Advertisement

The Impact of Food Processing on the Nutritional Quality of Vitamins and Minerals

  • Manju B. Reddy
  • Mark Love
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 459)

Abstract

Processing (including preparation) makes food healthier, safer, tastier and more shelf-stable. While the benefits are numerous, processing can also be detrimental, affecting the nutritional quality of foods. Blanching, for example, results in leaching losses of vitamins and minerals. Also, milling and extrusion can cause the physical removal of minerals during processing. The nutritional quality of minerals in food depends on their quantity as well as their bioavailability. The bioavailability of key minerals such as iron, zinc and calcium is known to be significantly affected by the fiber, phytic acid, and tannin content of foods. Concentrations of these constituents are altered by various processing methods including milling, fermentation, germination (sprouting), extrusion, and thermal processing. Vitamins, especially ascorbic acid, thiamin and folic acid, are highly sensitive to the same processing methods. The time and temperature of processing, product composition and storage are all factors that substantially impact the vitamin status of our foods.

Keywords

Iron Absorption Food Processing Phytic Acid Water Soluble Vitamin Nutritional Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, C. E.; Erdman, J. W. Effects of home food preparation practices on nutrient content of foods, In Nutritional Evaluation of Food Processing; Karmas, E., Harris, R., Eds.; Van Nostrand Reinhold: New York, NY, 1988.Google Scholar
  2. Agrawal, P.; Chitnis, U. Effect of treatments on phytate phosphorus, iron bioavailability, tannins and in vitro protein digestibility of grain sorghum. J. Food Sci. Technol. 1995, 32 (6), 453–458.Google Scholar
  3. Bender, A.E. Food Processing and Nutrition; Academic Press, London, 1978.Google Scholar
  4. Brune, M.; Rossander-Hultén, L.; Hallberg, L.; Gleerup, A.; Sandberg, A. Iron absorption from bread in humans: Inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. J. Nutr. 1992, 122, 442–449.Google Scholar
  5. Burton, H. Reviews of the progress of Dairy Science: The bacteriological, chemical, biochemical, and physical changes that occur in milk at temperatures of 100 to 150°C. J. Dairy Res. 1984, 51, 341–363.CrossRefGoogle Scholar
  6. Clemens, R. A. Effects of storage on the bioavailability and chemistry of iron powders in a heat-processed liquid milk-based product. J. Food Sci. 1981, 47, 228–230.CrossRefGoogle Scholar
  7. Code of Federal Regulations, Title 21; Government Printing Office, Washington, D. C.; 182.3798, 1997.Google Scholar
  8. Cook, J. D.; Reddy, M. B.; Burri, J.; Juillerat, M. A.; Hurrell, R. F. The influence of different cereal grains on iron absorption from infant cereal foods. Am. J. Clin. Nutr. 1997, 65, 964–969.Google Scholar
  9. D’Arcy, R. I.; Watt, I. C. Water vapor sorption isotherms on macromolecular substrates. In Water Activity: Influences on Food Quality; Rockland, L., Stewart, G., Eds.; Academic Press: New York, NY, 1981.Google Scholar
  10. Gahlawat, P.; Sehgal, S. In vitro starch and protein digestibility and iron availability in weaning foods as affected by processing methods. Plant Foods for Human Nutrition. 1995, 47, 173–179.CrossRefGoogle Scholar
  11. Gregory, J. Vitamins. In Food chemistry; Fennema, O. R., Ed.; Marcel Dekker: New York, NY, 1996.Google Scholar
  12. Hallberg, L.; Rossander, L.; Skanberg, A. B. Phytates and inhibitory effect of bran on iron absorption in man. Am J Clin Nutr. 1987, 45, 988–996.Google Scholar
  13. Hallberg, L. Bioavailability of dietary iron in man. Ann Rev. Nutr. 1981, 1, 123–146.CrossRefGoogle Scholar
  14. Harris, R. S; Von Loescke, H. W., Eds.; Nutritional Evaluation of Food Processing; John Wiley & Sons: New York, NY, 1960.Google Scholar
  15. Harris, R. S. General discussion on stability of nutrients. In Nutritional Evaluation of Food Processing; Harris, R., Karmas, E., Eds.; AVI: Westport, CT, 1975.Google Scholar
  16. Hurrell, R. F. Food manufacturing processes and their influence on the nutritional quality of foods. In Nutritional Impact of Processing; Muller, H.R, Somogyi, J.C., Eds.; Bibl. Nutr. Dieta: Basel, Karger, 1989.Google Scholar
  17. Hurrell, R. F.; Reddy, M. B.; Dassenko, S. A.; Cook, J. A.; Shepherd, D. Ferrous fumarate fortification of a chocolate drink powder. Brit. J. Nutr. 1991, 65, 271–283.CrossRefGoogle Scholar
  18. Indumadhavi, M.; Agte, V. Effect of fermentation on ionizable iron in cereal-pulse combinationsInt J. Food Sci. Tech. 1992, 27, 221–228.Google Scholar
  19. Johnson, P. E. Effect of food processing and preparation on mineral utilization. In Nutritional & Toxicological Consequences of Food Processing. Friedman, M., Ed.; Plenum Press: New York, NY, 1991.Google Scholar
  20. Kapanidis, A. N.; Lee, T. Heating cruciferous vegetables increases in vitro dialyzability of intrinsic and extrinsic iron. J. Food Sci. 1995, 60 (1), 128–141.CrossRefGoogle Scholar
  21. Karmas, E.; Harris, R., Eds.; Nutritional Evaluation of Food Processing; AVI: Westport, CT, 1975.Google Scholar
  22. Karmas, E.; Harris, R., Eds.; Nutritional Evaluation of Food Processing; Van Nostrand Reinhold: New York, NY, 1988.Google Scholar
  23. Khetarpaul, N.; Chauhan, B. M. Effect of germination and pure culture fermentation on HCl-extractability of minerals of pearl millet (Pennisetum typhoideum). Int. J. Food. Sci. and Tech. 1989, 24, 327–331.CrossRefGoogle Scholar
  24. Lachance, P. A.; Fisher, M. C. Effects of food preparation procedures in nutrient retention with emphasis on food service practices. In Nutritional Evaluation of Food Processing; Karmas, E., Harris, R., Eds.; Van Nostrand Reinhold: New York, NY, 1988.Google Scholar
  25. Labuza, T. P Moisture sorption: practical aspects of isotherm measurement and use; The American Association of Cereal Chemists: St. Paul, MN, 1984.Google Scholar
  26. Lane, R. H.; Neggers, Y. B.; Bonner, J. L.; Stitt, K. R. Nutrient quality of selected vegetables prepared by conventional and cook-freeze methods. J. Food Qual. 1986, 9, 407–412.CrossRefGoogle Scholar
  27. Larsson, M.; Sandberg, A. S. Phytate reduction in oats during malting. In Bioavailability ’93 — Nutritional, Chemical and Processing Implications of Nutrient Availability: Schlemmer, U., Ed.; Karlsruhe: Bundesforschungsanstalt fur Ernahrung, 1993.Google Scholar
  28. Larsson, M.; Rossander-Hultén, L.; Sandström, B.; Sandberg, A. Improved zinc and iron absorption from breakfast meals containing malted oats with reduced phytate content. Brit. J. Nutr. 1996, 76, 677–688.CrossRefGoogle Scholar
  29. Latunde-Dada, G. O. Some physical properties often soy bean varieties and effects of processing on iron levels and availability. Food Chem. 1991, 42, 89–98.CrossRefGoogle Scholar
  30. Love, J. A.; Prusa, K. J., Nutrient composition and sensory attributes of cooked ground beef: effects of fat content, cooking method, and water rinsing. J. Am. Diet. Assoc. 1992, 92, 1367–1371.Google Scholar
  31. Lyimo, M. H.; Nyagwegwe, S.; Mnkeni, A. R Investigations on the effect of traditional food processing, preservation and storage methods on vegetable nutrients: a case study in Tanzania. Plant Foods for Hum. Nutr. 1991, 41, 53–57.CrossRefGoogle Scholar
  32. Machlin, L. J., Ed.; Handbook of Vitamins; Marcel Dekker: New York, NY, 1991.Google Scholar
  33. Mahajan, S.; Chauhan, B.M. Effect of natural fermentation on the extractability of minerals from pearl millet flour. J. Food Sci. 1988, 53 (5), 1576–1577.CrossRefGoogle Scholar
  34. Miller, D. In Food Chemistry; Fennema, O. R., Ed.; Marcel Dekker, Inc: New York, NY, 1996.Google Scholar
  35. Moeljopawiro, S.; Fields, M. L.; Gordon, D. D. Bioavailability of zinc in fermented soybeans. J Food Sci. 1988, 53, 1546–1573.CrossRefGoogle Scholar
  36. Muller, H. G.; Tobin, G. Nutrition and food processing; AVI: Westport, CT, 1980.Google Scholar
  37. Murphy, E. W.; Criner,; P. E.; Gray, B. C. Comparisons of Methods for calculating retentions of nutrients in cooked foods. J. Agri. Food Chem. 1975, 23, 1153–1157.CrossRefGoogle Scholar
  38. Murphy, E. W.; Watt, B. K.; Rizek, R. L. Tables of food composition: availability, uses, and limitations. Food Technology. 1973, 40–51.Google Scholar
  39. Nävert, B.; Sandström, B.; Cederblad. A. Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. Brit. J. Nutr. 1985, 53, 47–53.CrossRefGoogle Scholar
  40. Pinn, A. B. O.; Colli, C.; Mancini-Filho, J. Beans (Phaseolus vulgaris L.) irradiation — I-iron bioavailability. In Bioavailability’93Nutritional, Chemical and Processing Implications of Nutrient Availability Schlemmer, U., Ed.; Karlsruhe: Bundesforschungsanstalt fur Ernährung, 1993.Google Scholar
  41. Reddy, M. B.; Hurrell, R. F.; Juillerat, M. A.; Cook, J. D. The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans. Am. J. Clin. Nutr. 1996, 63, 203–207.Google Scholar
  42. Sandberg, A. The effect of food processing on phytate hydrolysis and availability of iron and zinc. In Nutritional & Toxicological Consequences of Food Processing; Friedman, M., Ed.; Plenum Press: New York, NY, 1991.Google Scholar
  43. Sandberg, A.; Rossander, H.; Turk, M. Dietary Aspergillus niger phytase increases iron absorption in humans. J. Nutr, 1996, 126, 476–480.Google Scholar
  44. Svanberg, U.; Lorri, W.; Sandberg, A. Lactic fermentation of non-tannin and high-tannin cereals: Effects on in vitro estimation of iron availability and phytate hydrolysis. J. Food Sci. 1993, 58 (2), 408–412.CrossRefGoogle Scholar
  45. Stuart, M. A.; Johnson, P. E.; Hamaker, B.; Kirleis, A. Absorption of zinc and iron by rats fed meals containing sorghum food products. J. Cereal Sci. 1987, 6, 81–90.CrossRefGoogle Scholar
  46. Tannenbaum, S.R.. Nutritional and Safety Aspects of Food Processing; Marcel Dekker: New York, NY, 1979.Google Scholar
  47. Tuntawiroon, M.; Sritongkul, N.; Rossander-Hultén, L.; Pleehachinda, R.; Suwanik, R.; Brune, M.; Hallberg, L. Rice and iron absorption in man. Eur. J Clin. Nutr. 1990, 44, 489–497.Google Scholar
  48. Ummadi, P.; Chenoweth, W. L.; Uebersax, M. A. The influence of extrusion processing on iron dialyzability, phytates and tannins in legumes. J Food Process and Preserv. 1995, 19, 119–131.CrossRefGoogle Scholar
  49. Van Dael, P.; Shen, L. H.; Deelstra, H. Influence of milk processing on the in vitro availability of zinc and selenium from milk. In Bioavailability ’93 — Nutritional, Chemical and Processing Implications of Nutrient Availability; Schlemmer, U., Ed.; Karlsruhe: Bundesforschungsanstalt fur Ernahrung, 1993.Google Scholar
  50. Wong, D. W. S. Mechanisms and Theory in Food Chemistry; Van Nostrand Reinhold: New York, NY, 1989.Google Scholar
  51. Yadav, S. K.; Sehgal, S. Effect of home processing on ascorbic acid and ß-carotene content of spinach (Spinacia oleracia) and amaranth (Amaranthus tricolor) leaves. Plant Foods for Human Nutrition. 1995, 47, 125–131.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Manju B. Reddy
    • 1
  • Mark Love
    • 1
  1. 1.Department of Food Science and Human NutritionIowa State UniversityAmesUSA

Personalised recommendations