationships and developmental toxicity of Solanum alkaloids in the frog embryo teratogenesis assay-Xenopus (FETAX). J. Agric. Food Chem. 1992a, 40, 1617–1624.CrossRefGoogle Scholar
  49. Friedman, M.; Molnar-Perl, I.; Knighton, D. Browning prevention in fresh and dehydrated potatoes by SH-containing amino acids. Food Addit. Contam. 1992b, 9, 499–503.CrossRefGoogle Scholar
  50. Friedman, M.; McDonald, G. M.; Haddon, W. F. Kinetics of acid-catalyzed hydrolysis of potato glycoalkaloids α-chaconine and a-solanine. J. Agric. Food Chem. 1993, 41, 1397–1406.CrossRefGoogle Scholar
  51. Friedman, M.; Henika, P. R.; Mackey, B. E. Feeding potato, tomato, and eggplant alkaloids affects food consumption and body and liver weights of mice. J. Nutr. 1996, 126, 989–999.Google Scholar
  52. Friedman, M.; Kozukue, N.; Harden, L. A. Structure of the tomato glycoalkaloid tomatidenol-3-β-lycotetraose (dehydrotomatine). J. Agric. Food Chem. 1997a, 45, 1541–1547.CrossRefGoogle Scholar
  53. Friedman, M.; Burns, C. F.; Butchko, C. A. Blanakemeyer, J. T. Folic acid protects against potato glycoalklaoid α-chaconine-induced disruption of frog embryo cell membranes and developmental toxicity. J. Agric. Food Chem. 1997b, 45, 3991–3994.CrossRefGoogle Scholar
  54. Friedman, M.; Fitch, T. E.; Levin, C. E.; Yokoyoma, W. H. Reduction of dietary cholesterol, plasma LDL cholesterol and triglycerides in hamsters fed green and red tomatoes. Presented at the ACS Meeting, Las Vegas, NE. Abstract AGFD 67. 1997c.Google Scholar
  55. Friedman, M.; Bautista, F.F.; Stanker, L.H.; Larkin, K. Analysis of potato glycoalkaloids by a new ELISA kit. J. Agric. Food Chem. 1998, 46, 5097–5102.CrossRefGoogle Scholar
  56. Gee, J.M.; Wortley, G. M.; Johnson, I. T.; Prince, K. R.; Rutten, A. A. J. J. L.; Houben, G. F.; Penninks, A. H. Effect of saponins and glycoalkaloids on the permeability and viability of mammalian intestinal cells and the integrity of tissue preparations in vitro. Toxicol, in Vitro 1996, 10, 117–128.CrossRefGoogle Scholar
  57. Gonmori, K.; Shindo, S. Effect of cooking on the concentration of solanine in potato. Res. Pract. Forens. Med. 1985, 28, 91–93.Google Scholar
  58. Gonmori, K.; Yoshioka, N. The risk of solanine poisoning in a folk remedy. Proc. 31st Meeting of the International Association of Forensic Toxicologists; Mueller, R. K., Ed., Leipzig: Germany, 1994; pp 247–251.Google Scholar
  59. Graham, W. D.; Stevenson, M. H. Effect of irradiation on vitamin C content of strawberries and potatoes in combination with storage and with further cooking in potatoes. J. Sci. Food Agric. 1997, 75, 371–377.CrossRefGoogle Scholar
  60. Griffiths, D. W.; Dale, M. F. B.; Bain, H. The effect of cultivar, maturity and storage on photo-induced changes in total glycoalkaloid and chlorophyll contents of potatoes (Solanum tuberosum). Plant Sci. 1994, 98, 103–109.CrossRefGoogle Scholar
  61. Griffiths, W. D.; Bain, H.; Finlay, M.; Dale, B. The effect of low-temperature storage on the glycoalkaloid content of potato (Solanum tuberosum) tubers. J. Sci. Food Agric. 1997, 74, 301–307.CrossRefGoogle Scholar
  62. Hellenas, K. E. Glycoalkaloids in Potato Tubers — Aspects of Analysis, Occurrence and Toxicology. Dissertation, Swedish University of Agricultural Sciences, Department of Food Science, Report 12, Uppsala: Sweden. 1994.Google Scholar
  63. Hellenas, K. E.; Branzell, C. K. Liquid chromatographic determination of the glycoalkaloids α-solanine and α-chaconine in potato tubes: NMKL interlaboratory study. J. AOAC Int. 1997, 80, 549–554.Google Scholar
  64. Hopkins, J. The glycoalkaloids: naturally of interest (but a hot potato?). Food Chem. Toxicol. 1995, 33, 323–328.CrossRefGoogle Scholar
  65. Hwang, C. S.; Lee, S. W. Change in glycoalkaloids of potatoes during storage. Kor J. Food Sci. Technol. 1984, 16, 388–391.Google Scholar
  66. Johns, T.; Keen, S. L. Taste evaluation of potato glycoalkaloids by the Ayamara: a case study in human chemical ecology. Human Ecol. 1986, 14, 437–452.CrossRefGoogle Scholar
  67. Jones, P. G.; Fenwick, G. R. The glycoalkaloid content of some edible Solanaceous fruits and potato products. J. Sci. Food Agric. 1981, 32, 419–421CrossRefGoogle Scholar
  68. Jones, R. Challenging success. Am. Veg. Grower 1998, 46, No 1, 46–47.Google Scholar
  69. Kaaber, L. Glycoalkaloids, green discoloration and taste development during storage of some potato varieties (So-lanum tuberosum). Norwegian J. Agric. Sci. 1993, 7, 221–229.Google Scholar
  70. Kozukue, N.; Kozukue, E.; Mizuno, S. Glycoalkaloids in potato plants and tubers. HortSci. 1987, 22, 294–296.Google Scholar
  71. Kritchevsky, D. Dietary fiber. Ann. Rev. Nutr. 1988, 8, 301–328.CrossRefGoogle Scholar
  72. Kubo, I.; Fukuhara, K. Steroidal glycoalkaloids in Andean potatoes. In Saponins Used in Food and Agriculture. Waller, P., Ed.; Plenum Press: New York, 1996; pp 405–417.CrossRefGoogle Scholar
  73. Lazarov, K.; Werman, M. J. Hypocholesterolaemic effect of potato peel as a dietary fiber source. Med. Sci. Res. 1996, 24, 581–582.Google Scholar
  74. Lisinska, G.; Leszczynski, W. Potato Science and Technology. Elsevier: London and New York, 1989.Google Scholar
  75. Louise, C. B.; Obrig, T. J. Specific interaction of Escherichia coli 0157:H7-derived Shiga-like toxin with human renal endothelial cells. J. Infect. Dis. 1995, 172, 1397–1401.CrossRefGoogle Scholar
  76. Love, S. L.; Baker, T. P.; Thompson-Johns, A.; Werner, P. K. Induced mutations for reduced tuber glycoalkaloid content in potatoes. Plant Breeding 1996, 115, 119–122.CrossRefGoogle Scholar
  77. Mills, J. L.; Scott, J. M.; Kirks, P. N.; McPartlin, J.M.; Conley, M. R.; Weir, D.; Molloy, A. M.; Lee, Y. J. Homocysteine and neural tube defects. J. Nutr. 1996, 126, 756S-760S.Google Scholar
  78. Moehs, C. P.; Allen, P. V.; Friedman, M.; Belknap, W. R. Cloning and expression of solanidine UDP-glucose glucosyltransferase (SGT) from potato. Plant J. 1997, 11, 101–110.CrossRefGoogle Scholar
  79. Molanr-Perl, I.; Friedman, M. Inhibition of food browning by sulfur amino acids. 3. Apples and potatoes. J. Agric. Food Chem. 1990, 38, 1652–1656.CrossRefGoogle Scholar
  80. Mondy, N. I.; Chandra, S. Reduction of glycoalkaloid synthesis in potato slices by water soaking. HortSci. 1979, 14, 173–174.Google Scholar
  81. Mondy, N. I.; Gosselin, B. Effect of peeling on total phenols, total glycoalkaloids, discoloration and flavor of cooked potatoes. J. Food Sci. 1988, 53, 756–759.CrossRefGoogle Scholar
  82. Mondy, N. I.; Seetharaman, K. Effect of irradiation on total glycoalkaloids in Kennebec and Russet Burbank potatoes. J. Food Sci. 1990, 55, 1740–1742.CrossRefGoogle Scholar
  83. Mondy, N. I.; Leja, M.; Gosselin, B. Changes in total phenolic, total glycoalkaloid, and ascorbic acid content of potatoes as a result of bruising. J. Food Sci. 1987, 52, 631–635.CrossRefGoogle Scholar
  84. Morris, S. C; Lee, T. H. The toxicity and teratogenicity of Solanaceae glycoalkaloids, particularly those of the potato (Solanum tuberosum). Food Technol. Austral. 1984, 36, 118–124.Google Scholar
  85. Muller, K. Glycoalkaloids in native and processed potatoes. Der Kartoffelbau 1983, 43, 310–312.Google Scholar
  86. Nigg, H. N.; Ramos, L. E.; Graham, E. M.; Sterling, J.; Brown, S.; Cornell, J. A. Inhibition of human plasma and serum butyryl Cholinesterase by α-Chaconine and a-solanine. Fund. Appl. Toxicol. 1996, 33, 272–281.CrossRefGoogle Scholar
  87. Olsson, K. The influence of genotype and the effects of impact damage on the accumulation of glycoalkaloids in potato tubers. Potato Res. 1986, 29, 1–12.CrossRefGoogle Scholar
  88. Olsson, K. The influence of glycoalkaloids and impact damage on resistance of Fusarium solani var. coeruleum and Phooma exigua var. foveata in potato tubers. J. Phytopathol. 1987, 118, 347–357.CrossRefGoogle Scholar
  89. Onyeneho, S-N.; Hettiaachchy, N. S.; Antioxidant activity, fatty acid and phenolic acid composition of potato peels. J. Sci. Food Agric. 1993, 62, 345–350.CrossRefGoogle Scholar
  90. Panovska, Z.; Hajslova, J.; Kosinkiva, P.; Cepl, J. Glycoalkaloid content of potatoes sold in Czechia. Nahrung 1997, 41, 146–149.CrossRefGoogle Scholar
  91. Petermann, J. B.; Morris, S. C. The spectral response of chlorophyll and glycoalkaloid synthesis in potato tubers (Solanum tuberosum). Plant Sci. 1985, 39, 105–110.CrossRefGoogle Scholar
  92. Phillips, B. J.; Hughes, J. C; Phillips, D. G.; Walters, D. G.; Anderson, D.; Tahourdin, C. S. M. A study of the toxic hazard that might be associated with the consumption of green potato tops. Food Chem. Toxicol. 1996, 34, 439–448.CrossRefGoogle Scholar
  93. Ponnampalam, R.; Mondy, N. Effect of cooking on the total glycoalkaloid content of potatoes. J. Agric. Food Chem. 1986, 34, 686–688.CrossRefGoogle Scholar
  94. Rayburn, J. R.; Bantle, J. A.; Friedman, M. Role of carbohydrate side chains of potato glycoalkaloids in developmental toxicity. J. Agric. Food Chem. 1994, 42, 1511–1515.CrossRefGoogle Scholar
  95. Rayburn, J. R.; Friedman, M.; Bantle, J. A. Synergism of potato glycoalkaloids α-Chaconine and α-solanine in the developmenal toxicity of Xenopus embryos. Food Chem. Toxicol. 1995a, 33, 1013–1019.CrossRefGoogle Scholar
  96. Rayburn, J. R.; Bantle, J. A.; Quails, C. W., Jr.; Friedman, M. Protective effects of glucose-6-phosphate and NADP against a-chaconine-induced developmental toxicity in Xenopus Embryos. Food Chem. Toxicol. 1995b, 33, 1021–1025.CrossRefGoogle Scholar
  97. Rodriguez de Sotillo, D.; Hadley, M.; Holm, E. T. Potato peel waste; stability and antioxidant activity of a freeze-dried extract. J. Food Sci. 1994, 59, 1031–1033.CrossRefGoogle Scholar
  98. Rodriguez-Saona, L. E.; Wrolstad, R. E. Influence of potato composition on chip color quality. Am. Potato J. 1997, 74, 87–106.CrossRefGoogle Scholar
  99. Schwardt, E. Changes in glycoalkaloid content in industrial treatment processes for potatoes. Kartoffelforschung 1982, 4, 48–53.Google Scholar
  100. Sinden, S. L.; Deahl, K. L.; Aulenbach, B. B. Effect of glycoalkaloids and phenolics on potato flavor. J. Food Sci. 1976, 41, 520–523.CrossRefGoogle Scholar
  101. Sizer, C. E.; Maga, J. A.; Craven, C. J. Total glycoalkaloids in potatoes and potato chips. J. Agric. Food Chem. 1980, 28, 578–579.CrossRefGoogle Scholar
  102. Slanina, P. Solanine (glycoalkaloids) in potatoes: toxicological evaluation. Food Chem. Toxicol. 1990, 28, 759–761.CrossRefGoogle Scholar
  103. Smolin, L. A.; Benevenga, N. H. Methionine, homocysteine metabolic interrelationships. In Absorption and Utilization of Amino Acids; Friedman, M., Ed.; CRC: Boca Rato, FL, 1989; Vol. 1, pp 157–187.Google Scholar
  104. Stanker, L. H.; Kampos-Holtzapple, C; Friedman, M. Development and characterization of monoclonal antibodies that differentiate between potato and tomato glycoalkaloids. J. Agric. Food Chem. 1994, 42, 2360–2366.CrossRefGoogle Scholar
  105. Stapleton, A.; Allen, P. V.; Friedman, M.; Belknap, W. R. Purification and characterization of solanidine glucosyl-transferase from the potato (Solanum tuberosum). J. Agric. Food Chem. 1991, 39, 1187–1203.CrossRefGoogle Scholar
  106. Stapleton, A.; Allen, P. W.; Tao, H. P.; Belknap, W. R.; Friedman, M. Partial amino acid sequence of solanidine UDP-glucose glucosyltransferase purified by anion exchange and size exclusion media. Protein Express. Purif 1992, 3, 85–92.Google Scholar
  107. Stoddard, L. M. Glycoalkaloid Synthesis during Storage of Potatoes. Thesis, Department of Food Science, The University of Leeds, UK, 1992.Google Scholar
  108. Swallow, A. Wholesomeness and safety of irradiated foods. In Nutritional and Toxicological Consequences of Food Processing; Friedman, M., Ed.; Plenum Press: New York, 1991, pp 1–31.Google Scholar
  109. Takagi, K; Toyoda, M.; Fujiyama, Y; Saito, Y Effect of cooking on the contents of α-Chaconine and α-solanine of potatoes. J. Food Hyg. Soc. Japan 1990, 31, 61–13.CrossRefGoogle Scholar
  110. Thomas, P. Radiation preservation of foods of plant origin. Part 1. Potatoes and other tuber crops. CRC Crit. Rev. Food Sci. Nutr. 1984, 19, 327–379.Google Scholar
  111. Thorne, H. V.; Clarke, G. F.; Skuce, R. The inactivation of herpes simplex virus by some Solanaceae glycoalkaloids. Antiviral Res. 1985, 5, 335–343.CrossRefGoogle Scholar
  112. Vazquez, A.; Gonzalez, G.; Ferreira, F.; Moyna, P.; Kenne L. Glycoalkaloids of Solanum commersonii Dun. ex Poir. Euphytica 1997, 95, 195–201.CrossRefGoogle Scholar
  113. Willard, M. Potato processing: past, present and future. Am. Potato J. 1993, 70, 405–418.CrossRefGoogle Scholar
  114. Wunsch, A.; Munzert, M. Effect of storage and cultivar on the distribution of glycoalkaloids in potato tuber. Potato Res. 1994, 57, 3–10.CrossRefGoogle Scholar
  115. Zhao, J.; Camire, M. E.; Bushway, R. J.; Bushway, A. A. Glycoalkaloid content and in vitro glycoalkaloid solubility of extruded potato peels. J. Agric. Food Chem. 1994, 42, 2570–2573.CrossRefGoogle Scholar
  116. Zimowski, J. Synthesis of γ-chaconine and γ-solanine are catalyzed in potato by two separate glycosyltransferases: UDP-glucose: solanidine glucosyltransferase and UDP-galactose: solanidine galactosyltransferase. Acta Biochem. Polonica 1997, 44, 209–214.Google Scholar
  117. Zitnak, A. Photoinduction of glycoalkaloids in cured potatoes. Am. Potato J. 1981, 58, 415–421.CrossRefGoogle Scholar
  118. Zitnak, A.; Filadelfi, M. A. Estimation of taste thresholds of three potato glycoalkaloids. J. Can. Inst. Food Sci. Technol. 1985, 18, 337–339.Google Scholar
  119. Zitnak, A.; Filadelfi-Keszi, M. A. Isolation of ß2-chaconine, a potato bitterness factor. J. Food Biochem. 1988, 12, 183–190.CrossRefGoogle Scholar
  120. Zobel, M.; Schilling, J. Behavior of solanine in potatoes with various preparation metods. Z. Lebensm. Unters. Forsch. 1964, 124, 327–333.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Mendel Friedman
    • 1
  • Gary M. McDonald
    • 1
  1. 1.Western Regional Research Center Agricultural Research ServiceU.S. Department of AgricultureAlbanyUSA

Personalised recommendations