Advertisement

Cholesterol Oxidation Products

Their Occurrence and Detection in Our Foodstuffs
  • Pearlly S. Yan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 459)

Abstract

The structural similarity of cholesterol oxidation products (COP) to native cholesterol and their xenobiotic effects prompt researchers to study the long-term effects of the assimilation of these compounds into our tissues. COP are present in our food system. The level of exposure changes as our food products and our food choices alter. Therefore, the presence of COP in our food system has to be carefully monitored and their presence in processed foods minimized by optimizing processing and storage conditions. This review will briefly discuss the chemistry of some commonly-occurring COP and their biological significance. A more in-depth survey of the literature on the pitfalls of COP determination is included. It is the intention of the author to impress the readers that ‘exogenous’ COP can easily form during sample preparation. These artifacts will hinder our understanding of factors that promote COP formation in foods. The effects of heating, dehydrating, packaging and the presence of highly unsaturated lipids on the levels of COP in cholesterol-containing foods are evaluated to gauge the levels of exposure to different consumer groups.

Keywords

Cholesterol Oxidation Ascorbyl Palmitate Breast Meat Cholesterol Oxidation Product Cholesterol Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansari, G.A.S.; Smith, L.L. Assay of cholesterol autoxidation. Methods In Enzymol. 1994, 233, 332–338.CrossRefGoogle Scholar
  2. Bascoul, J.; Domergue, N.; Mourot, J.; Debry, G.; Crastes de Paulet, A. Intestinal absorption and fecal excretion of 5,6 α-epoxy-5 α-cholesta-3β-ol by the male Wistar rat. Lipids. 1986, 21, 744–747.CrossRefGoogle Scholar
  3. Breuer, P.; Bjorkhem, I. Simultaneous quantification of several cholesterol autoxidation and monohydroxylation products by isotope-dilution mass spectrometry. Steroids. 1990, 55, 185–192.CrossRefGoogle Scholar
  4. Buckley, DJ.; Morrissey, P.A.; Gray, J.I. Influence of dietary vitamin E on the oxidative stability and quality of pig meat. J. Anim. Sci. 1995, 73, 3122–3130.Google Scholar
  5. Caboni, M.F.; Hrelia, S.; Bordoni, A.; Lercker, G.; Capella, P.; Turchetto, E.; Biagi, P.L. In vitro effects of 5α-cholestane-3ß,5,6β-triol on cultured rat cardiomyocytes. J. Agric. Food Chem. 1994, 42, 2367–2371.CrossRefGoogle Scholar
  6. Caruso, D.; Rasetti, M.F.; De Angelis, L.; Galli, G. Identification of 3β-hydroxy-5a-cholest-6-ene-5-hydroperoxide in human oxidized LDL. Chem. Phys. Lipids 1996, 79, 181–186.CrossRefGoogle Scholar
  7. Chen, B.H.; Chen, Y.C. Evaluation of the analysis of cholesterol oxides by liquid chromatography. J. Chromatogr. A 1994, 661, 127–136.CrossRefGoogle Scholar
  8. Chen, J.S.; Yen, G.C. Cholesterol oxidation products in small sun-dried fish. Food Chem. 1994, 50, 167–170.CrossRefGoogle Scholar
  9. Csallany, A.S.; Kindom, S.E.; Addis, P.B.; Lee, J.H. HPLC method for quantitation of cholesterol and four of its major oxidation products in muscle and liver tissues. Lipids. 1989, 21, 645–651.CrossRefGoogle Scholar
  10. Dyer, R.G.; Hetherington, C.S.; Alberti, K.G.; Laker, M.F. Simultaneous measurement of phytosterols (campesterol and β-sitosterol) and 7-ketocholesterol in human lipoproteins by capillary column gas chromatography. J. Chromatogr. B: Biomed. Applications. 1995, 663, 1–7.CrossRefGoogle Scholar
  11. Dzeletovic, S.; Breuer, O.; Lund, E.; Diczfalusy, U. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal. Biochem. 1995, 225, 73–80.CrossRefGoogle Scholar
  12. Emanuel, H.A.; Hassel, CA.; Addis, P.B.; Bergmann, S.D.; Zavoral, J.H. Plasma cholesterol oxidation products (oxysterols) in human subjects fed a meal rich in oxysterols. J. Food Sci. 1991, 56, 843–847.CrossRefGoogle Scholar
  13. Fontana, A.; Antoniazzi, F.; Ciavatta, M.L.; Trivellone, E.; Cimino, G. 1H-NMR study of cholesterol autooxidation in egg powder and cookies exposed to adverse storage. J. Food Sci. 1993, 58, 1286–1290.CrossRefGoogle Scholar
  14. Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 726, 497–509.Google Scholar
  15. Granelli, K.; Faldt, P.; Appelqvist, L.A.; Bergentstahl, B. Influence of surface structure on cholesterol oxidation in model food powders. J. Sci. Food Agric. 1996, 71, 75–82.CrossRefGoogle Scholar
  16. Guardiola, F.L.; Codony, R.; Miskin, D.; Rafecas, M.; Boatella, J. Oxysterol formation in egg powder and relationship with other quality parameters. J. Agric. Food Chem. 1995, 43, 1903–1907.CrossRefGoogle Scholar
  17. Guardiola, F.; Condony, R.; Addis, P.B.; Rafecas, M.; Boatella, J. Biological effects of oxysterol: current status. Food Chem. Toxic. 1996, 34, 193–211.CrossRefGoogle Scholar
  18. Hodis, H.N.; Crawford, D.W.; Sevanian, A. Cholesterol feeding increases plasma and aortic tissue cholesterol oxide levels in parallel: Further evidence for the role of cholesterol oxidation in atherosclerosis. Atherosclerosis. 1991, 89, 117–126.CrossRefGoogle Scholar
  19. Huber, K.C.; Pike, O.A.; Huber, C.S. Antioxidant inhibition of cholesterol oxidation in a spray-dried food system during accelerated storage. J. Food Sci. 1995, 60, 909–912, 916.CrossRefGoogle Scholar
  20. John, C.B. Isolation of cholesterol oxidation products from animal fat using aminopropyl solid-phase extraction. J. Chromatogr. A. 1996, 736, 205–210.CrossRefGoogle Scholar
  21. Keimasha, S.; Kubow, S.; Goetghebeur, M. Comparative high-performance liquid chromatographic analyses of cholesterol and its oxidation products using diode-array ultraviolet and laser light-scattering detection. J. Chromatogr. A. 1994, 685, 229–235.CrossRefGoogle Scholar
  22. Kim, S.K.; Nawar, W.W. Parameters influencing cholesterol oxidation. Lipids. 1993, 28, 917–922.CrossRefGoogle Scholar
  23. Korytowski, W.; Bachowski, G.J.; Girotti,A.W. Analysis of cholesterol and phospholipid hydroperoxides by high-performance liquid chromatography with mercury drop electrochemical detection. Anal. Biochem. 1993, 213, 111–119.CrossRefGoogle Scholar
  24. Lai, S.M.; Gray, J. I.; Buckley, D.J.; Kelly, P.M. Influence of free radicals and other factors on formation of cholesterol oxidation products in spray-dried whole egg. J. Agric. Food Chem. 1995, 43, 1127–1131.CrossRefGoogle Scholar
  25. Lakritz, L.; Maerker, G. Effect of ionizing radiation on cholesterol inaqueous dispersion. J. Food Sci. 1989, 54, 1569–1572.CrossRefGoogle Scholar
  26. Li, S.X.; Ahn, D.U.; Cherian, G.; Chung, T.Y; Sim, J.S. Dietary Oils and tocopherol supplementation on cholesterol oxide formation in freeze-dried chicken meat during storage. J. Food Lipids. 1996a, 3, 27–42.CrossRefGoogle Scholar
  27. Li, S.X.; Cherian, G.; Ahn, D.U.; Hardin, R.T.; Sim, J.S. Storage, heating, and tocopherols affect cholesterol oxide formation in food oils. J. Agric. Food Chem. 1996b, 44, 3830–3834.CrossRefGoogle Scholar
  28. Li, S.X.; Cherian, G.; Sim, J.S. Cholesterol oxidation in egg yolk powder during storage and heating as affected by dietary oils and tocopherol. J. Food Sci. 1996c, 61, 721–725.CrossRefGoogle Scholar
  29. Lizard, G.; Deckert, V.; Dubrez, L.; Moisant, M.; Gambert, P.; Lagrost, L. Induction of apoptosis in endothelial cells treated with cholesterol oxides. Am. J. Path. 1996, 148, 1625–1638.Google Scholar
  30. Maerker, G.; Jones, K.C Gamma-irradiation of individual choelsterol oxidation products. J. Am. Oil Chem. Soc. 1992, 69, 451–455.CrossRefGoogle Scholar
  31. McCluskey, S.; Devery, R. Validation of chromatographic analysis of cholesterol oxides in dried foods. Trends Food Sci. Technol. 1993, 4, 175–178.CrossRefGoogle Scholar
  32. Misseler, S.R.; Wasilchuk, B.A.; Merritt, C. Separation and identification of cholesterol oxidation products in dried egg preparations. J. Food Sci. 1985, 50, 595–598.CrossRefGoogle Scholar
  33. Morgan, J.N.; Armstrong, D.J. Formation of cholesterol 5,6-epoxides during spray-drying egg yolk. J. Food Sci. 1987, 52, 1224–1227.CrossRefGoogle Scholar
  34. Nielsen, J.H.; Olsen, C.E.; Jensen, C.; Skibsted, L.H. Cholesterol oxidation in butter and dairy spread during storage. J. Daily Res. 1996, 63, 159–167.CrossRefGoogle Scholar
  35. Nielsen, J.H.; Olsen, C.E.; Duedahl, C.; Skibsted, L.H. Isolation and quantification of cholesterol oxides in dairy products by selected ion monitoring mass spectrometry. J. Dairy Res. 1995, 62, 101–113.CrossRefGoogle Scholar
  36. Nourooz-Zadeh, J.; Appelqvist, L. Cholesterol oxides in Swedish foods and food ingredients: milk powder products. J. Food Sci. 1988, 53, 74–79.CrossRefGoogle Scholar
  37. Nourooz-Zadeh, J.; Tajaddini-Sarmadi, J.; Ling, K.L.E.; Wolff, S.P. Low-density lipoprotein is the major carrier of lipid hydroperoxides in plasma. Relevance to determination of total plasma lipid hydroperoxide concentrations. Biochem. J. 1996, 313. 781–786.Google Scholar
  38. Ohshima, T.; Shozen, K.I.; Ushio, H.; Koizumi, C. Effects of grilling on formation of cholesterol oxides in seafood products rich in polyunsaturated fatty acids. Food Sci. & Technol. Lebensm. Wiss. U. Technol. 1996, 29, 94–99.CrossRefGoogle Scholar
  39. Osada, K.; Kodama, T.; Yamada, K.; Sugano, M. Oxidation of cholesterol by heating. J. Agric. Food Chem. 1993, 41, 1198–1202.CrossRefGoogle Scholar
  40. Park, S.W.; Addis, P.B. Capillary column gas-liquid chromatographic resolution of oxidized cholesterol derivatives. Anal. Biochem. 1985, 149, 275–283.CrossRefGoogle Scholar
  41. Park, S.W.; Addis, P.B. Identification and quantitation estimation of oxidized cholesterol derivatives in heated tallow. J. Agric. Food Chem. 1986, 34, 653–659.CrossRefGoogle Scholar
  42. Palladini, G.; Finardi, G.; Bellomo, G. Disruption of actin microfilament organization by cholesterol oxides in 73/73 endothelial cells. Expt. Cell Res. 1996, 223, 72–82.CrossRefGoogle Scholar
  43. Paniangvait, P.; King, A.J.; Jones, A.D.; German, B.G. Cholesterol oxides in foods of animal origin. J. Food Sci. 1995, 60, 1159–1174.CrossRefGoogle Scholar
  44. Peng, S.K.; Phillips, G.A.; Xia, G.Z.; Morin, R.J. Transport of cholesterol autoxidation products in rabbits lipoproteins. Atherosclerosis 1986, 64, 1–6.CrossRefGoogle Scholar
  45. Pie, J.E.; Spahis, K.; Seillan, C. Cholesterol oxidation in meat products during cooking and frozen storage. J. Agric. Food Chem. 1991, 39, 250–254.CrossRefGoogle Scholar
  46. Rose-Sallin, C.; Huggett, A.C.; Bosset, J.O.; Tabacchi, R.; Fay, L.B. Quantification of cholesterol oxidation products in milk powders using [2H7]cholesterol to monitor cholesterol autoxidation. J. Agric. Food Chem. 1995, 43, 935–941.CrossRefGoogle Scholar
  47. Sarantinos, J.; O’Dea, K.; Sinclair, A.J. Cholesterol oxides in Australian foods. Indentification and quantification. Food Australia. 1993, 45, 485–491.Google Scholar
  48. Schmarr, H.G.; Gross, H.B.; Shibamoto, T. Analysis of polar cholesterol oxidation products: Evaluation of new method involving transesterification, solid phase extraction and gas chromatography. J. Agric. Food Chem. 1996, 44, 512–517.CrossRefGoogle Scholar
  49. Sevanian, A.; Seraglia, R.; Traldi, P.; Rossato, P.; Ursini, F.; Hodis, H. Analysis of plasma cholesterol oxidation products using gas- and high-performance liquid chromatography/mass spectrometry. Free Rad. Biol. Med. 1994. 17, 397–409.CrossRefGoogle Scholar
  50. Shozen, K.I.; Ohshima, T.; Ushio, H.; Koizumi, C. Formation of cholesterol oxides in marine fish products induced by grilling. Fisheries Sci. 1995, 61, 817–821.Google Scholar
  51. Shozen, K.I.; Ohshima, T.; Ushio, H.; Takiguchi, A.; Koizumi, C. Effects of antioxidants and packing on cholesterol oxidation in processed anchovy during storage. Food Sci. & Technol. Lebensm. Wiss. U. Technol 1997, 30, 2–8.CrossRefGoogle Scholar
  52. Smith, L.L. Cholesterol autoxidation. New York: Plenum Press, 1981.Google Scholar
  53. Smith, L.L. Cholesterol autoxidation 1981–1986. Chem. Phys. Lipids. 1987, 44, 87–125.CrossRefGoogle Scholar
  54. Smith, L.L. Another cholesterol hypothesis: Cholesterol as antioxidant. Free Rad. Biol. Med. 1991, 11, 47–61.CrossRefGoogle Scholar
  55. Straprans, I.; Rapp, J.H.; Pan, X.M.; Feingold, K.R. Oxidized lipids in the diet are incorporated by the liver into very low density lipoprotein in rats. J. Lipid Res. 1996, 37, 420–430.Google Scholar
  56. Teng, J.I. Oxysterol separation by HPLC in combination with thin layer chromatography. Chromatogram. 1990, 8–10.Google Scholar
  57. Van Lier, J.E.; Smith, L.L. Sterol metabolism. I. 26-hydroxycholesterol in the human aorta. Biochemistry 1967, 6, 3269–3278.CrossRefGoogle Scholar
  58. Wahle, K.W.J.; Hoppe, P.P.; Mcintosh, G. Effects of storage and various intrinsic vitamin E concentrations on lipid oxidation in dried egg powders. J. Sci. Food Agric. 1993, 61, 463–469.CrossRefGoogle Scholar
  59. Wasilchuk, B.A.; Le Quesne, P.W.; Vouross, P. Monitoring cholesterol autoxidation processes using multideuterated cholesterol. Anal. Chem. 1992, 64, 1077–1098.CrossRefGoogle Scholar
  60. Yamamoto, Y; Brodsky, M.H.; Baker, J.C; Ames, B.N. Detection and characterization of lipid hydroperoxides at picomole levels by high-performance liquid chromatography. Anal. Biochem. 1987, 160, 7–13.CrossRefGoogle Scholar
  61. Yan, P.S.; White, P.J. Cholesterol oxidation in heated lard enriched with two levels of cholesterol. J. Am. Oil Chem. Soc. 1990, 67, 927–931.CrossRefGoogle Scholar
  62. Yankah, V.V.; Ohshima, T.; Ushio, H.; Fujii, T.; Koizumi, C. Study of the differences between two salt qualities on microbiology, lipid and water-extractable components of momoni, a Ghanaian fermented fish products. J. Sci. Food Agric. 1996, 71, 33–40.CrossRefGoogle Scholar
  63. Zubillaga, M.P.; Maerker, G. Quantification of three cholesterol oxidation products in raw meat and chicken. J. Food Sci. 1991, 56, 1194–1196, 1202.CrossRefGoogle Scholar
  64. Zubillaga, M.P.; Maerker, G. Transesterification of cholesteryl esters. J. Am. Oil Chem. Soc. 1988, 65, 780–782.CrossRefGoogle Scholar
  65. Zunin, P.; Evangelisti, F.; Caboni, M.F.; Penazzi, G.; Lercker, G.; Tiscornia, E. Cholesterol oxidation in baked foods containing fresh and powdered eggs. J. Food Sci. 1995, 60, 913–916.CrossRefGoogle Scholar
  66. Zunin, P.; Evanelisti, F.; Calcagno, C.; Tiscornia, E. Cholesterol oxidation in dried egg pasta: Detecting 7-keto-cholesterol content. Cereal Chem. 1996, 73, 691–694.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Pearlly S. Yan
    • 1
  1. 1.Experiment Station Chemistry LaboratoryUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations